JPS6263407A - Production of low iron loss unidirectional silicon steel plate - Google Patents

Production of low iron loss unidirectional silicon steel plate

Info

Publication number
JPS6263407A
JPS6263407A JP20251085A JP20251085A JPS6263407A JP S6263407 A JPS6263407 A JP S6263407A JP 20251085 A JP20251085 A JP 20251085A JP 20251085 A JP20251085 A JP 20251085A JP S6263407 A JPS6263407 A JP S6263407A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
steel plate
unidirectional silicon
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20251085A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20251085A priority Critical patent/JPS6263407A/en
Publication of JPS6263407A publication Critical patent/JPS6263407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain both super low iron loss and excellent film adhesion property, by forming a hybrid thin film composed of carbide, nitride, and carbon- nitride compound on the surface of a steel plate. CONSTITUTION:On an unidirectional silicon steel plate which is finished in decarbonization and the primary recrystallization annealing to obtain a composition containing C:0.001-0.01wt% and N:0.0005-0.01wt%, a surface thin layer is stuck and formed which is made of at least one kind of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Al, B and Si. After that, the secondary recrystallization annealing and then purification annealing are performed in the non-oxidizing atmosphere to form a hybrid thin film composed of carbide, nitride and carbonnitride compound on the surface of steel plate. Vapoer deposition, iron plating, sputtering, and CVD method match suitably to coating means of surface thin layer, and such a lamination layer is preferable to be about 0.1-2.0mum thick.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性けい素鋼板の電気・磁気的特性の改善、なかで
も、鉄損の低減に係わる極限的な要請を満たそうとする
近年来の目覚ましい開発努力は、逐次その実を挙げつつ
あるが、その実施に伴う重大な弊害として、一方向性け
い素鋼板の使用に当たっての加工、組立てを経たのち、
いわゆるひずみ取り焼鈍がほどこされた場合に、特性劣
化の随伴を不可避に生じて、使途についての制限を受け
る不利が指摘される。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, efforts have been made to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme demands of reducing iron loss. The remarkable development efforts are gradually bearing fruit, but one serious drawback to their implementation is that after processing and assembly when using unidirectional silicon steel sheets,
It has been pointed out that when so-called strain-relief annealing is applied, it inevitably causes characteristic deterioration and is disadvantageous in that its usage is limited.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を拓くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

さて一方向性けい素鋼板は、よく知られているとおり製
品の2次再結晶粒を(110) (001) 、すなわ
ちゴス方位に、高度に集積させたもので、主として変圧
器その他の電気機器の鉄心として使用され電気・磁気的
特性として製品の磁束密度(B、。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) (001), or Goss, orientation, and are mainly used in transformers and other electrical equipment. The magnetic flux density (B,.

値で代表される)が高く、鉄損(W+7150値で代表
される)の低いことが要求される。
(represented by the value of W+7150) and low iron loss (represented by the value of W+7150).

この一方向性けい素鋼板は複雑多岐にわたる工程を経て
製造されるが、今までにおびただしい発明・改善が加え
られ、今日では板厚0.30mmの製品の磁気特性が8
.、1.90T以上、W+t/so 1.05W/kg
以下、また板厚0.23+n+nの製品の磁気特性が8
101、89T以上、Ltzso 0.90W/kg以
下の超低鉄損一方向性けい素鋼板が製造されるようにな
って来ている。
This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today a product with a thickness of 0.30 mm has magnetic properties of 8.
.. , 1.90T or more, W+t/so 1.05W/kg
Below, the magnetic properties of a product with a plate thickness of 0.23+n+n are 8
Unidirectional silicon steel sheets with ultra-low iron loss of 101, 89T or more and Ltzso 0.90W/kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリユエーション」 (鉄損評価
)制度が普及している。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性けい素鋼板の
仕上げ焼鈍後の鋼板表面に圧延方向にほぼ直角方向での
レーザ照射により局部微小ひずみを導入して磁区を細分
化し、もって鉄損を低下させることが提案された(特公
昭57−2252号、特公昭57−53419号、特公
昭58−26405号および特公昭58−26406号
各公報参照)。
(Prior Art) Under these circumstances, recently, the surface of a unidirectional silicon steel sheet after final annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce the iron loss (see Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405, and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料としては効果的であるが、ひずみ取
り焼鈍を施す、主とじで巻鉄心トランス材料にあっては
、レーザー照射によって折角に導入された局部微小ひず
みが焼鈍処理により解放されて磁区幅が広くなるため、
レーザー照射効果が失われるという欠点がある。
This magnetic domain refining technology is effective for transformer materials with stacked cores that are not subjected to strain relief annealing, but for transformer materials that are wound with main seams and subjected to strain relief annealing, laser irradiation is difficult. The introduced local microstrain is released by annealing and the magnetic domain width becomes wider.
The disadvantage is that the laser irradiation effect is lost.

一方これより先に特公昭52−24499号公報におい
ては、一方向性けい素鋼板の仕」−げ焼鈍後の鋼板表面
を鏡面仕上げするか又はその鏡面仕上げ面上に金属薄め
っきやさらにその」−に絶縁被膜を塗布焼付することに
よる、超低鉄損一方向性けい素鋼板の製造方法が提案さ
れている。
On the other hand, earlier than this, in Japanese Patent Publication No. 52-24499, the surface of the unidirectional silicon steel sheet after annealing was mirror-finished, or the mirror-finished surface was coated with thin metal plating or the like. A method for producing ultra-low core loss unidirectional silicon steel sheets has been proposed by applying and baking an insulating film on the steel sheet.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストrツブになる割りに
鉄損低減への寄与が充分でない上、とくに鏡面仕上げ後
に不可欠な絶縁被膜を塗布焼付した後の密着性に問題が
あるため、現在の製造工程において採用されるに至って
はいない。また特公昭56−4150号公報においても
鋼板表面を鏡面仕上げした後、酸化物系セラミックス薄
膜を蒸着する方法が提案されている。しかしながらこの
方法も600℃以上の高温焼鈍を施すと鋼板とセラミッ
ク層とが剥離するため、実際の製造工程では採用できな
い。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective, as it does not make a sufficient contribution to reducing iron loss, although it increases the cost significantly. Due to problems with subsequent adhesion, it has not been adopted in current manufacturing processes. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600° C. or higher.

(発明が解決しようとする問題点) 発明者らは、特に今日の省エネ材料開発の観点では上記
のごときコストアップの不利を凌駕する特性、なかでも
、高温処理での特性劣化を伴うことな(して絶縁層の密
着性、耐久性の問題を克服することが肝要と考え、この
基本認識に立脚し、方向性けい素鋼板の処理方法の抜本
的な改善によってとくに有利な超低鉄損化を達成するこ
とが、この発明の目的である。
(Problems to be Solved by the Invention) In particular, from the perspective of today's energy-saving material development, the inventors have developed properties that outweigh the disadvantage of increased cost as described above, especially those that do not suffer from property deterioration during high-temperature treatment. We believe that it is important to overcome the problems of adhesion and durability of the insulating layer, and based on this basic understanding, we have developed a particularly advantageous ultra-low iron loss through drastic improvements in the processing method of grain-oriented silicon steel sheets. It is an object of this invention to achieve the following.

(問題点を解決するだめの手段) さて発明者らは、上記の目的を達成すべく種々の検討を
加えた結果、C:0.001〜0.01wt% (以下
単に%で示す)およびN : 0.0005〜0.01
%を含有する組成になる脱炭・1次再結晶焼鈍済みの一
方向性けい素鋼板の表面上に、Ti、 Zr、 Hf、
 V、 Nb、 Ta。
(Means to Solve the Problem) As a result of various studies to achieve the above object, the inventors found that C: 0.001 to 0.01 wt% (hereinafter simply expressed as %) and N : 0.0005~0.01
Ti, Zr, Hf,
V, Nb, Ta.

Cr、 Mo、 W、 Mn、 Co、 Ni、 Al
、 BおよびSiのうち少なくとも一種の表面薄層を被
成したのち、非酸化性雰囲気中において2次再結晶焼鈍
ついて純化焼鈍を施して、鋼板表面上に炭化物、窒化物
および炭窒化物の混合薄膜を形成させることが、所期し
た目的の達成に極めて有効であることの知見を得て、こ
の発明を完成させるに至ったのでありまず。
Cr, Mo, W, Mn, Co, Ni, Al
After forming a surface thin layer of at least one of B and Si, secondary recrystallization annealing and purification annealing are performed in a non-oxidizing atmosphere to form a mixture of carbides, nitrides and carbonitrides on the surface of the steel sheet. First of all, this invention was completed after obtaining the knowledge that forming a thin film is extremely effective in achieving the desired purpose.

この発明において表面薄層の被成手段としでは、真空蒸
着、イオンブレーティング、スパッタリングおよびCV
D法が有利に適合し、かかる薄層のj9:みは0.1〜
2.0 μm程度とするのが好ましい13またこの発明
において、2次再結晶焼鈍および純化焼鈍の際に使用す
る非酸化性雰囲気どして:ま、次のものがとりわけ有利
に適合する。
In this invention, the means for forming the surface thin layer include vacuum evaporation, ion blasting, sputtering and CV
The D method is advantageously suitable, and the j9: of such a thin layer is from 0.1 to
The thickness is preferably about 2.0 .mu.m.13 In addition, in the present invention, the following non-oxidizing atmosphere is particularly advantageously suitable for use in the secondary recrystallization annealing and purification annealing.

1)H2ガスやArガス これらのガス露囲気中で焼鈍を施すことによって鋼板中
のCやNの表面への拡散が促進され、混合薄膜が有利に
形成される。
1) H2 gas or Ar gas By performing annealing in an open atmosphere of these gases, diffusion of C and N in the steel sheet to the surface is promoted, and a mixed thin film is advantageously formed.

11)炭化性ガスおよび/または窒化性ガスここに炭化
性ガスとしては、C11,やC2H6などの炭化水素系
ガスおよびCOガス、さらにはこれらのガスとH2ガス
や^rガスとの混合ガスが、−刃室化性ガスとしては、
N2ガスやNH3ガスならびにこれらのガスとH2ガス
や后ガスとの混合ガスが有利に適合し、かようなガス雪
囲気下に焼鈍を施すことによって、鋼中C,Nを表面へ
拡散させると共に、雰囲気ガスからの浸炭および/又は
浸窒を図ることにより、混合薄膜が効果的に形成される
11) Carbonizing gas and/or nitriding gas Carbonizing gases include hydrocarbon gases such as C11 and C2H6, CO gas, and mixed gases of these gases with H2 gas and ^r gas. , - As a gas that can form a blade chamber,
N2 gas, NH3 gas, and mixed gases of these gases and H2 gas or back gas are advantageously compatible, and by performing annealing in such a gas atmosphere, C and N in the steel can be diffused to the surface and A mixed thin film is effectively formed by carburizing and/or nitriding from an atmospheric gas.

以下この発明を具体的に説明する。This invention will be explained in detail below.

まずこの発明の基礎となった実験結果について説明する
First, the experimental results that formed the basis of this invention will be explained.

C:0.042%、Si:3.36%、Mn : 0.
066%、Se:0.021%、Mo : 0.025
%およびSb:0゜025%およびN:0、001〜0
.02%を含有する組成になるけい素鋼スラブに熱間圧
延を施して2.4mm厚の熱延板としたのち、900℃
、3分間の均一化焼鈍を施し、ついで950℃、3分間
の中間焼鈍を挟んで2回の冷間圧延を施して板厚:0.
23mmの最終冷延板とした。
C: 0.042%, Si: 3.36%, Mn: 0.
066%, Se: 0.021%, Mo: 0.025
% and Sb: 0°025% and N: 0,001~0
.. A silicon steel slab with a composition containing 0.02% was hot rolled to form a hot rolled sheet with a thickness of 2.4 mm, and then heated at 900°C.
, uniform annealing for 3 minutes, followed by cold rolling twice with intermediate annealing at 950°C for 3 minutes, resulting in a plate thickness of 0.
A final cold-rolled sheet of 23 mm was obtained.

その後露点を50〜10℃の範囲で種々に変化させた8
20℃の湿水素中て゛脱炭を兼ねる1次再結晶焼鈍を施
した。
Afterwards, the dew point was varied in the range of 50 to 10°C8.
Primary recrystallization annealing, which also serves as decarburization, was performed in wet hydrogen at 20°C.

ついでかかる脱炭・1次再結晶焼鈍板の表面に、真空蒸
着装置を用いて0.8μm厚のTI蒸着層を被成した。
Then, a 0.8 μm thick TI vapor deposited layer was formed on the surface of the decarburized and primary recrystallized annealed plate using a vacuum vapor deposition apparatus.

その後50%N2−H□雰囲気中で850℃、50時間
の2次再結晶焼鈍、ついでH2中で1200℃、°3時
間の純化焼鈍を施し、しかるのちりん酸塩とコロイダル
シリカを主成分とする絶縁被膜のコーティング処理を施
した。
Thereafter, secondary recrystallization annealing was performed at 850°C for 50 hours in a 50% N2-H□ atmosphere, followed by purification annealing at 1200°C for 3 hours in H2. An insulating film coating treatment was applied.

かくして得られた製品の磁気特性および鋼中C1N量、
ならびに脱炭・1次再結晶板のC,N量を表1にまとめ
て示す。
The magnetic properties of the product thus obtained and the amount of C1N in the steel,
Table 1 also shows the amounts of C and N in the decarburized and primary recrystallized plates.

表1に示した結果から明らかなように、脱炭・1次再結
晶時におけるCおよびN量が1100pp以下の試料に
、Tiを蒸着してから非酸化性雰囲気中で2次再結晶焼
鈍および純化焼鈍(以下両者を併せて表す場合には単に
仕上げ焼鈍という)を施した場合に、磁束密度日、。が
1.89以上でかつ鉄損Wlff/S。
As is clear from the results shown in Table 1, Ti was vapor-deposited on the sample in which the amount of C and N at the time of decarburization and primary recrystallization was 1100 pp or less, and then secondary recrystallization annealing was performed in a non-oxidizing atmosphere. Magnetic flux density when subjected to purification annealing (hereinafter referred to as finish annealing when both are expressed together). is 1.89 or more and iron loss Wlff/S.

が0.83W/kg以下の優れた特性が得られた。Excellent properties were obtained, with a value of 0.83 W/kg or less.

また、このときの鋼中C,N量は25ppm以下と、脱
炭・1次再結晶時の鋼中C,Nlに比べて大幅に低減し
ていることが注目される。
It is also noteworthy that the amounts of C and N in the steel at this time are 25 ppm or less, which is significantly lower than the C and Nl in the steel at the time of decarburization and primary recrystallization.

さらに磁気特性が良好な製品はいずれも、密着性にも優
れていた。
Furthermore, all products with good magnetic properties also had excellent adhesion.

(作 用) 上に述べた磁気特性および密着性の向上は、脱炭・1次
再結晶焼鈍後に、T1を蒸着し、ついで非酸化物雰囲気
中で仕上げ焼鈍を施すことによって、鋼中のC,Nが鋼
板表面に拡散してきてTiC,TiN$よびTi(C,
N)からなる混合薄膜が形成され、かかる表面薄膜が鋼
板に対して効果的に張力を付与することによる。
(Function) The above-mentioned improvements in magnetic properties and adhesion can be achieved by depositing T1 after decarburization and primary recrystallization annealing, and then performing finish annealing in a non-oxide atmosphere to reduce C in the steel. , N diffuses onto the surface of the steel sheet, forming TiC, TiN$ and Ti(C,
A mixed thin film consisting of N) is formed, and this surface thin film effectively applies tension to the steel plate.

また混合薄膜の形成に際し、鋼中C,Nの拡散を利用す
るので、該被膜と鋼板との接合度が高まり、従って被膜
密着性の向上も図り得る。
Furthermore, since the diffusion of C and N in the steel is utilized in forming the mixed thin film, the degree of bonding between the film and the steel plate is increased, and therefore, the adhesion of the film can also be improved.

次に、一方向性けい素鋼板の製造工程について一層な説
明を含めてより詳しく説明するらまず出発素材は、従来
公知の一方向性けい素鋼素材、たとえば ■C:0.03〜0.050%、 S+:2.50〜4
.5%、Mn : 0.01〜0.2%、  Mo :
 Q、 003〜0.1%、Sb : 0.005〜0
.2%、 N : 0.0005〜0.005%、Sお
よびSeの1種あるいは2種合計で、0.005〜0.
05%を含有する組成、 ■c:o、oa〜0.08%、 Si:2,0〜4.0
%、S、:0.005〜0.05% 、 N  :0.
001 〜0.01% 、Sn : 0.01〜0.5
%、  Cu : 0.01−0.3%、Mn : 0
.01〜0.2%を含有する組成、■c:o、oa〜0
.06%、 Si:2.0〜4.0%、S 二0.00
5 〜0.05% 、 B  :0.0003〜0.0
040 % 、N :0.001〜0.01%、Mn 
: 0.01〜0.2%を含有する組成、 ■C:0.03〜0.05%、Si:2.0〜4.0%
、Sb : 0.005〜0.2%、  N : 0.
0005〜0.005%、SおよびSeのうちいずれか
1種または2種=0、005〜0.05%を含有する組
成、■C:0.03〜0.05%、 Si:2.0〜4
.0%、N : 0.0005〜0.01%、Sおよび
Seのうちいずれか1種または2種: 0.005〜0
.05%を含有する組成、 の如きにおいて適用可能である。
Next, the manufacturing process of the unidirectional silicon steel sheet will be explained in more detail, including a further explanation. First, the starting material is a conventionally known unidirectional silicon steel material, such as ■C: 0.03 to 0. 050%, S+: 2.50~4
.. 5%, Mn: 0.01-0.2%, Mo:
Q, 003~0.1%, Sb: 0.005~0
.. 2%, N: 0.0005-0.005%, one or both of S and Se in total, 0.005-0.
Composition containing 0.05%, ■c: o, oa ~ 0.08%, Si: 2.0 ~ 4.0
%, S: 0.005-0.05%, N: 0.
001 to 0.01%, Sn: 0.01 to 0.5
%, Cu: 0.01-0.3%, Mn: 0
.. Composition containing 01 to 0.2%, ■c: o, oa to 0
.. 06%, Si:2.0~4.0%, S20.00
5 ~ 0.05%, B: 0.0003 ~ 0.0
040%, N: 0.001-0.01%, Mn
: Composition containing 0.01-0.2%, ■C: 0.03-0.05%, Si: 2.0-4.0%
, Sb: 0.005-0.2%, N: 0.
0005-0.005%, composition containing any one or both of S and Se = 0, 005-0.05%, ■C: 0.03-0.05%, Si: 2.0 ~4
.. 0%, N: 0.0005-0.01%, any one or two of S and Se: 0.005-0
.. It is applicable in compositions containing 0.05%.

次に熱延板は800〜1100℃の均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は、通常
850℃から1050℃の中間焼鈍をはさんでさらに冷
延する2回冷延法にて、後者の場合最初の圧下率は50
%から80%程度、最終の圧下率は50%から85%程
度で0.15mmから0.35mm厚の最終冷延板厚と
する。
Next, the hot-rolled sheet undergoes uniform annealing at 800 to 1100°C.
One-time cold rolling method, in which the final plate thickness is obtained by two cold rolling steps, or two-step cold rolling method, in which intermediate annealing is usually performed at 850°C to 1050°C, and then further cold rolling is performed.In the latter case, the first rolling rate is 50
% to about 80%, the final rolling reduction is about 50% to 85%, and the final cold rolled plate thickness is 0.15 mm to 0.35 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は表面脱脂後
750℃から850℃の湿水素中で脱炭1次再結晶焼鈍
を施す。
After finishing the final cold rolling and finishing the steel plate to the product thickness, the steel plate is surface degreased and then subjected to primary decarburization recrystallization annealing in wet hydrogen at 750°C to 850°C.

ここに脱炭処理は、通常後続の2次再結晶焼鈍において
ゴス方位に強く集積した2次再結晶粒を発達させると共
に、純化焼鈍における鋼中Cのより一層の低減のために
、C量をできる限り低くし、もって鉄損の低減を図るた
めに行われるものであるが、この発明ではすでに述べた
ように、後続の仕上げ焼鈍において鋼中のCおよびNの
拡散を利用して混合薄膜を形成させる必要上、あまりに
過度の脱Cは好ましくなく、鋼中に0.001.〜0.
01%のCを存在させることが肝要である。というのは
脱炭・1次再結晶焼鈍板中のC量が0.001%に満た
ないと良好な混合薄膜が得難く、一方0.旧%を超える
と2次再結晶処理においてゴス方位粒の発達が悪くなり
、結果として磁気特性の劣化が起こるので好ましくない
からである。
Here, the decarburization treatment usually develops secondary recrystallized grains that are strongly accumulated in the Goss orientation in the subsequent secondary recrystallization annealing, and also reduces the amount of C in the steel in order to further reduce C in the steel in the purification annealing. This is done in order to reduce iron loss as much as possible, and as mentioned above, in the present invention, a mixed thin film is formed by utilizing the diffusion of C and N in the steel in the subsequent final annealing. Due to the necessity of forming carbon, excessive decarbonization is not preferable, and 0.001. ~0.
It is essential that 0.1% C be present. This is because if the amount of C in the decarburized/first recrystallized annealed plate is less than 0.001%, it is difficult to obtain a good mixed thin film; This is because if the former percentage is exceeded, the development of Goss-oriented grains becomes poor in the secondary recrystallization treatment, resulting in deterioration of magnetic properties, which is not preferable.

また同じく上記焼鈍板に方いて、鋼中N量が0、000
5%に満たないとやはり良好な特性の混合薄膜が得られ
ず、一方0.旧%を超えると鋼中で窒化物の優先形成が
起こるため製品の磁気特性の劣化を招く不利が生じるの
で、N量は0.0005〜0.01%の範囲に制限する
必要がある。
Similarly, for the above-mentioned annealed plate, the amount of N in the steel was 0,000.
If it is less than 5%, a mixed thin film with good properties cannot be obtained, while if it is less than 0. If it exceeds 1%, preferential formation of nitrides will occur in the steel, resulting in a disadvantage of deterioration of the magnetic properties of the product. Therefore, the amount of N must be limited to a range of 0.0005 to 0.01%.

さてついでかかる脱炭・1次再結晶焼鈍板の表面に、真
空蒸着、イオンブレーティング、スパッタリングまたは
CVD法によって好ましくは0.1〜2.0 μm厚の
Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr
、 Mo、 IN、 Mn、 Co。
Next, Ti, Zr, Hf, V, Nb, preferably 0.1 to 2.0 μm thick, are applied to the surface of the decarburized and primary recrystallized annealed plate by vacuum evaporation, ion blating, sputtering or CVD. Ta, Cr
, Mo, IN, Mn, Co.

Ni、 八l、 BおよびSiのうち少なくとも一種の
表面薄層を被成する。
A surface thin layer of at least one of Ni, B, B and Si is formed.

その後、非酸化性雰囲気中において2次再結晶焼鈍およ
びそれに引続く純化焼鈍を施して、鋼板表面上に、炭化
物、窒化物および炭窒化物からなる混合薄膜を形成させ
るのである。
Thereafter, secondary recrystallization annealing and subsequent purification annealing are performed in a non-oxidizing atmosphere to form a mixed thin film of carbides, nitrides and carbonitrides on the surface of the steel sheet.

一般に2次再結晶焼鈍は、(110) <001>方位
の2次再結晶粒を充分発達させるために施されるもので
、通常箱焼鈍によって直ちに1000℃以上に昇温し、
その温度に保持することによって行われる。
Generally, secondary recrystallization annealing is performed to sufficiently develop secondary recrystallized grains with (110) <001> orientation, and is usually performed by immediately raising the temperature to 1000°C or higher by box annealing.
This is done by holding it at that temperature.

この場合(110) <[101>方位に、高度に揃っ
た2次再結晶粒組織を発達させるためには820℃から
900℃の低温で保定焼鈍する方が有利であり、そのほ
か例えば0.5〜b 焼鈍でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (110) <[101> orientation, it is advantageous to perform retention annealing at a low temperature of 820°C to 900°C; ~b Annealing may be used.

また引続いて施す純化焼鈍は、通常1100℃以上、1
〜20時間の条件で行われる。
In addition, the subsequent purification annealing is usually performed at 1100°C or higher for 1
It is carried out under conditions of ~20 hours.

この発明において、上記の2次再結晶焼鈍および純化焼
鈍は、前掲した如き各種の非酸化性雰囲気中で行うこと
によって、鋼中C,Nの゛表面への拡散、またときには
さらに雰囲気ガスからの浸炭、浸窒を図ることにより、
鋼板表面に混合薄膜を成形させるわけであるが、必要に
応じて2次再結晶焼鈍時と純化焼鈍時における雰囲気を
変更してもよいのはいうまでもない。
In this invention, the above-mentioned secondary recrystallization annealing and purification annealing are carried out in various non-oxidizing atmospheres as mentioned above, so that C and N in the steel can be diffused to the surface, and sometimes further removed from the atmospheric gas. By carburizing and nitriding,
Although a mixed thin film is formed on the surface of the steel sheet, it goes without saying that the atmosphere during the secondary recrystallization annealing and the purification annealing may be changed if necessary.

さらにこのようにして形成した混合薄膜上に、りん酸塩
とコロイダルシリカを主成分とする絶縁被膜の塗布焼付
を行うことが、100万KVAにも上る大容量トランス
の使途において当然に必要であり、この絶縁性塗布焼付
層の形成の如きは、従来公知の手法をそのまま用いるこ
とができる。
Furthermore, it is naturally necessary to apply and bake an insulating film mainly composed of phosphate and colloidal silica on the mixed thin film formed in this way when using a large capacity transformer of up to 1 million KVA. For the formation of this insulating coated and baked layer, conventionally known methods can be used as they are.

(実施例) C:0.043%、Si:3.42%、Mn : 0.
068%、Se:0、020%、Mo : 0.025
%およびN:0.0026%を含有するけい素鋼スラブ
に熱間圧延を施して2.4+n+o厚の熱延板とした。
(Example) C: 0.043%, Si: 3.42%, Mn: 0.
068%, Se: 0, 020%, Mo: 0.025
% and N: A silicon steel slab containing 0.0026% was hot rolled to obtain a hot rolled plate having a thickness of 2.4+n+o.

ついで900℃で3分間の均一化焼鈍を施したのち、9
50℃、3分間の中間焼鈍を挟んで2回の冷間圧延を施
して0.23mm厚の最終冷延板とした。その後820
℃の湿水素中(露点:45℃)で脱炭を兼ねる1次再結
晶焼鈍を施した鋼板表面に、表2に示す種々の金属また
は半金属を0.8μm厚に蒸着した。
Then, after homogenizing annealing at 900℃ for 3 minutes,
Cold rolling was performed twice with intermediate annealing at 50° C. for 3 minutes to obtain a final cold rolled sheet having a thickness of 0.23 mm. Then 820
Various metals or metalloids shown in Table 2 were vapor-deposited to a thickness of 0.8 μm on the surface of a steel sheet that had been subjected to primary recrystallization annealing that also served as decarburization in wet hydrogen at 45° C. (dew point: 45° C.).

しかるのち50%N2+ 82雰囲気中で850. t
、50時間の2次再結晶焼鈍、ついで乾H2中で120
0℃、8時間の純化焼鈍を施し、さらにりん酸塩とコロ
イダルシリカを主成分とする絶縁被膜のコーティング処
理を施した。
After that, 850. t
, secondary recrystallization annealing for 50 hours, then 120 hours in dry H2.
Purification annealing was performed at 0° C. for 8 hours, and a coating treatment with an insulating film mainly composed of phosphate and colloidal silica was performed.

かくして得られた各製品の磁気特性および被膜密着性に
ついて調べた結果を表2にまとめて示す。
Table 2 summarizes the results of examining the magnetic properties and film adhesion of each product thus obtained.

表2に示した成績から明らかなように、この発明に従い
得られた一方向性けい素鋼板はいずれも、Blo ≧1
.91T 、 L715a≦0.81W/kgという優
れた磁気特性と共に、良好な密着性を呈していた。
As is clear from the results shown in Table 2, all of the unidirectional silicon steel sheets obtained according to the present invention have Blo ≧1
.. It exhibited excellent magnetic properties such as 91T and L715a≦0.81W/kg, as well as good adhesion.

(発明の効果) かくしてこの発明によれば、巻鉄心向はトランス材料と
しての使途におけるような高温でのひずみ取り焼鈍の如
き高温処理の適用の有無にかかわらず、磁気特性とくに
超低鉄損を、良好な被膜密着性と共に得ることができる
(Effects of the Invention) Thus, according to the present invention, the winding core direction has excellent magnetic properties, especially ultra-low core loss, regardless of whether high-temperature treatment such as high-temperature strain relief annealing is applied when used as a transformer material. can be obtained with good film adhesion.

Claims (1)

【特許請求の範囲】 1、C:0.001〜0.01wt%およびN:0.0
005〜0.01wt% を含有する組成になる脱炭・1次再結晶焼鈍済みの一方
向性けい素鋼板表面上に、Ti、Zr、Hf、V、Nb
、Ta、Cr、Mo、W、Mn、Co、Ni、Al、B
およびSiのうち少なくとも一種の表面薄層を被成した
のち、非酸化性雰囲気中において2次再結晶焼鈍ついで
純化焼鈍を施して、鋼板表面上に炭化物、窒化物および
炭窒化物よりなる混合薄膜を形成させることを特徴とす
る低鉄損一方向性けい素鋼板の製造方法。
[Claims] 1. C: 0.001 to 0.01 wt% and N: 0.0
Ti, Zr, Hf, V, Nb on the surface of a unidirectional silicon steel sheet that has been decarburized and annealed for primary recrystallization to have a composition containing 0.005 to 0.01 wt%.
, Ta, Cr, Mo, W, Mn, Co, Ni, Al, B
After forming a surface thin layer of at least one of Si and Si, secondary recrystallization annealing and purification annealing are performed in a non-oxidizing atmosphere to form a mixed thin film of carbides, nitrides and carbonitrides on the surface of the steel sheet. 1. A method for producing a low iron loss unidirectional silicon steel sheet, characterized by forming a unidirectional silicon steel sheet.
JP20251085A 1985-09-14 1985-09-14 Production of low iron loss unidirectional silicon steel plate Pending JPS6263407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20251085A JPS6263407A (en) 1985-09-14 1985-09-14 Production of low iron loss unidirectional silicon steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20251085A JPS6263407A (en) 1985-09-14 1985-09-14 Production of low iron loss unidirectional silicon steel plate

Publications (1)

Publication Number Publication Date
JPS6263407A true JPS6263407A (en) 1987-03-20

Family

ID=16458674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20251085A Pending JPS6263407A (en) 1985-09-14 1985-09-14 Production of low iron loss unidirectional silicon steel plate

Country Status (1)

Country Link
JP (1) JPS6263407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214888A (en) * 2011-03-28 2012-11-08 Nippon Steel Corp Fe-BASED METAL PLATE AND METHOD OF MANUFACTURING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214888A (en) * 2011-03-28 2012-11-08 Nippon Steel Corp Fe-BASED METAL PLATE AND METHOD OF MANUFACTURING THE SAME

Similar Documents

Publication Publication Date Title
JP5417936B2 (en) Method for producing grain-oriented electrical steel sheet
WO1986004929A1 (en) Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
JPS6335684B2 (en)
JPS6332849B2 (en)
JPS6263407A (en) Production of low iron loss unidirectional silicon steel plate
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JPS62103374A (en) Grain-oriented silicon steel sheet having superior magnetic characteristic
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
JPH0374486B2 (en)
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPH0337846B2 (en)
JPS6332850B2 (en)
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPS6335685B2 (en)
JPH04272166A (en) Manufacture of ultralow core loss grain-oriented silicon steel sheet
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPH0335377B2 (en)
JPH0577749B2 (en)
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS6240703A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS63293112A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss