WO2018117346A1 - Gold-colored steel sheet and manufacturing method therefor - Google Patents

Gold-colored steel sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2018117346A1
WO2018117346A1 PCT/KR2017/004993 KR2017004993W WO2018117346A1 WO 2018117346 A1 WO2018117346 A1 WO 2018117346A1 KR 2017004993 W KR2017004993 W KR 2017004993W WO 2018117346 A1 WO2018117346 A1 WO 2018117346A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
modified layer
gold
nitrogen
weight
Prior art date
Application number
PCT/KR2017/004993
Other languages
French (fr)
Korean (ko)
Inventor
공정현
김상석
박미남
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201780084379.0A priority Critical patent/CN110214195B/en
Priority to US16/473,030 priority patent/US11339459B2/en
Priority to JP2019534642A priority patent/JP7014798B2/en
Priority to EP17885227.3A priority patent/EP3561083B1/en
Publication of WO2018117346A1 publication Critical patent/WO2018117346A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/08Extraction of nitrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects

Definitions

  • the present invention relates to a color steel sheet and a surface modification method of the steel sheet, and more specifically, to form a TiN modified layer through a conventional annealing process of stainless steel including titanium (Ti) to express a beautiful gold color on the surface of the steel sheet. It relates to a gold color steel sheet and a method for producing the same.
  • the CVD method is a method of depositing metal in chemical vapor.
  • the vapor of a metal compound is sent together with a transport gas to a steel plate maintaining a high temperature in a plating room to pyrolyze it on the surface to deposit metal.
  • the PVD method is also called dry plating, and vaporizes a metal in vacuum to deposit it on a steel sheet, which may be classified into a vacuum deposition method, a sputtering method, and an ion plating method.
  • high melting point materials such as titanium can be plated, and when a nonmetallic atom is ionized and reacted in a vacuum, a compound film such as titanium nitride (TiN) can be plated, which is mainly used for color development of steel sheets.
  • TiN titanium nitride
  • Patent Document 0001 Republic of Korea Patent Publication No. 10-2011-0104631 (2011.09.23. Publication)
  • the present invention is to provide a gold color steel sheet capable of expressing the color without peeling phenomenon of the modified layer, and also to produce a gold color steel sheet capable of forming a color modified layer through a conventional annealing process without expensive special equipment. To provide.
  • the steel sheet comprising a base material and a modified layer provided on the outermost surface layer of the base material, the modified layer is Ti: 30% by weight or more and N: 10% by weight or more TiN modified layer comprising, the alloying element content in the TiN modified layer satisfies the following formula (1).
  • C, Si, Al, Mn, Cr, Ni, Nb, Zr means the content (wt%) of each element.
  • the b * value of the L * a * b * color system on the surface of the TiN modified layer may be 25 or more.
  • the base material may include N: 0.003% by weight or less and C + N: 0.015% by weight or less.
  • the thickness of the TiN modified layer may be 10nm or more.
  • the thickness of the TiN modified layer may be 20 to 120nm.
  • the steel sheet may have a formal potential of 300 mV or more.
  • a steel sheet containing 0.3 to 1.5% by weight of titanium (Ti) is annealed in a nitrogen (N 2 ) atmosphere to form a TiN modified layer on the surface.
  • the alloying element in a TiN modified layer satisfy
  • C, Si, Al, Mn, Cr, Ni, Nb, Zr means the content (wt%) of each element.
  • the annealing heat treatment may be a light annealing continuous processing.
  • the annealing heat treatment may be performed for 30 to 300 seconds at 900 to 1,200 °C.
  • the steel sheet may include N: 0.003% by weight or less.
  • the steel sheet may include C + N: 0.015% by weight or less.
  • the method for manufacturing a gold-colored steel sheet according to the present invention is economical because it is possible to form a color modified layer through a conventional annealing heat treatment without expensive special equipment, and is made of titanium (Ti) and nitrogen (N) that are concentrated to the surface inside the material.
  • Ti titanium
  • N nitrogen
  • the steel sheet manufactured according to the present invention may exhibit a beautiful gold color with a b * value of 25 or more in the L * a * b * color system.
  • the TiN modified layer of the steel sheet prepared according to the present invention can exhibit a high formula potential can have excellent corrosion resistance.
  • 1 is a schematic diagram showing the behavior of titanium and nitrogen in ordinary steel.
  • Figure 2 is a schematic diagram showing the behavior of titanium and nitrogen of the present invention.
  • 3 is a graph showing the corrosion resistance of the TiN modified layer.
  • 5 is a photograph taken of the TiN modified layer of the outermost surface layer by the FIB-TEM technique.
  • the steel sheet comprising a base material and a modified layer provided on the outermost surface layer of the base material, the modified layer is Ti: 30% by weight or more and N: 10% by weight or more TiN modified layer comprising, the alloying element content in the TiN modified layer satisfies the following formula (1).
  • C, Si, Al, Mn, Cr, Ni, Nb, Zr means the content (wt%) of each element.
  • the method for producing a gold-colored steel sheet according to the present invention is characterized in that the titanium contained in the steel composition is concentrated on the surface of the steel to form a TiN modified layer, rather than conventional titanium (Ti) coating by physical or chemical vapor deposition. .
  • a steel sheet containing 0.3 to 1.5% by weight of titanium (Ti) may be annealed in a nitrogen (N 2 ) atmosphere to form a TiN modified layer on a surface thereof.
  • the titanium (Ti) contained in the steel through the annealing heat treatment is concentrated to the surface layer and subjected to nitriding treatment. Titanium, which is sufficiently concentrated in the surface layer, is combined with activated nitrogen (N) diffused in the steel to form a nitride layer TiN modified layer, thereby expressing a beautiful gold color on the steel surface.
  • the method of manufacturing a gold-colored steel sheet it is possible to smoothly thicken the surface layer during annealing heat treatment by containing titanium (Ti) in the steel composition of 0.3 to 1.5% by weight. If the content of titanium (Ti) is less than 0.3% by weight, it is difficult to form a TiN modified layer because it is not concentrated to the surface layer, and when the content of more than 1.5% by weight, steelmaking property is lowered.
  • Ti titanium
  • Cr chromium
  • the method of manufacturing a gold-colored steel sheet according to an embodiment of the present invention may include nitrogen (N) of 0.003% by weight or less together with 0.3 to 1.5% by weight of titanium (Ti). If the content of nitrogen (N) exceeds 0.003% by weight, TiN is precipitated during the annealing heat treatment, so that the content of titanium, which is concentrated in the surface layer, may be reduced.
  • the sum of carbon (C) and nitrogen (N) content (hereinafter, referred to as C + N) in the steel composition of the steel sheet is 0.015% by weight or less.
  • C + N carbon
  • the content of C + N exceeds 0.015% by weight, the precipitation of TiC and TiN is easy during annealing heat treatment, and the content of titanium (Ti), which is concentrated in the surface layer, is reduced. It is preferable that it is 0.015 weight% or less.
  • FIG. 2 is a schematic diagram showing the behavior of titanium and nitrogen of the present invention.
  • the steel is heated above the recrystallization temperature through annealing heat treatment so that titanium (Ti) may diffuse and move.
  • Titanium has a strong affinity with nitrogen and can be combined in the surface layer with activated nitrogen (N) that diffuses into the steel to form a TiN modified layer. Since activated nitrogen continues to diffuse into the steel, the affinity titanium is also continuously concentrated in the surface layer and combined with activated nitrogen to form a sufficient thickness of the TiN modified layer.
  • Annealing heat treatment may be performed in a nitrogen (N 2 ) atmosphere.
  • the annealing heat treatment may be performed in a nitrogen atmosphere.
  • the annealing heat treatment may be a bright annealing line (BAL).
  • Bright annealing is annealing carried out in an oxygen-free atmosphere, and compared to the annealing performed in an oxygen atmosphere, high temperature oxides are not formed to maintain its own gloss and are mainly used for building interior materials and home appliances requiring a beautiful surface.
  • N 2 nitrogen
  • the annealing heat treatment may be performed for 30 to 300 seconds in a temperature range of 900 to 1,200 °C in a furnace (Furnace) of nitrogen (N 2 ) atmosphere.
  • the annealing heat treatment temperature range is appropriate 900 ⁇ 1,200 °C, more preferably 950 ⁇ 1,150 °C.
  • the annealing heat treatment time is less than 30 seconds, it is difficult to obtain a sufficient thickness of the TiN modified layer.
  • the annealing heat treatment time is less than 30 seconds, grain size may be coarsened, and moldability such as bending may appear. Therefore, annealing for 30 to 300 seconds is appropriate, and 30 to 100 seconds is more preferable.
  • Activated nitrogen (N) may penetrate and diffuse into the surface layer of the steel sheet through annealing heat treatment in the nitrogen (N 2 ) atmosphere.
  • the alloy component design to control the content of trace elements that hinder the penetration and diffusion of the activated nitrogen (N) can be accompanied.
  • Penetration and diffusion of activated nitrogen (N) is easier as the nitrogen affinity of the alloying elements dissolved in steel is greater. Therefore, elements such as carbon (C), boron (B), silicon (Si), cobalt (Co), copper (Cu), tungsten (W), molybdenum (Mo), and manganese (Mn) having a relatively low nitrogen affinity It is advantageous that the content is low.
  • the TiN modified layer may be formed by the concentration of titanium (Ti) in the steel by annealing and the penetration and diffusion of activated nitrogen (N) generated at a high temperature. Titanium enriched in the surface layer reacts with activated nitrogen to form TiN, and its thickness can be controlled by controlling the annealing heat treatment temperature and time. In order to show the gold color on the steel surface, it is desirable to form a thickness of at least 10 nm. In order to form a stable TiN modified layer such as hardness improvement along with gold color development, it is more preferable to form a thickness of 20 to 120 nm.
  • a TiN modified layer may be formed on a steel surface to express a gold color.
  • the TiN modified layer formed on the steel surface by the annealing heat treatment has a gold color in nature.
  • the content of titanium (Ti) and nitrogen (N) of the TiN modified layer must be at least a certain level.
  • the content of titanium is at least 30% by weight and the content of nitrogen is at least 10% by weight. The above is preferable.
  • the sum of the alloying element contents excluding titanium (Ti) and nitrogen (N) in the TiN modified layer may satisfy the following Equation (1).
  • the lower limit of the formula (1) is based on the alloy composition of the general low alloy carbon steel or IF (Interstitial Free) steel.
  • Low alloy carbon steels generally contain carbon (C) and nitrogen (N), and IF steel also uses titanium (Ti), niobium (Nb), and aluminum (Al) to remove carbon and nitrogen. This is because trace amounts of alloying elements may be included in the layer.
  • the upper limit of Formula (1) may correspond to stainless steel containing a large amount of alloying elements such as chromium (Cr) and nickel (Ni). When the sum of the alloying elements in the TiN modified layer exceeds 35.0% by weight, the content of titanium (Ti) and nitrogen (N) may be low, which may make it difficult to express gold color.
  • the TiN modified layer may exhibit high hardness due to nitride film characteristics, and may have a formal potential of 300 mV or more.
  • a formula is corrosion caused by the formation of holes or pits in the surface of passivated metals or alloys such as stainless steel, aluminum alloys or titanium, and the formula potential represents the resistance to the surface formula.
  • the steel sheet manufactured by the method for manufacturing a gold-colored steel sheet according to an embodiment of the present invention may have a formal potential of STS 304 or more excellent sulfuric acid corrosion resistance and salt water corrosion resistance due to the TiN modified layer. . That is, the TiN modified layer on the steel surface can provide excellent corrosion resistance to the steel sheet.
  • the b * value of the L * a * b * colorimeter may be 25 or more.
  • the L * a * b * color system is the most popular color system used in all fields in presenting color of objects. L * represents brightness and a * and b * represent color and saturation, respectively.
  • FIG. 4 shows a schematic diagram of color space representing an L * a * b * color system.
  • + a * indicates a red direction
  • -a * indicates a green direction
  • + b * indicates a yellow direction
  • -b * indicates a blue direction.
  • the content of titanium (Ti) and nitrogen (N) of the TiN modified layer may be at least 30% by weight and 10% by weight or more, as described above. have.
  • the b * value of the L * a * b * color system is preferably 27 or more.
  • a 3 mm cold rolled steel sheet containing 1.3 wt% of titanium (Ti) was subjected to continuous annealing for 60 seconds at 1100 ° C. in a furnace of nitrogen atmosphere. After annealing, the chromaticity of the steel surface was measured using a ColorQuest XE (Hunter Lab / U.S.A.) Instrument. In addition, after the surface of the steel sheet # 600 polishing process, the official potential was measured using a 3.5% NaCl solution at room temperature and are shown in Table 1 below.
  • Example 1 28.71 65 400
  • Example 2 28.10 65 410
  • Example 3 29.24 65 420
  • Example 4 34.42 75 700
  • Example 5 33.88 70 600
  • Example 6 34.66 75 700 Comparative example 1.77 0 40
  • a light annealing heat treatment was performed for 60 seconds at an annealing temperature of 1,100 ° C. to obtain a TiN modified layer having a thickness of 65 to 75 nm.
  • the steel sheet of Example 4 was photographed by the FIB-TEM technique and is shown in FIG. 5. It was found that a TiN modified layer of about 75 nm was formed.
  • Example 6 is a graph analyzing the behavior of the alloying elements according to the depth from the surface of Example 1 steel plate, referring to Figure 6, the content of titanium and nitrogen from the surface to about 60nm 30% by weight and 10% by weight or more, respectively The sum of the contents of the other alloying elements was in the range of 0.1 to 35.0% by weight to satisfy the components of the TiN modified layer of the present invention.
  • the b * value representing yellow was 1.77, and no gold color was expressed.
  • the b * value was 28 or more. It was able to express beautiful gold color.
  • Examples 1 to 6 each exhibited a formal potential of 400 mV or more, which is excellent in corrosion resistance.
  • Gold-colored steel sheet according to embodiments of the present invention can be applied to applications such as interior decoration tube, architectural interior and exterior materials or home appliance exterior materials with emphasis on exterior properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Disclosed are: a gold-colored steel sheet capable of expressing a color without a stripping phenomenon of a modification layer; and a gold-colored steel sheet manufacturing method capable of forming a color modification layer through a normal annealing process without expensive special facilities. According to one embodiment of the present invention, the gold-colored steel sheet manufacturing method can form a TiN modification layer on the surface of a steel sheet by annealing the steel sheet comprising 0.3-1.5 wt% of titanium (Ti) in a nitrogen (N2) atmosphere for 30-300 seconds at 900-1,200°C.

Description

골드 컬러 강판 및 그 제조방법Gold color steel plate and its manufacturing method
본 발명은 컬러 강판 및 강판의 표면 개질방법에 관한 것으로, 보다 구체적으로는 티타늄(Ti)를 포함하는 스테인리스강의 통상적인 소둔 공정을 통해 TiN 개질층을 형성하여 강판의 표면에 미려한 골드 컬러를 발현시킬 수 있는 골드 컬러 강판 및 그 제조방법에 관한 것이다.The present invention relates to a color steel sheet and a surface modification method of the steel sheet, and more specifically, to form a TiN modified layer through a conventional annealing process of stainless steel including titanium (Ti) to express a beautiful gold color on the surface of the steel sheet. It relates to a gold color steel sheet and a method for producing the same.
현대사회에서 색상을 이용하여 생활 속에서 다양한 미관을 만들어 내고자 하는 욕구가 높아지고 있으며, 이는 생활용품, 가정 및 사무실 용품 등에 널리 사용되는 스테인리스강 등의 강판 또한 마찬가지이다.In modern society, the desire to create various aesthetics in everyday life using colors is increasing, as is the case with steel sheets such as stainless steel, which are widely used in household goods, home and office supplies.
이러한 장식용 코팅을 위해 painting, anodizing, electroplating(ECD), diffusion coating, thermal spraying, enamel coating 등과 같은 여러 방법들이 개발되었으며, 스테인리스강에 대한 컬러 형성방법은 chemical and physical vapor deposition(CVD and PVD)법이 주로 사용되고 있다.Various methods such as painting, anodizing, electroplating (ECD), diffusion coating, thermal spraying, and enamel coating have been developed for this decorative coating.The color forming method for stainless steel is chemical and physical vapor deposition (CVD and PVD). Mainly used.
CVD법은 화학적 증기에서의 금속 석출법으로, 도금 실내에서 고온을 유지하고 있는 강판에 금속 화합물의 증기를 운송가스와 함께 보내 표면에서 열분해시켜 금속을 석출시킨다. PVD법은 드라이 플레이팅이라고도 하며, 진공 중에 금속을 기화시켜 강판에 증착시키게 되는데 진공 증착법, 스퍼터링법, 이온 플레이팅법으로 분류될 수 있다. PVD법은 티타늄과 같은 고융점 재료의 도금이 가능하고, 진공 중에서 비금속 원자를 이온화하여 반응시키면 질화 티탄(TiN)과 같은 화합물 피막을 도금할 수 있어 강판의 컬러 발현에 주로 사용되고 있다.The CVD method is a method of depositing metal in chemical vapor. The vapor of a metal compound is sent together with a transport gas to a steel plate maintaining a high temperature in a plating room to pyrolyze it on the surface to deposit metal. The PVD method is also called dry plating, and vaporizes a metal in vacuum to deposit it on a steel sheet, which may be classified into a vacuum deposition method, a sputtering method, and an ion plating method. In the PVD method, high melting point materials such as titanium can be plated, and when a nonmetallic atom is ionized and reacted in a vacuum, a compound film such as titanium nitride (TiN) can be plated, which is mainly used for color development of steel sheets.
이러한 증착법들은 특수한 진공 및 스퍼터링 장치 없이는 불가능하며 공정상의 고비용이 발생하는 문제점이 있다. 또한, 처리대상 모재와 표면에 증착된 개질층의 낮은 밀착도에 기인한 박리 현상도 문제점으로 지적되고 있다.These deposition methods are not possible without special vacuum and sputtering devices, and there is a problem in that a high process cost occurs. In addition, the peeling phenomenon due to the low adhesion between the base material to be treated and the modified layer deposited on the surface has also been pointed out as a problem.
(특허문헌 0001) 대한민국 공개특허공보 제10-2011-0104631호 (2011.09.23. 공개) (Patent Document 0001) Republic of Korea Patent Publication No. 10-2011-0104631 (2011.09.23. Publication)
본 발명은 개질층의 박리 현상 없이 컬러를 발현시킬 수 있는 골드 컬러 강판을 제공하고자 하며, 또한 고비용의 특수 설비 없이도 통상적인 소둔 공정을 통해 컬러 개질층을 형성할 수 있는 골드 컬러 강판의 제조방법을 제공하고자 한다.The present invention is to provide a gold color steel sheet capable of expressing the color without peeling phenomenon of the modified layer, and also to produce a gold color steel sheet capable of forming a color modified layer through a conventional annealing process without expensive special equipment. To provide.
본 발명의 일 실시예에 따른 골드 컬러 강판은, 모재 및 상기 모재의 최외곽 표층에 마련된 개질층을 포함하는 강판에 있어서, 상기 개질층은 Ti: 30중량% 이상 및 N: 10중량% 이상을 포함하는 TiN 개질층이며, 상기 TiN 개질층 내 합금원소 함량이 하기 식 (1)을 만족한다.Gold-colored steel sheet according to an embodiment of the present invention, the steel sheet comprising a base material and a modified layer provided on the outermost surface layer of the base material, the modified layer is Ti: 30% by weight or more and N: 10% by weight or more TiN modified layer comprising, the alloying element content in the TiN modified layer satisfies the following formula (1).
(1) 0.1중량% ≤ C+Si+Al+Mn+Cr+Ni+Nb+Zr ≤ 35.0중량%(1) 0.1 wt% ≦ C + Si + Al + Mn + Cr + Ni + Nb + Zr ≦ 35.0 wt%
여기서, C, Si, Al, Mn, Cr, Ni, Nb, Zr은 각 원소의 함량(중량%)을 의미한다.Here, C, Si, Al, Mn, Cr, Ni, Nb, Zr means the content (wt%) of each element.
또한, 본 발명의 일 실시예에 따르면, 상기 TiN 개질층 표면의 L*a*b* 표색계의 b* 값이 25 이상일 수 있다.Further, according to an embodiment of the present invention, the b * value of the L * a * b * color system on the surface of the TiN modified layer may be 25 or more.
또한, 본 발명의 일 실시예에 따르면, 상기 모재는 N: 0.003중량% 이하 및 C+N: 0.015중량% 이하를 포함할 수 있다.In addition, according to an embodiment of the present invention, the base material may include N: 0.003% by weight or less and C + N: 0.015% by weight or less.
또한, 본 발명의 일 실시예에 따르면, 상기 TiN 개질층의 두께는 10nm 이상일 수 있다.In addition, according to one embodiment of the present invention, the thickness of the TiN modified layer may be 10nm or more.
또한, 본 발명의 일 실시예에 따르면, 상기 TiN 개질층의 두께는 20 내지 120nm일 수 있다.In addition, according to one embodiment of the present invention, the thickness of the TiN modified layer may be 20 to 120nm.
또한, 본 발명의 일 실시예에 따르면, 상기 강판은 공식전위가 300mV 이상일 수 있다.In addition, according to an embodiment of the present invention, the steel sheet may have a formal potential of 300 mV or more.
본 발명의 일 실시예에 따른 골드 컬러 강판의 제조방법은, 티타늄(Ti)을 0.3 내지 1.5중량% 포함하는 강판을 질소(N2) 분위기에서 소둔 열처리하여 표면에 TiN 개질층을 형성하며, 상기 TiN 개질층 내 합금 원소가 하기 식 (1)을 만족한다.In the method of manufacturing a gold-colored steel sheet according to an embodiment of the present invention, a steel sheet containing 0.3 to 1.5% by weight of titanium (Ti) is annealed in a nitrogen (N 2 ) atmosphere to form a TiN modified layer on the surface. The alloying element in a TiN modified layer satisfy | fills following formula (1).
(1) 0.1중량% ≤ C+Si+Al+Mn+Cr+Ni+Nb+Zr ≤ 35.0중량%(1) 0.1 wt% ≦ C + Si + Al + Mn + Cr + Ni + Nb + Zr ≦ 35.0 wt%
여기서, C, Si, Al, Mn, Cr, Ni, Nb, Zr은 각 원소의 함량(중량%)을 의미한다.Here, C, Si, Al, Mn, Cr, Ni, Nb, Zr means the content (wt%) of each element.
또한, 본 발명의 일 실시예에 따르면, 상기 소둔 열처리는 광휘소둔 연속처리일 수 있다.Further, according to one embodiment of the present invention, the annealing heat treatment may be a light annealing continuous processing.
또한, 본 발명의 일 실시예에 따르면, 상기 소둔 열처리는 900 내지 1,200℃에서 30 내지 300초 동안 수행할 수 있다.In addition, according to an embodiment of the present invention, the annealing heat treatment may be performed for 30 to 300 seconds at 900 to 1,200 ℃.
또한, 본 발명의 일 실시예에 따르면, 상기 강판은 N: 0.003중량% 이하를 포함할 수 있다.In addition, according to an embodiment of the present invention, the steel sheet may include N: 0.003% by weight or less.
또한, 본 발명의 일 실시예에 따르면, 상기 강판은 C+N: 0.015중량% 이하를 포함할 수 있다.In addition, according to an embodiment of the present invention, the steel sheet may include C + N: 0.015% by weight or less.
본 발명에 따른 골드 컬러 강판의 제조방법은 고비용의 특수 설비 없이 통상적인 소둔 열처리를 통해 컬러 개질층을 형성할 수 있어 경제적이며, 소재 내부에서 표면으로 농화되는 티타늄(Ti)과 질소(N)의 확산에 의한 반응으로 개질층을 형성하여 박리 현상이 없는 골드 컬러 강판을 제조할 수 있다.The method for manufacturing a gold-colored steel sheet according to the present invention is economical because it is possible to form a color modified layer through a conventional annealing heat treatment without expensive special equipment, and is made of titanium (Ti) and nitrogen (N) that are concentrated to the surface inside the material. By forming a modified layer by a reaction by diffusion, a gold colored steel sheet without a peeling phenomenon can be produced.
또한, 본 발명에 따라 제조된 강판은 L*a*b* 표색계의 b* 값이 25 이상인 미려한 골드 컬러를 나타낼 수 있다.In addition, the steel sheet manufactured according to the present invention may exhibit a beautiful gold color with a b * value of 25 or more in the L * a * b * color system.
또한, 본 발명에 따라 제조된 강판의 TiN 개질층은 높은 공식전위를 나타내어 우수한 내식성을 가질 수 있다.In addition, the TiN modified layer of the steel sheet prepared according to the present invention can exhibit a high formula potential can have excellent corrosion resistance.
도 1은 통상의 강에서의 티타늄 및 질소의 거동을 나타내는 모식도이다.1 is a schematic diagram showing the behavior of titanium and nitrogen in ordinary steel.
도 2는 본 발명의 티타늄 및 질소의 거동을 나타내는 모식도이다.Figure 2 is a schematic diagram showing the behavior of titanium and nitrogen of the present invention.
도 3은 TiN 개질층의 내식성을 나타내는 그래프이다.3 is a graph showing the corrosion resistance of the TiN modified layer.
도 4는 L*a*b* 표색계를 나타내는 COLOR SPACE의 모식도이다.It is a schematic diagram of the color space which shows L * a * b * color system.
도 5는 최외각 표층의 TiN 개질층을 FIB-TEM 기법으로 촬영한 사진이다.5 is a photograph taken of the TiN modified layer of the outermost surface layer by the FIB-TEM technique.
도 6은 최외각 표층의 합금 원소 거동을 나타내는 그래프이다.6 is a graph showing the alloying element behavior of the outermost surface layer.
본 발명의 일 실시예에 따른 골드 컬러 강판은, 모재 및 상기 모재의 최외곽 표층에 마련된 개질층을 포함하는 강판에 있어서, 상기 개질층은 Ti: 30중량% 이상 및 N: 10중량% 이상을 포함하는 TiN 개질층이며, 상기 TiN 개질층 내 합금원소 함량이 하기 식 (1)을 만족한다.Gold-colored steel sheet according to an embodiment of the present invention, the steel sheet comprising a base material and a modified layer provided on the outermost surface layer of the base material, the modified layer is Ti: 30% by weight or more and N: 10% by weight or more TiN modified layer comprising, the alloying element content in the TiN modified layer satisfies the following formula (1).
(1) 0.1중량% ≤ C+Si+Al+Mn+Cr+Ni+Nb+Zr ≤ 35.0중량%(1) 0.1 wt% ≦ C + Si + Al + Mn + Cr + Ni + Nb + Zr ≦ 35.0 wt%
여기서, C, Si, Al, Mn, Cr, Ni, Nb, Zr은 각 원소의 함량(중량%)을 의미한다.Here, C, Si, Al, Mn, Cr, Ni, Nb, Zr means the content (wt%) of each element.
이하에서는 본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are presented to fully convey the spirit of the present invention to those skilled in the art. The invention is not limited to the examples presented herein but may be embodied in other forms. The drawings may omit illustrations of parts not related to the description in order to clarify the present invention, and may be exaggerated to some extent in order to facilitate understanding.
본 발명에 따른 골드 컬러 강판의 제조방법은 종래의 물리적 또는 화학적 증착에 의한 티타늄(Ti) 도포가 아닌, 강 조성에 함유되어 있는 티타늄이 내부에서 표면으로 농화되어 TiN 개질층을 형성함에 특징이 있다.The method for producing a gold-colored steel sheet according to the present invention is characterized in that the titanium contained in the steel composition is concentrated on the surface of the steel to form a TiN modified layer, rather than conventional titanium (Ti) coating by physical or chemical vapor deposition. .
본 발명의 일 실시예에 따른 골드 컬러 강판의 제조방법은 티타늄(Ti)을 0.3 내지 1.5중량% 포함하는 강판을 질소(N2) 분위기에서 소둔 열처리하여 표면에 TiN 개질층을 형성할 수 있다.In the method for manufacturing a gold-colored steel sheet according to an embodiment of the present invention, a steel sheet containing 0.3 to 1.5% by weight of titanium (Ti) may be annealed in a nitrogen (N 2 ) atmosphere to form a TiN modified layer on a surface thereof.
본 발명에서는 소둔 열처리를 통해 강에 함유되어 있는 티타늄(Ti)을 표층으로 농화시켜 질화(Nitriding) 처리한다. 표층으로 충분히 농화된 티타늄은 강 중에 확산되는 활성화질소(N)와 결합하여 질화층인 TiN 개질층을 형성하며, 이로 인해 강 표면에 미려한 골드 컬러를 발현시킬 수 있다.In the present invention, the titanium (Ti) contained in the steel through the annealing heat treatment is concentrated to the surface layer and subjected to nitriding treatment. Titanium, which is sufficiently concentrated in the surface layer, is combined with activated nitrogen (N) diffused in the steel to form a nitride layer TiN modified layer, thereby expressing a beautiful gold color on the steel surface.
본 발명의 일 실시예에 따른 골드 컬러 강판의 제조방법은, 강 조성 중 티타늄(Ti)을 0.3 내지 1.5중량% 함유하도록 함으로써 소둔 열처리 동안 표층으로의 농화가 원활하도록 할 수 있다. 티타늄(Ti)의 함량이 0.3중량% 미만인 경우 표층으로의 농화가 원활하지 않아 TiN 개질층 형성이 어려우며, 1.5중량% 초과인 경우 제강성이 저하된다.According to the method of manufacturing a gold-colored steel sheet according to an embodiment of the present invention, it is possible to smoothly thicken the surface layer during annealing heat treatment by containing titanium (Ti) in the steel composition of 0.3 to 1.5% by weight. If the content of titanium (Ti) is less than 0.3% by weight, it is difficult to form a TiN modified layer because it is not concentrated to the surface layer, and when the content of more than 1.5% by weight, steelmaking property is lowered.
도 1은 통상의 강에서의 티타늄 및 질소의 거동을 나타내는 모식도이다. 일반적으로 티타늄(Ti)은 강 중에 함유되어 있는 탄소(C) 및 질소(N)와 높은 반응성을 나타내므로, 소둔 열처리 중에 탄소 또는 질소와 결합하여 TiC 또는 TiN으로 기지에 석출된다. 크롬(Cr)보다 높은 탄화물 형성능을 가지는 티타늄은 TiC를 형성함으로써 크롬 결핍현상을 방지하고, TiN을 형성함으로써 내마모성을 향상시킨다. 그러나, 이처럼 강 중에 함유되어 있는 탄소와 질소는 티타늄의 농화 시 TiC 또는 TiN으로 석출되는 문제가 있으므로, 탄소와 질소의 함량을 제어할 필요가 있다.1 is a schematic diagram showing the behavior of titanium and nitrogen in ordinary steel. In general, titanium (Ti) exhibits high reactivity with carbon (C) and nitrogen (N) contained in the steel, and thus, precipitates as TiC or TiN in combination with carbon or nitrogen during annealing heat treatment. Titanium having a higher carbide forming ability than chromium (Cr) prevents chromium deficiency by forming TiC and improves wear resistance by forming TiN. However, since the carbon and nitrogen contained in the steel is a problem of precipitation of TiC or TiN during the concentration of titanium, it is necessary to control the content of carbon and nitrogen.
따라서, 본 발명의 일 실시예에 따른 골드 컬러 강판의 제조방법은, 0.3 내지 1.5중량%의 티타늄(Ti)과 함께 0.003중량% 이하의 질소(N)를 포함할 수 있다. 질소(N)의 함량이 0.003중량%를 초과하여 포함될 경우, 소둔 열처리 시 TiN이 석출되어 표층으로 농화되는 티타늄의 함량이 저감되므로 TiN 개질층 형성이 어려울 수 있다.Therefore, the method of manufacturing a gold-colored steel sheet according to an embodiment of the present invention may include nitrogen (N) of 0.003% by weight or less together with 0.3 to 1.5% by weight of titanium (Ti). If the content of nitrogen (N) exceeds 0.003% by weight, TiN is precipitated during the annealing heat treatment, so that the content of titanium, which is concentrated in the surface layer, may be reduced.
또한, 본 발명의 일 실시예에 따른 골드 컬러 강판의 제조방법은, 강판의 강 조성 중 탄소(C)와 질소(N) 함량의 합(이하, C+N이라 한다.)이 0.015중량% 이하일 수 있다. C+N의 함량이 0.015중량%를 초과하는 경우 소둔 열처리 시 TiC 및 TiN의 석출이 용이해져 표층으로 농화되는 티타늄(Ti)의 함량이 저감되므로, 티타늄의 농화가 원활하도록 강판의 C+N 함량은 0.015중량% 이하인 것이 바람직하다.In addition, in the method for manufacturing a gold-colored steel sheet according to an embodiment of the present invention, the sum of carbon (C) and nitrogen (N) content (hereinafter, referred to as C + N) in the steel composition of the steel sheet is 0.015% by weight or less. Can be. When the content of C + N exceeds 0.015% by weight, the precipitation of TiC and TiN is easy during annealing heat treatment, and the content of titanium (Ti), which is concentrated in the surface layer, is reduced. It is preferable that it is 0.015 weight% or less.
도 2는 본 발명의 티타늄 및 질소의 거동을 나타낸 모식도이다. 도 2를 참조하면, 소둔 열처리를 통해 강이 재결정 온도 이상으로 가열됨으로써 티타늄(Ti)이 확산하여 움직일 수 있게 된다. 티타늄은 질소와 친화력이 강하여 강 중으로 확산되는 활성화질소(N)와 표층에서 결합하여 TiN 개질층을 형성할 수 있다. 활성화질소는 강 중으로 지속적으로 확산되므로 친화력이 강한 티타늄 또한 지속적으로 표층으로 농화되어 활성화질소와 결합함으로써 TiN 개질층은 충분한 두께를 형성할 수 있다.Figure 2 is a schematic diagram showing the behavior of titanium and nitrogen of the present invention. Referring to FIG. 2, the steel is heated above the recrystallization temperature through annealing heat treatment so that titanium (Ti) may diffuse and move. Titanium has a strong affinity with nitrogen and can be combined in the surface layer with activated nitrogen (N) that diffuses into the steel to form a TiN modified layer. Since activated nitrogen continues to diffuse into the steel, the affinity titanium is also continuously concentrated in the surface layer and combined with activated nitrogen to form a sufficient thickness of the TiN modified layer.
소둔 열처리는 질소(N2) 분위기에서 이루어질 수 있다. 표층으로 농화되는 티타늄(Ti)이 TiN 개질층을 형성하기 위해 질소 원자(N)의 침투는 필수적이므로, 질소 분위기에서 소둔 열처리할 수 있다.Annealing heat treatment may be performed in a nitrogen (N 2 ) atmosphere. In order for titanium (Ti) to be concentrated to the surface layer to penetrate the nitrogen atom (N) in order to form a TiN modified layer, the annealing heat treatment may be performed in a nitrogen atmosphere.
또한, 소둔 열처리는 광휘소둔 연속처리(Bright Annealing Line, BAL)일 수 있다. 광휘소둔은 무산소 분위기에서 수행되는 소둔으로, 산소 분위기에서 수행되는 소둔산세에 비하여 고온산화물이 형성되지 않아 고유의 광택 유지가 가능하며 미려한 표면이 요구되는 건축내장재, 가전제품 등에 주로 사용되고 있다. 질소(N2) 분위기에서 광휘소둔을 실시함으로써 TiO2의 분율을 억제하고 TiN의 분율을 최대화할 수 있다.In addition, the annealing heat treatment may be a bright annealing line (BAL). Bright annealing is annealing carried out in an oxygen-free atmosphere, and compared to the annealing performed in an oxygen atmosphere, high temperature oxides are not formed to maintain its own gloss and are mainly used for building interior materials and home appliances requiring a beautiful surface. By performing light annealing in a nitrogen (N 2 ) atmosphere, the fraction of TiO 2 can be suppressed and the fraction of TiN can be maximized.
상기 소둔 열처리는 질소(N2) 분위기의 로(Furnace)에서 900 내지 1,200℃의 온도범위로 30 내지 300초 동안 수행될 수 있다.The annealing heat treatment may be performed for 30 to 300 seconds in a temperature range of 900 to 1,200 ℃ in a furnace (Furnace) of nitrogen (N 2 ) atmosphere.
소둔 열처리 온도가 900℃ 미만인 경우 질소 분자(N2)가 강 표면으로 농화된 티타늄(Ti)과 반응할 수 있는 활성화질소(N)로 분해되기 어려우며, 1,200℃를 초과하는 경우 입자 크기(Grain Size)가 조대해질 수 있다. 따라서 소둔 열처리 온도범위는 900 내지 1,200℃가 적절하며, 950 내지 1,150℃가 더욱 바람직하다.When the annealing heat treatment temperature is less than 900 ° C., nitrogen molecules (N 2 ) are hardly decomposed into activated nitrogen (N) that can react with titanium (Ti) concentrated on the steel surface, and when the temperature exceeds 1,200 ° C., grain size ) Can be coarse. Therefore, the annealing heat treatment temperature range is appropriate 900 ~ 1,200 ℃, more preferably 950 ~ 1,150 ℃.
또한, 소둔 열처리 시간이 30초 미만인 경우 TiN 개질층의 충분한 두께를 얻기 어려우며, 300초를 초과할 경우 입자 크기(Grain Size)가 조대해져 절곡 등의 성형성 저하가 나타날 수 있다. 따라서 30 내지 300초 소둔 열처리함이 적절하며, 30 내지 100초가 더욱 바람직하다.In addition, when the annealing heat treatment time is less than 30 seconds, it is difficult to obtain a sufficient thickness of the TiN modified layer. When the annealing heat treatment time is less than 30 seconds, grain size may be coarsened, and moldability such as bending may appear. Therefore, annealing for 30 to 300 seconds is appropriate, and 30 to 100 seconds is more preferable.
상기 질소(N2) 분위기에서의 소둔 열처리를 통해 강판의 표층에 활성화질소(N)가 침투 및 확산될 수 있다.Activated nitrogen (N) may penetrate and diffuse into the surface layer of the steel sheet through annealing heat treatment in the nitrogen (N 2 ) atmosphere.
한편, 활성화질소(N)의 강 중 원활한 확산을 위해, 활성화질소(N)의 침투 및 확산을 방해하는 미량 원소의 함량을 낮게 제어하는 합금성분 설계가 동반될 수 있다. 활성화질소(N)의 침투 및 확산은 강 중 고용되어 있는 합금 원소들의 질소 친화력이 클수록 용이하다. 따라서, 질소 친화력이 상대적으로 낮은 탄소(C), 붕소(B), 실리콘(Si), 코발트(Co), 구리(Cu), 텅스텐(W), 몰리브덴(Mo), 망간(Mn) 등의 원소 함량은 낮은 것이 유리하다.On the other hand, in order to smoothly diffuse the activated nitrogen (N) in the steel, the alloy component design to control the content of trace elements that hinder the penetration and diffusion of the activated nitrogen (N) can be accompanied. Penetration and diffusion of activated nitrogen (N) is easier as the nitrogen affinity of the alloying elements dissolved in steel is greater. Therefore, elements such as carbon (C), boron (B), silicon (Si), cobalt (Co), copper (Cu), tungsten (W), molybdenum (Mo), and manganese (Mn) having a relatively low nitrogen affinity It is advantageous that the content is low.
TiN 개질층은 소둔 열처리에 의한 강 중 티타늄(Ti)의 농화와 고온에서 생성되는 활성화질소(N)의 침투 및 확산에 의해 형성될 수 있다. 표층으로 농화된 티타늄은 활성화질소와 반응하여 TiN을 형성하며, 소둔 열처리 온도와 시간을 제어하여 그 두께를 제어할 수 있다. 강 표면에 골드 컬러를 나타내기 위해서는 최소 10nm 이상의 두께로 형성하는 것이 바람직하다. 골드 컬러 발현과 함께 경도 향상 등 안정된 TiN 개질층 형성을 위해서는 20 내지 120nm 두께로 형성하는 것이 더욱 바람직하다.The TiN modified layer may be formed by the concentration of titanium (Ti) in the steel by annealing and the penetration and diffusion of activated nitrogen (N) generated at a high temperature. Titanium enriched in the surface layer reacts with activated nitrogen to form TiN, and its thickness can be controlled by controlling the annealing heat treatment temperature and time. In order to show the gold color on the steel surface, it is desirable to form a thickness of at least 10 nm. In order to form a stable TiN modified layer such as hardness improvement along with gold color development, it is more preferable to form a thickness of 20 to 120 nm.
본 발명의 일 실시예에 따른 골드 컬러 강판의 제조방법은, TiN 개질층을 강 표면에 형성하여 골드 컬러를 발현시킬 수 있다. 소둔 열처리에 의해 강 표면에 형성된 TiN 개질층은 그 특성상 골드 컬러를 나타낸다. 강 표면에 미려한 골드 컬러를 발현하기 위해서는 TiN 개질층의 티타늄(Ti) 및 질소(N)의 함량이 일정 수준 이상이어야 하며, 티타늄의 함량은 최소 30중량% 이상, 질소의 함량은 최소 10중량% 이상이 바람직하다. 또한, TiN 개질층 내 티타늄(Ti)과 질소(N)를 제외한 합금 원소 함량의 합은 하기 식 (1)을 만족할 수 있다.In the method of manufacturing a gold-colored steel sheet according to an embodiment of the present invention, a TiN modified layer may be formed on a steel surface to express a gold color. The TiN modified layer formed on the steel surface by the annealing heat treatment has a gold color in nature. In order to express a beautiful gold color on the surface of the steel, the content of titanium (Ti) and nitrogen (N) of the TiN modified layer must be at least a certain level. The content of titanium is at least 30% by weight and the content of nitrogen is at least 10% by weight. The above is preferable. In addition, the sum of the alloying element contents excluding titanium (Ti) and nitrogen (N) in the TiN modified layer may satisfy the following Equation (1).
(1) 0.1중량% ≤ C+Si+Al+Mn+Cr+Ni+Nb+Zr ≤ 35.0중량%(1) 0.1 wt% ≦ C + Si + Al + Mn + Cr + Ni + Nb + Zr ≦ 35.0 wt%
식 (1)의 하한은 일반적인 저합금 탄소강 또는 IF(Interstitial Free) 강의 합금성분에 따른 것이다. 일반적인 저합금 탄소강은 탄소(C)와 질소(N)를 함유하고 있으며, IF 강 또한 탄소와 질소를 제거하기 위해 티타늄(Ti), 니오비움(Nb), 알루미늄(Al) 등이 사용되므로 TiN 개질층 내 미량의 합금 원소가 포함될 수 있기 때문이다. 반대로, 식 (1)의 상한은 크롬(Cr), 니켈(Ni) 등의 합금 원소를 다량 포함하는 스테인리스강이 해당될 수 있다. TiN 개질층 내 합금 원소 함량의 합이 35.0중량%를 초과하는 경우 티타늄(Ti)과 질소(N)의 함량이 낮아 골드 컬러의 발현이 어려울 수 있다.The lower limit of the formula (1) is based on the alloy composition of the general low alloy carbon steel or IF (Interstitial Free) steel. Low alloy carbon steels generally contain carbon (C) and nitrogen (N), and IF steel also uses titanium (Ti), niobium (Nb), and aluminum (Al) to remove carbon and nitrogen. This is because trace amounts of alloying elements may be included in the layer. On the contrary, the upper limit of Formula (1) may correspond to stainless steel containing a large amount of alloying elements such as chromium (Cr) and nickel (Ni). When the sum of the alloying elements in the TiN modified layer exceeds 35.0% by weight, the content of titanium (Ti) and nitrogen (N) may be low, which may make it difficult to express gold color.
TiN 개질층은 질화 피막 특성상 높은 경도를 나타낼 수 있으며, 공식전위가 300mV 이상일 수 있다. 공식이란 스테인리스강, 일루미늄 합금 또는 티탄 등과 같은 부동태화 금속이나 합금의 표면에 구멍이나 웅덩이가 생기는 부식으로, 공식전위는 표면의 공식에 대한 저항값을 나타낸다. The TiN modified layer may exhibit high hardness due to nitride film characteristics, and may have a formal potential of 300 mV or more. A formula is corrosion caused by the formation of holes or pits in the surface of passivated metals or alloys such as stainless steel, aluminum alloys or titanium, and the formula potential represents the resistance to the surface formula.
도 3은 TiN 개질층의 내식성을 나타내는 그래프이다. 도 3을 참조하면, 본 발명의 일 실시예에 따른 골드 컬러 강판의 제조방법에 의해 제조된 강판은 TiN 개질층으로 인해 황산 부식저항성과 염수 부식저항성이 우수한 STS 304 강종 이상의 공식전위를 가질 수 있다. 즉, 강 표면의 TiN 개질층은 강판에 우수한 내식성을 제공할 수 있다.3 is a graph showing the corrosion resistance of the TiN modified layer. Referring to Figure 3, the steel sheet manufactured by the method for manufacturing a gold-colored steel sheet according to an embodiment of the present invention may have a formal potential of STS 304 or more excellent sulfuric acid corrosion resistance and salt water corrosion resistance due to the TiN modified layer. . That is, the TiN modified layer on the steel surface can provide excellent corrosion resistance to the steel sheet.
본 발명의 일 실시예에 따른 골드 컬러 강판의 제조방법에 의해 제조된 강판은 L*a*b* 표색계의 b* 값이 25 이상을 나타낼 수 있다. L*a*b* 표색계는 물체의 색을 표현하는데 있어서 현재 모든 분야에서 가장 대중적으로 사용되는 표색계로써, L*는 명도를 나타내며, a*, b*는 각각 색상과 채도를 나타낸다.In the steel sheet manufactured by the method of manufacturing a gold-colored steel sheet according to an embodiment of the present invention, the b * value of the L * a * b * colorimeter may be 25 or more. The L * a * b * color system is the most popular color system used in all fields in presenting color of objects. L * represents brightness and a * and b * represent color and saturation, respectively.
도 4는 L*a*b* 표색계를 나타내는 COLOR SPACE의 모식도를 도시하고 있다. 도 4를 참조하면, +a*는 적색(Red) 방향, -a*는 녹색(Green) 방향, +b*는 황색(Yellow) 방향, -b*는 청색(Blue) 방향을 나타내며, 수치가 커질수록 선명한 색을 나타낸다. 미려한 골드 컬러를 가지기 위해서는 황색을 의미하는 b* 값이 높아야 하며, 이를 위해 TiN 개질층의 티타늄(Ti) 및 질소(N)의 함량은 상술한 바와 같이 각각 최소 30중량% 및 10중량% 이상일 수 있다. 더욱 미려한 골드 컬러를 나타내기 위해 L*a*b* 표색계의 b* 값은 27 이상인 것이 바람직하다.4 shows a schematic diagram of color space representing an L * a * b * color system. Referring to FIG. 4, + a * indicates a red direction, -a * indicates a green direction, + b * indicates a yellow direction, and -b * indicates a blue direction. The larger the color, the more vivid the color. In order to have a beautiful gold color, b * value, which means yellow, should be high, and for this, the content of titanium (Ti) and nitrogen (N) of the TiN modified layer may be at least 30% by weight and 10% by weight or more, as described above. have. In order to exhibit a more beautiful gold color, the b * value of the L * a * b * color system is preferably 27 or more.
이하 실시예들을 통하여 본 발명을 보다 상세하게 설명하고자 한다.Through the following examples will be described in more detail the present invention.
실시예Example
티타늄(Ti) 1.3중량%를 함유하고 있는 3mm의 냉연 강판을 질소 분위기의 로(Furnace)에서 1100℃로 60초간 광휘소둔 연속처리하였다. 소둔처리 종료 후 강 표면의 색도를 ColorQuest XE (Hunter Lab/U.S.A.) 장비를 이용하여 측정하였다. 또한, 강판의 표면을 #600 연마 가공한 후 상온의 3.5% NaCl 용액을 이용하여 공식전위를 측정하여 하기 표 1에 나타내었다.A 3 mm cold rolled steel sheet containing 1.3 wt% of titanium (Ti) was subjected to continuous annealing for 60 seconds at 1100 ° C. in a furnace of nitrogen atmosphere. After annealing, the chromaticity of the steel surface was measured using a ColorQuest XE (Hunter Lab / U.S.A.) Instrument. In addition, after the surface of the steel sheet # 600 polishing process, the official potential was measured using a 3.5% NaCl solution at room temperature and are shown in Table 1 below.
구분division L*a*b* 표색계b* 값L * a * b * Colorimeter b * Value TiN 개질층 두께 (nm)TiN modified layer thickness (nm) 공식전위 (mV)Formula potential (mV)
실시예 1Example 1 28.7128.71 6565 400400
실시예 2Example 2 28.1028.10 6565 410410
실시예 3Example 3 29.2429.24 6565 420420
실시예 4Example 4 34.4234.42 7575 700700
실시예 5Example 5 33.8833.88 7070 600600
실시예 6Example 6 34.6634.66 7575 700700
비교예Comparative example 1.771.77 00 4040
표 1을 참조하면, 1,100℃의 소둔 온도에서 60초 동안 광휘소둔 열처리를 실시하여 65 내지 75nm 두께의 TiN 개질층을 얻을 수 있었다. 실시예 4의 강판을 FIB-TEM 기법으로 촬영하여 도 5에 나타내었다. 약 75nm의 TiN 개질층이 형성된 것을 알 수 있었다.Referring to Table 1, a light annealing heat treatment was performed for 60 seconds at an annealing temperature of 1,100 ° C. to obtain a TiN modified layer having a thickness of 65 to 75 nm. The steel sheet of Example 4 was photographed by the FIB-TEM technique and is shown in FIG. 5. It was found that a TiN modified layer of about 75 nm was formed.
도 6은 실시예 1 강판의 표면으로부터 깊이에 따른 합금원소의 거동을 분석한 그래프이며, 도 6을 참조할 때 표면으로부터 약 60nm까지 티타늄 및 질소의 함량이 각각 30중량%와 10중량% 이상이며, 기타 합금 원소의 함량의 합이 0.1 내지 35.0중량% 범위에 해당하여 본 발명의 목적하는 TiN 개질층의 성분을 만족하였다. 6 is a graph analyzing the behavior of the alloying elements according to the depth from the surface of Example 1 steel plate, referring to Figure 6, the content of titanium and nitrogen from the surface to about 60nm 30% by weight and 10% by weight or more, respectively The sum of the contents of the other alloying elements was in the range of 0.1 to 35.0% by weight to satisfy the components of the TiN modified layer of the present invention.
본 발명에 따른 광휘소둔 연속처리를 거치지 않은 비교예의 경우 황색(Yellow)을 나타내는 b* 값이 1.77로 골드 컬러가 전혀 표현되지 않았으며, 실시예 1 내지 6의 경우 모두 b* 값이 28 이상을 나타내어 미려한 골드 컬러를 발현시킬 수 있었다.In the comparative example that did not undergo the bright annealing continuous process according to the present invention, the b * value representing yellow was 1.77, and no gold color was expressed. In all of Examples 1 to 6, the b * value was 28 or more. It was able to express beautiful gold color.
또한, 실시예 1 내지 6은 모두 공식전위가 400mV 이상을 나타내어 내식성이 우수한 것을 알 수 있었다.In addition, it was found that Examples 1 to 6 each exhibited a formal potential of 400 mV or more, which is excellent in corrosion resistance.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.As described above, the exemplary embodiments of the present invention have been described, but the present invention is not limited thereto, and a person skilled in the art does not depart from the concept and scope of the following claims. It will be understood that various changes and modifications are possible in the following.
본 발명의 실시예들에 따른 골드 컬러 강판은 외장성이 강조된 실내 장식관, 건축 내외장재 또는 가전제품 외장재 등의 용도로 적용 가능하다.Gold-colored steel sheet according to embodiments of the present invention can be applied to applications such as interior decoration tube, architectural interior and exterior materials or home appliance exterior materials with emphasis on exterior properties.

Claims (11)

  1. 모재 및 상기 모재의 최외곽 표층에 마련된 개질층을 포함하는 강판에 있어서,In the steel sheet comprising a base material and a modified layer provided on the outermost surface layer of the base material,
    상기 개질층은 Ti: 30중량% 이상 및 N: 10중량% 이상을 포함하는 TiN 개질층이며,The modified layer is a TiN modified layer including at least 30 wt% of Ti and at least 10 wt% of N,
    상기 TiN 개질층 내 합금원소 함량이 하기 식 (1)을 만족하는 골드 컬러 강판:Gold-colored steel sheet in which the alloying element content in the TiN modified layer satisfies the following formula (1):
    (1) 0.1중량% ≤ C+Si+Al+Mn+Cr+Ni+Nb+Zr ≤ 35.0중량%(1) 0.1 wt% ≦ C + Si + Al + Mn + Cr + Ni + Nb + Zr ≦ 35.0 wt%
    여기서, C, Si, Al, Mn, Cr, Ni, Nb, Zr은 각 원소의 함량(중량%)을 의미한다.Here, C, Si, Al, Mn, Cr, Ni, Nb, Zr means the content (wt%) of each element.
  2. 제1항에 있어서,The method of claim 1,
    상기 TiN 개질층 표면의 L*a*b* 표색계의 b* 값이 25 이상인 골드 컬러 강판.A gold-colored steel sheet, wherein the b * value of the L * a * b * color system on the surface of the TiN modified layer is 25 or more.
  3. 제1항에 있어서,The method of claim 1,
    상기 모재는 N: 0.003중량% 이하 및 C+N: 0.015중량% 이하를 포함하는 골드 컬러 강판.The base material is N: 0.003% by weight or less, and C + N: 0.015% by weight or less.
  4. 제1항에 있어서,The method of claim 1,
    상기 TiN 개질층의 두께는 10nm 이상인 골드 컬러 강판.The TiN modified layer has a thickness of 10 nm or more.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 TiN 개질층의 두께는 20 내지 120nm인 골드 컬러 강판.The thickness of the TiN modified layer is 20 to 120nm gold color steel sheet.
  6. 제1항에 있어서,The method of claim 1,
    상기 강판은 공식전위가 300mV 이상인 골드 컬러 강판.The steel sheet is a gold colored steel sheet having an official potential of 300 mV or more.
  7. 티타늄(Ti)을 0.3 내지 1.5중량% 포함하는 강판을 질소(N2) 분위기에서 소둔 열처리하여 표면에 TiN 개질층을 형성하며,A steel sheet containing 0.3 to 1.5% by weight of titanium (annealed) is annealed in a nitrogen (N 2 ) atmosphere to form a TiN modified layer on the surface,
    상기 TiN 개질층 내 합금 원소가 하기 식 (1)을 만족하는 골드 컬러 강판의 제조방법:Method for producing a gold-colored steel sheet wherein the alloying element in the TiN modified layer satisfies the following formula (1):
    (1) 0.1중량% ≤ C+Si+Al+Mn+Cr+Ni+Nb+Zr ≤ 35.0중량%(1) 0.1 wt% ≦ C + Si + Al + Mn + Cr + Ni + Nb + Zr ≦ 35.0 wt%
    여기서, C, Si, Al, Mn, Cr, Ni, Nb, Zr은 각 원소의 함량(중량%)을 의미한다.Here, C, Si, Al, Mn, Cr, Ni, Nb, Zr means the content (wt%) of each element.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 소둔 열처리는 광휘소둔 연속처리인 골드 컬러 강판의 제조방법.The annealing heat treatment is a method for producing a gold color steel sheet is a continuous annealing treatment.
  9. 제7항 또는 제8항에 있어서,The method according to claim 7 or 8,
    상기 소둔 열처리는 900 내지 1,200℃에서 30 내지 300초 동안 수행하는 골드 컬러 강판의 제조방법.The annealing heat treatment is a method for producing a gold color steel sheet carried out at 900 to 1,200 ℃ for 30 to 300 seconds.
  10. 제7항에 있어서, The method of claim 7, wherein
    상기 강판은 N: 0.003중량% 이하를 포함하는 골드 컬러 강판의 제조방법.The steel sheet is N: 0.003% by weight or less manufacturing method of the gold color steel sheet.
  11. 제10항에 있어서, The method of claim 10,
    상기 강판은 C+N: 0.015중량% 이하를 포함하는 골드 컬러 강판의 제조방법.The steel sheet is a manufacturing method of a gold color steel sheet containing C + N: 0.015% by weight or less.
PCT/KR2017/004993 2016-12-23 2017-05-15 Gold-colored steel sheet and manufacturing method therefor WO2018117346A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780084379.0A CN110214195B (en) 2016-12-23 2017-05-15 Golden steel plate and method for producing same
US16/473,030 US11339459B2 (en) 2016-12-23 2017-05-15 Gold-colored steel sheet and manufacturing method thereof
JP2019534642A JP7014798B2 (en) 2016-12-23 2017-05-15 Gold color steel sheet and its manufacturing method
EP17885227.3A EP3561083B1 (en) 2016-12-23 2017-05-15 Gold-colored steel sheet and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160178323A KR101844575B1 (en) 2016-12-23 2016-12-23 Gold color steel plate and manufacturing method thereof
KR10-2016-0178323 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018117346A1 true WO2018117346A1 (en) 2018-06-28

Family

ID=61973419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004993 WO2018117346A1 (en) 2016-12-23 2017-05-15 Gold-colored steel sheet and manufacturing method therefor

Country Status (6)

Country Link
US (1) US11339459B2 (en)
EP (1) EP3561083B1 (en)
JP (1) JP7014798B2 (en)
KR (1) KR101844575B1 (en)
CN (1) CN110214195B (en)
WO (1) WO2018117346A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337846B2 (en) * 1985-08-16 1991-06-06 Kawasaki Steel Co
KR20020042151A (en) * 2000-11-30 2002-06-05 이구택 Method of manufacturing austenitic stainless steel with improved high temperature creep resistance
KR100515939B1 (en) * 2000-12-26 2005-09-16 주식회사 포스코 Manufacturing process to improve the oxidation property of ferritic stainless steel bright annealing plates
JP2005264213A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk METHOD FOR CONTINUOUSLY FORMING TiN FILM
KR20110104631A (en) 2010-03-17 2011-09-23 동아대학교 산학협력단 Colored austenitic stainless steel article and manufacturing method of the same with excellent corrosion resistance and high surface hardness
KR101350156B1 (en) * 2011-05-31 2014-01-09 김익희 Method for manufacturing colorsteel materials

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662947A (en) * 1979-10-27 1981-05-29 Nippon Steel Corp Ferritic stainless steel with superior corrosion resistance for bright annealing finish
JPH02250952A (en) * 1989-03-24 1990-10-08 Ishikawajima Harima Heavy Ind Co Ltd Thin film formation
JPH0525636A (en) * 1991-04-23 1993-02-02 Sumitomo Metal Ind Ltd Manufacture of dry tin plated stainless steel for decoration
WO1995020683A1 (en) * 1994-01-26 1995-08-03 Kawasaki Steel Corporation Method of manufacturing stainless steel sheet of high corrosion resistance
JP3237369B2 (en) * 1994-02-04 2001-12-10 住友金属工業株式会社 Method for producing highly rust-resistant ferritic stainless steel sheet for exterior with excellent workability
JP2003331861A (en) * 2002-05-16 2003-11-21 Nippon Steel Corp Small contact resistance separator/carbon material interface structure for fuel cell, its carbon material and separator, and method for manufacturing stainless steel separator for fuel cell
JP2004353065A (en) * 2003-05-30 2004-12-16 Jfe Steel Kk Low core loss grain-oriented silicon steel sheet and its production method
JP2006233282A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Stainless steel for energizing electric parts with superior electric conductivity and corrosion resistance, and manufacturing method therefor
JP2006283088A (en) * 2005-03-31 2006-10-19 Citizen Watch Co Ltd Golden ornament and its manufacturing method
JP4963043B2 (en) * 2006-06-22 2012-06-27 新日鐵住金ステンレス株式会社 Bright annealed ferritic stainless steel sheet with excellent rust resistance and workability and method for producing the same
NZ576185A (en) * 2006-10-10 2012-10-26 Oerlikon Trading Ag A PVD layer system for coating workpieces with a mixed crystal layer of a polyoxide
JP4624473B2 (en) * 2008-12-09 2011-02-02 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent weather resistance and method for producing the same
CN103215524A (en) * 2013-03-28 2013-07-24 宝钢不锈钢有限公司 Stainless steel welded pipe with excellent pipe processability and manufacturing method thereof
CN103952660B (en) * 2014-05-16 2017-04-12 中国科学院宁波材料技术与工程研究所 Composite material with a nitride film as well as preparation method and application of composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337846B2 (en) * 1985-08-16 1991-06-06 Kawasaki Steel Co
KR20020042151A (en) * 2000-11-30 2002-06-05 이구택 Method of manufacturing austenitic stainless steel with improved high temperature creep resistance
KR100515939B1 (en) * 2000-12-26 2005-09-16 주식회사 포스코 Manufacturing process to improve the oxidation property of ferritic stainless steel bright annealing plates
JP2005264213A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk METHOD FOR CONTINUOUSLY FORMING TiN FILM
KR20110104631A (en) 2010-03-17 2011-09-23 동아대학교 산학협력단 Colored austenitic stainless steel article and manufacturing method of the same with excellent corrosion resistance and high surface hardness
KR101350156B1 (en) * 2011-05-31 2014-01-09 김익희 Method for manufacturing colorsteel materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561083A4

Also Published As

Publication number Publication date
EP3561083A1 (en) 2019-10-30
EP3561083B1 (en) 2021-06-23
US20200095656A1 (en) 2020-03-26
CN110214195A (en) 2019-09-06
CN110214195B (en) 2021-08-03
JP7014798B2 (en) 2022-02-01
EP3561083A4 (en) 2019-10-30
KR101844575B1 (en) 2018-04-03
US11339459B2 (en) 2022-05-24
JP2020509214A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
SA07280528B1 (en) Enameling Steel Sheet, Outstandingly Excellent in Fishscale Resistance and Method of Producing the Same
CN105887146B (en) A kind of production method of domestic gas ware coated steel strips
CN106795643A (en) The excellent connection member conductive material of resistance to micro- skimming wear
JP2008255445A (en) Cold rolled steel sheet for enameling treatment and method for producing enameling worked product
NZ555633A (en) Clear-coated stainless steel sheet excelling in design and process for producing the material
CN103261466A (en) Aluminum coated steel sheet having excellent oxidation resistance and heat resistance
WO2018117346A1 (en) Gold-colored steel sheet and manufacturing method therefor
WO2015102142A1 (en) Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material
US9303306B2 (en) Composite article and method
WO2018117760A1 (en) Zn-mg alloy plated steel material having excellent corrosion resistance and plating adhesion
KR20150073021A (en) Alloy plated steel sheet for hot press forming having excellent anti-corrosion and method for manufacturing the same
JP2001323355A (en) Si-CONTAINING HIGH-STRENGTH HOT-DIP GALVANIZED STEEL SHEET AND COATED STEEL SHEET, EXCELLENT IN PLATING ADHESION AND CORROSION RESISTANCE AFTER COATING, AND ITS MANUFACTURING METHOD
KR101621631B1 (en) Galvannealed steel sheet having high corrosion resistance after painting
WO2010027329A1 (en) Coloured gold alloy and method for forming the same
JP2006253555A (en) Super-low iron loss grain-oriented magnetic steel sheet excellent in coat adhesion
JP2006253555A6 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
CN105463278B (en) A kind of preparation method of the titanium magnesium alloy tablet personal computer housing of electroplating surface copper
JP2743228B2 (en) Method for producing hot-dip aluminized Cr-containing steel sheet with excellent workability and plating adhesion
US6517904B1 (en) Enameling of aluminum alloys surfaces
EP1347070B1 (en) Steel sheet for porcelain enameling and method for production thereof, and enameled product and method for production thereof
US11555240B2 (en) Black plated steel sheet and manufacturing method thereof
WO2024144046A1 (en) Highly corrosion-resistant plated steel and manufacturing method therefor
JP2004250734A (en) COLORED Al PLATED STEEL
JP3752109B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPS6051425B2 (en) Vinyl chloride coated steel sheet and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885227

Country of ref document: EP

Effective date: 20190723