JP2006253555A - Super-low iron loss grain-oriented magnetic steel sheet excellent in coat adhesion - Google Patents

Super-low iron loss grain-oriented magnetic steel sheet excellent in coat adhesion Download PDF

Info

Publication number
JP2006253555A
JP2006253555A JP2005070737A JP2005070737A JP2006253555A JP 2006253555 A JP2006253555 A JP 2006253555A JP 2005070737 A JP2005070737 A JP 2005070737A JP 2005070737 A JP2005070737 A JP 2005070737A JP 2006253555 A JP2006253555 A JP 2006253555A
Authority
JP
Japan
Prior art keywords
steel sheet
film
coating
iron loss
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005070737A
Other languages
Japanese (ja)
Other versions
JP2006253555A6 (en
JP5047466B2 (en
Inventor
Seiji Okabe
誠司 岡部
Hiroshi Yamaguchi
広 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005070737A priority Critical patent/JP5047466B2/en
Publication of JP2006253555A publication Critical patent/JP2006253555A/en
Publication of JP2006253555A6 publication Critical patent/JP2006253555A6/en
Application granted granted Critical
Publication of JP5047466B2 publication Critical patent/JP5047466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a super-low iron loss grain-oriented magnetic steel sheet which is excellent in coat adhesion and hardly generates peeling of an insulation film, even if stress relief annealing is applied while bending process is carried out and a stress is applied to the bending processing part thereafter. <P>SOLUTION: In a grain-oriented magnetic steel sheet, a ceramics film consisting of metallic nitride, metallic carbide or metallic carbonitride is formed in a copper plate surface without a forsterite film. Chlorine of 0.001 to 1 mass% is incorporated in the ceramics film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被膜密着性に優れた超低鉄損方向性電磁鋼板に関し、特にその表面に形成するセラミックス被膜の密着性を向上させることにより、鉄損特性の有利な改善を図ろうとするものである。   The present invention relates to an ultra-low iron loss grain-oriented electrical steel sheet having excellent film adhesion, and particularly intends to improve the iron loss characteristics by improving the adhesion of a ceramic film formed on the surface thereof. is there.

方向性電磁鋼板は、主として変圧器その他の電気機器の鉄心材料として使用されるもので、電力の損失を少なくするために、より低鉄損の材料が求められている。
方向性電磁鋼板の鉄損を低減するには、板厚を薄くする、Si含有量を増す、結晶方位の配向性を高める等の方法があるが、それに加えて鋼板に張力を付与することも有効な方法である。
Oriented electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and materials with lower iron loss are required to reduce power loss.
In order to reduce the iron loss of grain-oriented electrical steel sheets, there are methods such as reducing the sheet thickness, increasing the Si content, and increasing the orientation of the crystal orientation, but in addition to that, tension can be applied to the steel sheet. It is an effective method.

鋼板への張力付与方法としては、鋼板より熱膨張係数の小さい材質からなる被膜を表面に形成することが一般的である。すなわち、結晶方位を揃える2次再結晶と鋼板の純化とを兼ねる最終仕上焼鈍工程にて、鋼板表面の酸化物と鋼板表面に塗布した焼鈍分離剤とが反応してフォルステライトを主成分とする被膜が形成されるが、この被膜は鋼板に張力を与え、鉄損低減に効果がある。さらに、張力効果を増すために、フォルステライト被膜の上に、上塗りの低熱膨張性のコーティングを施して製品とすることも一般的に行われている。   As a method for imparting tension to a steel plate, it is common to form a film made of a material having a smaller thermal expansion coefficient than that of the steel plate on the surface. That is, in the final finish annealing process that serves as both secondary recrystallization to align the crystal orientation and purification of the steel sheet, the oxide on the steel sheet surface reacts with the annealing separator applied to the steel sheet surface, and the main component is forsterite. Although a film is formed, this film gives tension to the steel sheet and is effective in reducing iron loss. Furthermore, in order to increase the tension effect, it is also common to produce a product by applying a low thermal expansion coating on the forsterite film.

ところが、近年、鋼板表面を磁気的に平滑化する手法が開発され、仕上焼鈍工程で意図的にフォルステライト被膜の形成を阻止したり、形成されたフォルステライト被膜を除去した後、その表面を平滑に仕上げることが、鉄損の低減に有効であることが明らかとなってきた。
例えば、特許文献1には、仕上焼鈍後、酸洗により表面生成物を除去したのち、化学研磨または電解研磨により鋼板表面を鏡面状態に仕上げる方法が開示されている。
また、特許文献2には、フォルステライト被膜を除去後、1000〜1200℃のH2中でサーマルエッチングを行う方法が開示されている。
このような表面処理によって鉄損が減少するのは、磁化過程において、鋼板表面近傍の磁壁移動の妨げとなるピン留め作用のある凹凸が減少するためである。
However, in recent years, a method for magnetically smoothing the surface of steel sheets has been developed, and the surface of the steel sheet is smoothed after intentionally blocking the forsterite film formation or removing the formed forsterite film in the final annealing process. It has become clear that finishing to be effective in reducing iron loss.
For example, Patent Document 1 discloses a method in which a surface product is removed by pickling after finish annealing, and then the steel plate surface is finished in a mirror state by chemical polishing or electrolytic polishing.
Patent Document 2 discloses a method of performing thermal etching in H 2 at 1000 to 1200 ° C. after removing the forsterite film.
The reason why the iron loss is reduced by such surface treatment is that, in the magnetization process, unevenness having a pinning action that hinders the domain wall movement in the vicinity of the steel sheet surface is reduced.

なお、ヒステリシス損失を減少させる磁気的に平滑な表面とは、一般にRa(算術平均粗さ)で表現される、いわゆる表面粗さで示されるものだけでなく、例えば特許文献3に記載されたような、表面生成物を除去した後にハロゲン化物水溶液中で電解するような、いわゆる結晶方位強調処理にて得られるものも知られている。   The magnetically smooth surface that reduces the hysteresis loss is not only expressed by Ra (arithmetic mean roughness), which is generally expressed by so-called surface roughness, but for example, as described in Patent Document 3 In addition, those obtained by so-called crystal orientation emphasizing treatment, in which surface products are removed and then electrolyzed in an aqueous halide solution, are also known.

また、電磁鋼板の表面には、絶縁性の被膜が必要であるため、絶縁コーティングが施されるのが通例であり、現在、フォルステライト被膜を有する方向性電磁鋼板に適用されている張力付加型の絶縁コーティングとしては、Alやアルカリ土類金属のリン酸塩とコロイド状シリカ、無水クロム酸またはクロム酸塩を主成分とした処理液を、鋼板に塗布し、焼付けることによって形成されるものが多い。張力付加型の絶縁コーティングは、鋼板より熱膨張係数の小さいコロイド状シリカに代表される無機質被膜を高温で形成することより、地鉄と絶縁コーティングとの熱膨張差を利用して、常温において鋼板に張力を付与するものである。
上記の方法で形成される絶縁被膜は、鋼板に対する張力付与効果が大きく、鉄損低減に有効である。例えば、特許文献4や特許文献5などに、その代表的な形成方法が開示されている。
In addition, since an insulating coating is required on the surface of the electrical steel sheet, it is customary to apply an insulating coating, and the tension-added type currently applied to grain-oriented electrical steel sheets having a forsterite coating Insulating coating is formed by applying and baking a treatment liquid mainly composed of Al and alkaline earth metal phosphates and colloidal silica, chromic anhydride or chromate onto a steel plate. There are many. The tension-added insulation coating is a steel sheet at room temperature that uses the difference in thermal expansion between the ground iron and the insulation coating by forming an inorganic coating typified by colloidal silica with a smaller coefficient of thermal expansion than that of the steel sheet. The tension is applied to the.
The insulating coating formed by the above method has a great effect of imparting tension to the steel sheet and is effective in reducing iron loss. For example, Patent Document 4 and Patent Document 5 disclose typical forming methods.

しかしながら、鋼板に対する張力付加効果が大きい被膜ほど、下地との密着力が強くないと被膜が剥落してしまう。上記したような張力付与型コーティングは、フォルステライト系の最終仕上焼鈍被膜が鋼板表面に存在する場合には問題はないが、鏡面化等の表面平滑化処理を行い、最終仕上焼鈍後にフォルステライト被膜が存在しない場合には、被膜を好適に付着させることができなかった。
このために、表面を磁気的に平滑化して鉄損を低減する技術と張力付与型コーティングによる鉄損低減技術とを両立させることは困難であった。
However, a film having a greater effect of applying a tension to a steel plate is peeled off if the adhesion to the substrate is not strong. The tension imparting coating as described above is not a problem when a forsterite-based final finish annealing coating exists on the surface of the steel sheet, but the forsterite coating is applied after the final finishing annealing by performing a surface smoothening treatment such as mirror finishing. In the absence of the film, the coating could not be suitably deposited.
For this reason, it has been difficult to achieve both the technique of reducing the iron loss by magnetically smoothing the surface and the technique of reducing the iron loss by the tension-imparting coating.

従来、フォルステライト被膜のない表面、さらには平滑化された表面に、張力付加型コーティングを形成する方法として、いくつかの方法が提案されている。例えば、特許文献6には金属めっき後に、また特許文献7にはSiO2薄膜を形成させた後に、それぞれ張力付加コーティング溶液を塗布して焼付ける方法が開示されている。さらに、特許文献8には、セラミックス薄膜を蒸着、スパッタリングまたは溶射などによって形成させる方法が、そして特許文献9には、窒化物や炭化物の被膜をイオンプレーティングまたはイオンプランテーションによって形成する方法が、それぞれ開示されている。さらに、特許文献10には、いわゆるゾル−ゲル法によって、高張力付与型の酸化物被膜を鋼板表面に直接形成する方法が開示されている。 Conventionally, several methods have been proposed as a method for forming a tension-added coating on a surface without a forsterite film, and further on a smoothed surface. For example, Patent Document 6 discloses a method of applying and baking a tension-added coating solution after metal plating and Patent Document 7 after forming a SiO 2 thin film, respectively. Further, Patent Document 8 discloses a method of forming a ceramic thin film by vapor deposition, sputtering, or thermal spraying, and Patent Document 9 discloses a method of forming a nitride or carbide film by ion plating or ion plantation. It is disclosed. Further, Patent Document 10 discloses a method of directly forming a high tension imparting type oxide film on the surface of a steel sheet by a so-called sol-gel method.

これらの方法は、平滑化された表面を有する鋼板に張力を付与する方法として開発されたものではあるが、幾つかの問題点を残しているため、まだ実用化されるまでには至っていない。
すなわち、金属薄めっきを下地とし、その上にコーティング処理を施す方法は、均一なめっき面の平滑さ故に、被膜の密着性が十分でなく、SiO2薄膜を形成させる方法は張力付与効果に劣るなど、鉄損の改善効果が十分ではなかった。また、窒化物や炭化物あるいはそれらの組合せからなる被膜はいずれも、その熱膨張係数が地鉄と比較してかなり低いため、熱膨張係数差による張力付与効果は大きいものの、それ故に曲げ加工時の地鉄と被膜との密着性に問題が生じることが多かった。
These methods have been developed as methods for applying tension to a steel plate having a smooth surface, but have not yet been put into practical use because some problems remain.
That is, the method of applying a coating treatment on a thin metal plating as a base is not sufficient in the adhesion of the film due to the smoothness of the uniform plating surface, and the method of forming the SiO 2 thin film is inferior in the effect of imparting tension. The effect of improving iron loss was not sufficient. In addition, since the thermal expansion coefficient of any coating made of nitride, carbide, or a combination thereof is considerably lower than that of the base iron, the effect of imparting tension due to the difference in thermal expansion coefficient is large, therefore, the bending process Problems often occurred in the adhesion between the base iron and the coating.

一方、特許文献11に開示されている化学気相蒸着法(CVD法)は、制約の多い真空槽を必要とすることなく、大面積に均一なセラミックス被膜を形成することが可能な有力な手法である。すなわち、高温反応ゆえにセラミックス被膜と鋼板との密着性も良好であり、上記スパッタリング、溶射、イオンプレーティング、イオンプランテーションなどの物理気相蒸着法(PVD法)と比較して、被生成物の鋼板表面への衝突が弱いためか、平滑化された表面で達成されている極めて低いヒステリシス損失を損なうことなしに、セラミックス被膜の形成が可能である。特に、この方法は、ヤング率が大きく、熱膨張係数の小さい窒化物や炭化物を鋼板表面に形成するのに適している。   On the other hand, the chemical vapor deposition method (CVD method) disclosed in Patent Document 11 is a powerful method capable of forming a uniform ceramic film over a large area without requiring a vacuum chamber with many restrictions. It is. That is, due to the high temperature reaction, the adhesion between the ceramic coating and the steel plate is good, and compared with the physical vapor deposition method (PVD method) such as sputtering, thermal spraying, ion plating, ion plantation, etc., the product steel plate Ceramic coatings can be formed due to weak impact on the surface or without compromising the extremely low hysteresis loss achieved with a smoothed surface. In particular, this method is suitable for forming nitrides and carbides having a large Young's modulus and a small thermal expansion coefficient on the steel sheet surface.

さらに、特許文献12には、かようなCVD法によるセラミックス被膜の形成に際し、鋼板の地鉄表層部、地鉄と被膜の界面およびセラミックス被膜中における塩素(Cl)成分を極力低減することによって、被膜外観、耐食性および磁気特性の経時劣化を防止する方法が提案されている。   Furthermore, in Patent Document 12, in the formation of the ceramic coating by such a CVD method, by reducing the chlorine (Cl) component in the surface layer portion of the steel sheet, the interface between the ground iron and the coating and the ceramic coating as much as possible, A method for preventing deterioration of the coating appearance, corrosion resistance, and magnetic properties with time has been proposed.

特公昭52−24499号公報Japanese Patent Publication No.52-24499 特開平5−43943号公報JP-A-5-43943 特公平4−72920号公報Japanese Examined Patent Publication No. 4-72920 特公昭53−28375号公報Japanese Patent Publication No.53-28375 特公昭56−52117号公報Japanese Patent Publication No.56-52117 特公昭52−24499号公報Japanese Patent Publication No.52-24499 特開平6−184762号公報JP-A-6-184762 特公昭56−4150号公報Japanese Patent Publication No.56-4150 特公昭63−54767号公報Japanese Patent Publication No. 63-54767 特開平2−243770号公報JP-A-2-243770 特開昭61−201732号公報JP 61-201732 A 特開2004−197154号公報JP 2004-197154 A

しかしながら、上記したようなCVD法を利用してセラミックス被膜を形成した方向性電磁鋼板であっても、特に巻鉄心変圧器の加工時に見られるような、曲げ加工を行った状態で歪取焼鈍を施し、その後この曲げ加工部に応力が加わるような場合には、被膜密着性が劣化し、絶縁被膜が剥離し易くなることが判明した。   However, even with a grain-oriented electrical steel sheet with a ceramic film formed using the CVD method as described above, strain-relief annealing is performed in a bent state, particularly as seen during the processing of a wound core transformer. When the stress is applied to the bent portion after application, it has been found that the adhesion of the coating is deteriorated and the insulating coating is easily peeled off.

本発明は、上記の問題を有利に解決するもので、曲げ加工を行った状態で歪取焼鈍を施し、その後この曲げ加工部に応力が加わるような場合であっても、絶縁被膜の剥離が生じない、被膜密着性に優れた超低鉄損方向性電磁鋼板を提案することを目的とする。   The present invention advantageously solves the above-mentioned problem, and even if the stress relief is applied to the bent portion after the bending treatment is performed, the insulating coating is peeled off. The object is to propose an ultra-low iron loss directional electrical steel sheet that does not occur and has excellent coating adhesion.

さて、発明者らは、CVD法やPVD法によって形成した被膜の歪取焼鈍等の熱処理後の密着性を改善すべく、鋭意究明を進めた。
その結果、雰囲気温度、雰囲気ガス混合比および鋼板温度を変化させてTiN被膜を形成した場合、同一膜厚のあっても歪取焼鈍後の絶縁コーティングの密着性に違いが生じることが明らかになった。
Now, the inventors have intensively studied to improve the adhesion after heat treatment such as strain relief annealing of the film formed by the CVD method or the PVD method.
As a result, when the TiN film is formed by changing the atmospheric temperature, the atmospheric gas mixture ratio, and the steel plate temperature, it becomes clear that there is a difference in the adhesion of the insulating coating after strain relief annealing even if the film thickness is the same. It was.

そこで、その原因について調査したところ、TiN被膜中に微量含有されている塩素濃度によって、密着性に差が生じていることが判明した。
すなわち、被膜密着性に関しては、TiN被膜中にある程度の塩素を含有させた方が、むしろ良好な結果が得られることが判明した。
本発明は上記の知見に立脚するものである。
Then, when the cause was investigated, it turned out that the difference has arisen in adhesiveness by the chlorine concentration contained in trace amount in the TiN film.
That is, regarding the film adhesion, it has been found that better results can be obtained if a certain amount of chlorine is contained in the TiN film.
The present invention is based on the above findings.

すなわち、本発明は、フォルステライト被膜を有しない鋼板表面に、金属窒化物、金属炭化物または金属炭窒化物からなるセラミックス被膜を形成した方向性電磁鋼板であって、該セラミックス被膜中に 0.001〜1mass%の塩素を含有することを特徴とする方向性電磁鋼板である   That is, the present invention is a grain-oriented electrical steel sheet in which a ceramic film made of metal nitride, metal carbide or metal carbonitride is formed on the surface of a steel sheet not having a forsterite film, and 0.001 to 1 mass in the ceramic film % Grain-oriented electrical steel sheet characterized by containing chlorine

本発明によれば、フォルステライト被膜のない平滑な鋼板表面に形成したセラミックス被膜の歪取焼鈍後における密着性を格段に向上させることができ、ひいては鉄損特性に優れた方向性電磁鋼板を安定して得ることができる。   According to the present invention, the adhesion of a ceramic coating formed on a smooth steel plate surface without a forsterite coating can be remarkably improved after strain relief annealing, and as a result, a grain-oriented electrical steel plate having excellent iron loss characteristics can be stabilized. Can be obtained.

以下、本発明を具体的に説明する。
本発明で対象とする方向性電磁鋼板としては従来公知のものいずれもが適合するが、特に好適な成分組成を掲げると次のとおりである。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
本発明では、Siを1.5〜7.0%の範囲で含有することが望ましい。すなわち、Siは、製品の電気抵抗を高め鉄損を低減するのに有効な成分であるが、含有量が7.0%を超えると硬度が高くなって製造や加工が困難となる。一方、1.5%に満たないと、最終仕上焼鈍中に変態を生じて安定した2次再結晶組織が得られない。
The present invention will be specifically described below.
As the grain-oriented electrical steel sheet to be used in the present invention, any conventionally known grain-oriented electrical steel sheet can be used, and particularly preferred component compositions are as follows. Unless otherwise specified, “%” in relation to ingredients means mass%.
In this invention, it is desirable to contain Si in 1.5 to 7.0% of range. That is, Si is an effective component for increasing the electrical resistance of the product and reducing the iron loss. However, if the content exceeds 7.0%, the hardness becomes high and it becomes difficult to manufacture and process. On the other hand, if it is less than 1.5%, transformation occurs during final finish annealing, and a stable secondary recrystallized structure cannot be obtained.

また、鋼中には、上記の元素の他に、公知の方向性電磁鋼板の製造に適するインヒビター成分として、B,Bi,Sb,Mo,Te,Sn,P,Ge,As,Nb,Cr,Ti,Cu,Pb,ZnおよびIn等を単独または複合して含有させることができる。さらに、かようなインヒビターを使用しない方法によって製造される方向性電磁鋼板に対しても、本発明の適用は可能である。   In addition to the above-mentioned elements, B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, Cr, as inhibitor components suitable for the manufacture of known grain-oriented electrical steel sheets are contained in steel. Ti, Cu, Pb, Zn and In can be contained alone or in combination. Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets manufactured by such a method that does not use an inhibitor.

一方、C,S,Se,N等は不純物として磁気特性上有害な元素であり、特に鉄損を劣化させるため、最終製品とする際には、それぞれC:0.003%以下、SおよびSe:0.002%以下、N:0.002%以下とすることか好ましい。   On the other hand, C, S, Se, N and the like are harmful elements in terms of magnetic properties as impurities. Particularly, in order to deteriorate the iron loss, C: 0.003% or less, S and Se: 0.002 respectively in the final product. % Or less and N: 0.002% or less are preferable.

また、上記の成分組成に調整した方向性電磁鋼板は、仕上焼鈍後、表面にフォルステライト被膜がない状態としておく必要がある。
そのための方法としては、従来法により形成されたフォルステライト被膜を酸洗や研磨等により除去する方法、または焼鈍分離剤の組成を調整して、鋼板表面上のフォルステライト被膜の生成を抑制し、もしくは容易に剥落するように形成させた後、洗浄・除去するといった方法により、実質的に金属外観を有する状態とする方法を適用することができる。
さらに、表面に平滑化処理を施すことが、鉄損値の低減により有効である。例えば、酸洗、サーマルエッチングや化学研磨等により表面粗さを極力小さくし、鏡面状態に仕上げた表面や、ハロゲン化物水溶液中での電解による結晶方位強調処理で得られるグレイニング様面等が挙げられる。
なお、フォルステライト被膜がない状態とは、フォルステライトが離散的、もしくは島状等部分的に微量存在しているような、実質的に被膜を形成していない場合も含まれる。
Moreover, the grain-oriented electrical steel sheet adjusted to the above component composition needs to be in a state in which there is no forsterite film on the surface after finish annealing.
As a method for that, the method of removing the forsterite film formed by the conventional method by pickling or polishing, or adjusting the composition of the annealing separator, to suppress the production of forsterite film on the steel sheet surface, Alternatively, it is possible to apply a method of substantially having a metal appearance by a method of forming the film so as to be easily peeled off and then cleaning and removing.
Furthermore, it is effective to reduce the iron loss value by subjecting the surface to a smoothing treatment. For example, the surface roughness is made as small as possible by pickling, thermal etching, chemical polishing, etc., and the surface is mirror finished, and the graining surface obtained by crystal orientation enhancement treatment by electrolysis in an aqueous halide solution It is done.
In addition, the state without a forsterite film includes a case where a film is not substantially formed, such as a small amount of forsterite being discrete or partly in the form of islands.

続いて、CVD法やPVD法によって、TiやSi等の金属の窒化物、炭化物または炭窒化物からなる被膜を形成する。
CVD法としては、TiC14等の金属塩化物ガスと、もう一方の原料ガスとして、窒化物ならば N2,NH3,(CH3)3N,(CH3)2NHガスなど、また炭化物ならばCH4, CO, C2H4, C3H6, C3H8, C2H6, i-C5H12などを混合した雰囲気中にて、鋼板を加熱することにより、セラミックス被膜を得る。勿論、両者を混合して炭窒化物としても何ら問題はない。その他、バランスガスとしてArガスなどが使用される。
また、金属源として有機金属ガスを用いる、いわゆるMO−CVD法やプラズマやレーザー、光誘起などを採用してもよい。
Subsequently, a film made of a metal nitride, carbide or carbonitride such as Ti or Si is formed by CVD or PVD.
The CVD method includes a metal chloride gas such as TiC1 4 and the other source gas, N 2 , NH 3 , (CH 3 ) 3 N, (CH 3 ) 2 NH gas, etc. Then, heating the steel sheet in an atmosphere containing CH 4 , CO, C 2 H 4 , C 3 H 6 , C 3 H 8 , C 2 H 6 , iC 5 H 12, etc. obtain. Of course, there is no problem even if both are mixed to form carbonitride. In addition, Ar gas or the like is used as a balance gas.
In addition, a so-called MO-CVD method, plasma, laser, photo induction, or the like using an organometallic gas as a metal source may be employed.

PVD法としては、例えばホローカソード法やマグネトロンスパッタリング法、マルチアーク放電法等が適用できる。これらの方法では、金属源は蒸発用のターゲットから供給され、一方窒素や炭素はガスを利用することができる。
これらの方法により得られる被膜物質は、Ti,Zr,V,Nb,Ta,Cr,Mo,W,Mn,Co,Ni,Al,BおよびSiなどの窒化物、炭化物、炭窒化物であり、これら2種以上を積層しても構わない。また、酸化物が混入しても構わない。
As the PVD method, for example, a hollow cathode method, a magnetron sputtering method, a multi-arc discharge method, or the like can be applied. In these methods, the metal source is supplied from an evaporation target, while nitrogen and carbon can utilize gas.
The coating materials obtained by these methods are nitrides, carbides, carbonitrides such as Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Al, B and Si, Two or more of these may be laminated. Further, an oxide may be mixed.

かようなセラミックス被膜の厚みについては、0.01μm以上 5μm以下程度とするのが好適である。被膜厚が0.01μmに満たないと十分な張力付与効果および被膜密着性が得られず、一方5μmを超えるとかえって被膜密着性が劣化し、また電磁鋼板の占有率の面でも不利となる。   The thickness of such a ceramic coating is preferably about 0.01 μm or more and 5 μm or less. When the film thickness is less than 0.01 μm, sufficient tension imparting effect and film adhesion cannot be obtained. On the other hand, when the film thickness exceeds 5 μm, the film adhesion deteriorates, and the occupancy rate of the electromagnetic steel sheet is disadvantageous.

さて、本発明では、上記のようにして形成した、金属窒化物、金属炭化物または金属炭窒化物からなるセラミックス被膜中に、0.001〜1mass%の塩素を含有させることによって、歪取焼鈍後の被膜密着性を向上させる。塩素含有量が0.001%よりも少ないと歪取焼鈍後の密着性が劣化し、一方1%よりも多くなると耐食性が損なわれて絶縁性の長期信頼性が低下する。より好ましくは0.005〜1%の範囲である。
被膜中に適量の塩素を含有させる方法としては、CVDにおいては被膜原料の一方である塩化物と、もう一方の窒素含有ガスまたは炭素含有ガスとの量のバランスを調整する方法等が、またPVDにおいては蒸着時の雰囲気に微量の塩素含有ガスを導入する方法等がある。
なお、このように塩素を含有させることによって歪取焼鈍後の被膜密着性が向上する機構については、まだ明確に解明されたわけではないが、歪取焼鈍中の被膜の変形能が改善されるためではないかと推測している。
Now, in the present invention, the film after strain relief annealing is formed by adding 0.001 to 1 mass% of chlorine in the ceramic film made of metal nitride, metal carbide or metal carbonitride formed as described above. Improve adhesion. If the chlorine content is less than 0.001%, the adhesion after strain relief annealing deteriorates, while if it exceeds 1%, the corrosion resistance is impaired and the long-term reliability of the insulation is lowered. More preferably, it is 0.005 to 1% of range.
As a method of containing an appropriate amount of chlorine in the coating, a method of adjusting the balance of the amount of chloride, which is one of the coating raw materials, and the other nitrogen-containing gas or carbon-containing gas in CVD, etc., and PVD There is a method of introducing a small amount of chlorine-containing gas into the atmosphere during vapor deposition.
The mechanism by which the adhesion of the film after strain relief annealing is improved by adding chlorine in this way has not yet been clarified yet, but the deformability of the film during strain relief annealing is improved. I guess that.

さらに、上記したセラミックス被膜の上に絶縁被膜を形成する場合、かような絶縁被膜としては、方向性電磁鋼板に使用される無機質コートが利用可能である。特に、張力付与効果を有するコーティングは、超低鉄損化を達成するために表面を平滑化した方向性電磁鋼板と組合せると、極めて有効である。
張力付与型コーティングとしては、熱膨張係数を低下させるシリカを含むコーティングが推奨される。例えば、従来からフォルステライト被膜を有する方向性電磁鋼板に用いられている、リン酸塩−コロイド状シリカ−クロム酸系のコーティング等が、その効果およびコスト、均一処理性などの点で好適である。
かような絶縁被膜の厚みは、張力付与効果、占積率、被膜密着性等を考慮すると、0.3μm以上 10μm以下程度とするのが好適である。
なお、張力コーティングとしては、上記のもの以外にも、特開平6−65754号公報や特開平6−65755号公報、特開平6−299366号公報などに提案されている、ホウ酸−アルミナ等の酸化物系被膜を適用することも可能である。
Furthermore, when an insulating film is formed on the above-described ceramic film, an inorganic coat used for the grain-oriented electrical steel sheet can be used as such an insulating film. In particular, a coating having a tension imparting effect is extremely effective when combined with a grain-oriented electrical steel sheet having a smooth surface in order to achieve ultra-low iron loss.
As the tension-applying coating, a coating containing silica that reduces the thermal expansion coefficient is recommended. For example, a phosphate-colloidal silica-chromic acid type coating conventionally used for grain-oriented electrical steel sheets having a forsterite film is suitable in terms of its effect, cost, and uniform processability. .
The thickness of such an insulating film is preferably about 0.3 μm or more and 10 μm or less in consideration of the tension application effect, space factor, film adhesion, and the like.
In addition to the above-described tension coating, boric acid-alumina and the like proposed in JP-A-6-65754, JP-A-6-65755, JP-A-6-299366, etc. It is also possible to apply an oxide coating.

上記のようにして得られた鋼板に、更なる鉄損低減を目的として、レーザーあるいはプラズマ炎等を照射して磁区の細分化を行っても、絶縁コーティングの密着性にはなんら問題はない。また、本発明の方向性電磁鋼板の製造工程の任意の段階において、磁区細分化のために、鋼板表面にエッチングやプレス等で一定間隔の溝を形成することも、一層の鉄損低減を図る手段として有効である。   Even if the steel plate obtained as described above is irradiated with a laser or a plasma flame to further subdivide the magnetic domain for the purpose of further reducing iron loss, there is no problem with the adhesion of the insulating coating. In addition, at any stage of the manufacturing process of the grain-oriented electrical steel sheet according to the present invention, it is possible to further reduce iron loss by forming grooves at regular intervals on the steel sheet surface by etching, pressing, etc. for magnetic domain subdivision. It is effective as a means.

実施例1
3%のSiを含有する厚さ:0.23mmの方向性電磁鋼板を用意し、その表面に形成されたフォルステライト被膜を機械研磨により除去したのち、電解エッチングによる表面平滑化処理を行った。ついで、TiCl4,H2,N4の混合ガスからなる雰囲気中で鋼板を加熱するCVD法により、厚さ:1.2μmのTiN被膜を鋼板両面に形成した。この際、各ガスの混合比と濃度および鋼板温度を種々に変化させることより、形成されたTiN被膜中に残留するCl濃度を変化させた。また、得られた鋼板の一部は、真空中において920℃で熱処理することにより、Clを揮発除去して、ほとんどClを含まない被膜とした。
ついで、得られた鋼板の表面に、コロイド状シリカ、リン酸マグネシウム、クロム酸からなるコーティング液を塗布し、810℃で焼付けることにより、シリカ−リン酸塩系の張力コーティングを形成した。
その後、得られた鋼板を直径:20mmのステンレス鋼製丸棒に巻き付ける90°曲げを行った状態で、窒素雰囲気中において820℃で3時間の歪取焼鈍を行った。
かくして得られたセラミックス被膜付き方向性電磁鋼板の被膜密着性、耐食性および鉄損特性について調べた結果を表1に示す。また、表1には、セラミックス被膜中の塩素量について調べた結果も併せて示す。
Example 1
A directional electrical steel sheet containing 3% Si and having a thickness of 0.23 mm was prepared, and the forsterite film formed on the surface thereof was removed by mechanical polishing, followed by surface smoothing by electrolytic etching. Subsequently, a TiN film having a thickness of 1.2 μm was formed on both surfaces of the steel sheet by a CVD method in which the steel sheet was heated in an atmosphere composed of a mixed gas of TiCl 4 , H 2 and N 4 . At this time, the Cl concentration remaining in the formed TiN coating was changed by variously changing the mixing ratio and concentration of each gas and the steel plate temperature. Further, a part of the obtained steel sheet was heat-treated at 920 ° C. in a vacuum to volatilize and remove Cl, thereby forming a film containing almost no Cl.
Next, a coating liquid composed of colloidal silica, magnesium phosphate, and chromic acid was applied to the surface of the obtained steel sheet and baked at 810 ° C. to form a silica-phosphate-based tension coating.
Thereafter, the obtained steel plate was subjected to strain relief annealing at 820 ° C. for 3 hours in a nitrogen atmosphere in a state of 90 ° bending around a stainless steel round bar having a diameter of 20 mm.
Table 1 shows the results of examining the coating adhesion, corrosion resistance, and iron loss characteristics of the grain-oriented electrical steel sheet with ceramic coating thus obtained. Table 1 also shows the results of examining the chlorine content in the ceramic coating.

各特性の評価方法は次のとおりである。
被膜密着性
上記のように90°曲げ状態で歪取焼鈍を行ったのち、この鋼板を直径:20mmの丸棒に沿ってさらに180°曲げとした場合および平坦に伸ばした場合ににおける絶縁被膜の剥離状態で評価した。剥離が全く生じない場合は○、180°曲げまたは平坦化のいずれかに片面でも剥離が生じた場合は△、それ以上の剥離が見られた場合は×とした。
耐食性
歪取焼鈍後の鋼板を、温度:40℃、相対湿度:98%雰囲気に10日間曝露して耐食性を評価した。10日曝露の後、錆および変色がない場合を○、錆はないが変色が見られる場合を△、錆が発生したものを×とした。
鉄損特性
周波数:50Hz、励磁力:1.7Tにおける鉄損W17/50 で評価した。
塩素濃度
被膜付きの鋼板を硫酸で溶解し、濾過して得た残滓をアルカリ溶融し、温水抽出したものを吸光光度法で分析して測定した。
The evaluation method of each characteristic is as follows.
Film adhesion After performing strain relief annealing in a 90 ° bent state as described above, this steel sheet is further bent 180 ° along a round bar with a diameter of 20 mm, and when the insulating film is stretched flatly. Evaluation was performed in a peeled state. When peeling did not occur at all, ◯, when peeling occurred even on one side of 180 ° bending or flattening, Δ, and when further peeling was observed, X.
Corrosion Resistance Corrosion resistance was evaluated by exposing the steel sheet after strain relief annealing to an atmosphere of temperature: 40 ° C. and relative humidity: 98% for 10 days. The case where there was no rust and discoloration after exposure for 10 days was marked with ◯, the case where there was no rust but discoloration was marked with Δ, and the case where rust occurred was marked with ×.
Iron loss characteristics Evaluation was made using iron loss W 17/50 at a frequency of 50 Hz and an excitation force of 1.7 T.
Chlorine Concentration A steel sheet with a coating was dissolved in sulfuric acid, and the residue obtained by filtration was alkali-melted and extracted by warm water and analyzed by absorptiometry.

Figure 2006253555
Figure 2006253555

同表から明らかなように、本発明に従い、セラミックス被膜中に適量の塩素を含有させた場合には、良好な被膜密着性と耐食性および鉄損特性が共に得られている。   As is apparent from the table, when an appropriate amount of chlorine is contained in the ceramic coating according to the present invention, both good coating adhesion, corrosion resistance, and iron loss characteristics are obtained.

実施例2
実施例1と同様にして、表面平滑化処理を行った3%のSiを含有する厚さ:0.23mmの方向性電磁鋼板の表面に、CVD法により表2に示す各種の窒化物、炭化物からなるセラミックス被膜を鋼板両面に形成した。ついで、実施例1と同様な処理を施してセラミックス被膜付き方向性電磁鋼板を製造した。
かくして得られたセラミックス被膜付き方向性電磁鋼板の被膜密着性、耐食性および鉄損特性ならびにセラミックス被膜中における塩素量について調べた結果を表2に示す。
Example 2
In the same manner as in Example 1, on the surface of a directional electrical steel sheet having a thickness of 0.23 mm containing 3% Si subjected to surface smoothing treatment, various nitrides and carbides shown in Table 2 were formed by CVD. The resulting ceramic coating was formed on both sides of the steel sheet. Next, the same treatment as in Example 1 was performed to produce a grain-oriented electrical steel sheet with a ceramic coating.
Table 2 shows the results of examining the coating adhesion, corrosion resistance, iron loss characteristics, and chlorine content in the ceramic coating of the grain-oriented electrical steel sheet with the ceramic coating thus obtained.

Figure 2006253555
Figure 2006253555

同表に示したとおり、本発明の範囲で塩素を含有する各種被膜を形成した場合にも、良好な被膜密着性と耐食性および鉄損特性が得られることが確認された。   As shown in the table, it was confirmed that good film adhesion, corrosion resistance, and iron loss characteristics can be obtained even when various films containing chlorine are formed within the scope of the present invention.

Claims (1)

フォルステライト被膜を有しない鋼板表面に、金属窒化物、金属炭化物または金属炭窒化物からなるセラミックス被膜を形成した方向性電磁鋼板であって、該セラミックス被膜中に 0.001〜1mass%の塩素を含有することを特徴とする方向性電磁鋼板。   A grain-oriented electrical steel sheet in which a ceramic film made of metal nitride, metal carbide or metal carbonitride is formed on the surface of a steel sheet not having a forsterite film, and 0.001 to 1 mass% of chlorine is contained in the ceramic film. A grain-oriented electrical steel sheet characterized by that.
JP2005070737A 2005-03-14 2005-03-14 Super low iron loss directional electrical steel sheet with excellent coating adhesion Active JP5047466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070737A JP5047466B2 (en) 2005-03-14 2005-03-14 Super low iron loss directional electrical steel sheet with excellent coating adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070737A JP5047466B2 (en) 2005-03-14 2005-03-14 Super low iron loss directional electrical steel sheet with excellent coating adhesion

Publications (3)

Publication Number Publication Date
JP2006253555A true JP2006253555A (en) 2006-09-21
JP2006253555A6 JP2006253555A6 (en) 2007-01-25
JP5047466B2 JP5047466B2 (en) 2012-10-10

Family

ID=37093684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070737A Active JP5047466B2 (en) 2005-03-14 2005-03-14 Super low iron loss directional electrical steel sheet with excellent coating adhesion

Country Status (1)

Country Link
JP (1) JP5047466B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356053B1 (en) * 2011-12-28 2014-01-28 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
JP2014044198A (en) * 2012-07-30 2014-03-13 Jfe Steel Corp Chlorine analytic method in coated film of steel plate
CN110024058A (en) * 2016-12-21 2019-07-16 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
US11773490B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Method for producing oriented electrical steel sheet with ultra-low iron loss

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192581A (en) * 1986-02-18 1987-08-24 Kawasaki Steel Corp Production of extra-low iron loss grain oriented silicon steel sheet
JPH05132778A (en) * 1991-11-12 1993-05-28 Limes:Kk Formation of metallic nitride film
JPH101774A (en) * 1996-06-08 1998-01-06 Anelva Corp Formation of thin coating by plasma cvd and plasma cvd device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192581A (en) * 1986-02-18 1987-08-24 Kawasaki Steel Corp Production of extra-low iron loss grain oriented silicon steel sheet
JPH05132778A (en) * 1991-11-12 1993-05-28 Limes:Kk Formation of metallic nitride film
JPH101774A (en) * 1996-06-08 1998-01-06 Anelva Corp Formation of thin coating by plasma cvd and plasma cvd device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356053B1 (en) * 2011-12-28 2014-01-28 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
JP2014044198A (en) * 2012-07-30 2014-03-13 Jfe Steel Corp Chlorine analytic method in coated film of steel plate
CN110024058A (en) * 2016-12-21 2019-07-16 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
US11180834B2 (en) 2016-12-21 2021-11-23 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
US11773490B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Method for producing oriented electrical steel sheet with ultra-low iron loss

Also Published As

Publication number Publication date
JP5047466B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
US4698272A (en) Extra-low iron loss grain oriented silicon steel sheets
US4713123A (en) Method of producing extra-low iron loss grain oriented silicon steel sheets
WO2016104813A1 (en) Oriented electromagnetic steel sheet and method for manufacturing same
JP2009018573A (en) Grain-oriented electromagnetic steel sheet including electrically insulating coating
WO2018074486A1 (en) Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
KR20000075590A (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
JP5047466B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JPH11131251A (en) Grain-oriented silicon steel sheet extremely low in core loss and its production
JP2006253555A6 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
JP6624246B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP4232407B2 (en) Method for producing grain-oriented electrical steel sheet
JP4259061B2 (en) Method for producing grain-oriented electrical steel sheet
JP6856080B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4232408B2 (en) Method for producing grain-oriented electrical steel sheet
JP5063862B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP4192818B2 (en) Oriented electrical steel sheet
JP3280279B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet
JP4206942B2 (en) Oriented electrical steel sheet with extremely low iron loss and excellent film adhesion and method for producing the same
JP4725711B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JP2003034880A (en) Method for forming insulation film superior in adhesiveness on surface of grain-oriented electrical steel sheet, and method for manufacturing grain- oriented electrical steel sheet
JP2006257534A (en) Super core loss grain-oriented magnetic steel sheet having excellent magnetic characteristic
JP4016756B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100609

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250