JP4192818B2 - Oriented electrical steel sheet - Google Patents

Oriented electrical steel sheet Download PDF

Info

Publication number
JP4192818B2
JP4192818B2 JP2004078719A JP2004078719A JP4192818B2 JP 4192818 B2 JP4192818 B2 JP 4192818B2 JP 2004078719 A JP2004078719 A JP 2004078719A JP 2004078719 A JP2004078719 A JP 2004078719A JP 4192818 B2 JP4192818 B2 JP 4192818B2
Authority
JP
Japan
Prior art keywords
steel sheet
film
coating
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004078719A
Other languages
Japanese (ja)
Other versions
JP2005264234A (en
Inventor
広 山口
多津彦 平谷
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004078719A priority Critical patent/JP4192818B2/en
Publication of JP2005264234A publication Critical patent/JP2005264234A/en
Application granted granted Critical
Publication of JP4192818B2 publication Critical patent/JP4192818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、超低鉄損の鏡面方向性電磁鋼板の製造方法に関するものであり、特にその表面にフォルステライト被膜を形成することなしに、きわめて張力付与効果の大きなセラミック被膜を密着性よく被成することにより、鉄損特性の向上を図ろうとするものである。 The present invention relates to a method for producing a mirror-oriented electrical steel sheet with ultra-low iron loss, and in particular, without forming a forsterite film on the surface thereof, a ceramic film having a very large tension application effect is formed with good adhesion. By doing so, it is intended to improve the iron loss characteristics.

電磁鋼板は、無方向性電磁鋼板と方向性電磁鋼板の2つに大別され、無方向性電磁鋼板は主に回転機等の鉄心材料として、方向性電磁鋼板は主として変圧器その他の電気機器の鉄心材料としてそれぞれ使用され、いずれもエネルギーロスを少なくするため、低鉄損の材料が求められている。また、電磁鋼板の表面には絶縁性の被膜が必要であるため、絶縁コーティングが施されている。   Electrical steel sheets are broadly classified into two types: non-oriented electrical steel sheets and directional electrical steel sheets. Non-oriented electrical steel sheets are mainly used as iron core materials for rotating machines, etc., directional electrical steel sheets are mainly used for transformers and other electrical equipment. In order to reduce energy loss, there is a demand for low iron loss materials. Further, since an insulating coating is required on the surface of the electromagnetic steel sheet, an insulating coating is applied.

方向性電磁鋼板の鉄損を低減するための手段としては、板厚の低減、Si含有量の増加、結晶方位の配向性の向上等の方法があるが、それに加えて、鋼板に張力を付与することが有効である。   As means for reducing the iron loss of grain-oriented electrical steel sheets, there are methods such as reducing the plate thickness, increasing the Si content, and improving the orientation of the crystal orientation. It is effective to do.

鋼板への張力付与は、鋼板より熱膨張係数の小さい材質からなる被膜を鋼板表面に設けることによって現在行われている。すなわち、最終的に結晶方位を揃える2次再結晶と鋼板の純化を兼ねる仕上焼鈍工程で、鋼板表面の酸化物と鋼板表面に塗布した焼鈍分離剤とが反応してフォルステライトを主成分とする被膜が形成されるが、この被膜は鋼板に与える張力が大きく、鉄損低減に効果がある。さらに、張力効果を増すために、フォルステライト被膜の上に、上塗りの低熱膨張性のコーティングを施して製品とすることが一般的である。   The application of tension to a steel sheet is currently performed by providing a film made of a material having a smaller thermal expansion coefficient than that of the steel sheet on the surface of the steel sheet. That is, in the final annealing step that finally serves to refining the crystal orientation and secondary recrystallization, the oxide on the steel plate surface reacts with the annealing separator applied to the steel plate surface, and forsterite is the main component. Although a coating is formed, this coating has a large tension applied to the steel sheet and is effective in reducing iron loss. Furthermore, in order to increase the tension effect, it is common to form a product by applying a low thermal expansion coating as an overcoat on the forsterite film.

ところが近年、鋼板表面を磁気的に平滑化する手法が開発された。その一つの方法は、仕上焼鈍工程で意図的にフォルステライト被膜の形成を抑制したり、形成されたフォルステライト被膜を除去した後、その表面を平滑に仕上げる方法であり、著しい鉄損の減少が認められることが明らかになってきている。   However, in recent years, a technique for magnetically smoothing the steel sheet surface has been developed. One method is to intentionally suppress the formation of forsterite film in the finish annealing process, or to remove the formed forsterite film and then finish the surface smoothly. It is becoming clear that it is recognized.

例えば、特許文献1には、仕上焼鈍後、酸洗により表面生成物を除去し、次いで化学研磨または電解研磨により鏡面状態に仕上げる方法が開示されている。また、特許文献2には、フォルステライト被膜を除去した後、1000〜1200℃のH中でサーマルエッチングする方法が開示されている。これらの表面処理によって鉄損が減少するのは、磁化過程において鋼板の表面近傍の磁壁移動の妨げとなるピニングサイトが減少するためである。
特公昭52−24499号公報 特開平5−43943号公報
For example, Patent Document 1 discloses a method of removing a surface product by pickling after finish annealing and then finishing it into a mirror state by chemical polishing or electrolytic polishing. Patent Document 2 discloses a method of performing thermal etching in H 2 at 1000 to 1200 ° C. after removing the forsterite film. The reason why the iron loss is reduced by these surface treatments is that pinning sites that hinder the domain wall movement in the vicinity of the surface of the steel sheet in the magnetization process are reduced.
Japanese Patent Publication No.52-24499 JP-A-5-43943

なお、ヒステリシス損失を減少させる磁気的に平滑な表面とは、一般にRa(算術平均粗さ)で表現される、いわゆる表面粗度だけで示されるものではなく、特許文献3に示される表面生成物を除去した後、ハロゲン化水溶液で電解する結晶方位強調処理も知られている。
特公平4-72920号公報
The magnetically smooth surface that reduces the hysteresis loss is not limited to the so-called surface roughness that is generally expressed by Ra (arithmetic mean roughness), but is a surface product shown in Patent Document 3. There is also known a crystal orientation emphasizing treatment in which electrolysis is carried out with a halogenated aqueous solution after removing.
Japanese Examined Patent Publication No. 4-72920

現在、フォルステライト被膜を有する方向性電磁鋼板に適用される張力付与型の絶縁コーティングは、Alやアルカリ土類金属のリン酸塩とコロイダルシリカ、無水クロム酸またはクロム酸塩を主成分とした処理液を塗布し、焼付けすることによって形成されているものが多い。張力付与型の絶縁コーティングは、鋼板より熱膨張係数の小さいコロイダルシリカに代表される無機質被膜を高温で形成することより、地鉄と絶縁コーティングとの熱膨張差を利用して常温において張力を鋼板に付与している。この方法で形成される絶縁被膜は、鋼板に対して張力付与効果が大きく、鉄損低減に有効である。   Currently, tension-providing insulation coatings applied to grain-oriented electrical steel sheets with forsterite coatings are treatments based on Al and alkaline earth metal phosphates and colloidal silica, chromic anhydride or chromate. Many are formed by applying and baking a liquid. Tensioning type insulation coating is a steel sheet that is made of steel at a normal temperature using the difference in thermal expansion between the ground iron and the insulation coating by forming an inorganic coating typified by colloidal silica, which has a smaller thermal expansion coefficient than that of the steel sheet. Has been granted. The insulating film formed by this method has a great effect of imparting tension to the steel sheet and is effective in reducing iron loss.

例えば、特許文献4あるいは特許文献5などに絶縁被膜の形成法が示されている。しかしながら、これらの方法の欠点として鋼板に対する張力付加の大きい被膜ほど、下地との密着力が強くなければ被膜は剥落してしまうので、上記張力与型コーティングは、フォルステライト系の仕上焼鈍被膜が鋼板表面に存在する場合には問題ないが、鏡面化等の表面平滑化処理を行うようなフォルステライト系の仕上焼鈍被膜のない場合には、被膜を付着させることができなかった。
特公昭53−28375号公報 特公昭56−52117号公報
For example, Patent Document 4 or Patent Document 5 discloses a method for forming an insulating film. However, as a disadvantage of these methods, the film with greater tension applied to the steel sheet will peel off if the adhesion to the substrate is not strong, so the tension-applied coating has a forsterite finish annealing film. There is no problem when it is present on the surface, but in the absence of a forsterite-type finish annealing coating that performs a surface smoothening treatment such as mirroring, the coating could not be deposited.
Japanese Patent Publication No.53-28375 Japanese Patent Publication No.56-52117

このため、表面を磁気的に平滑化し鉄損を低減する技術と、張力付与型コーティングによる鉄損低減技術とを両立させることはできなかった。   For this reason, it has been impossible to achieve both the technology for magnetically smoothing the surface and reducing the iron loss, and the technology for reducing the iron loss by the tension-applying coating.

フォルステライト系被膜のない表面、さらには調整された平滑な表面に張力付与型コーティングを被成する方法として、従来いくつかの方法が提案されてきた。   Several methods have been proposed in the past as a method for depositing a tension-imparting coating on a surface without a forsterite-based film, or even on a smooth surface that has been adjusted.

例えば、特許文献6〜8には、研磨により平滑に仕上げた鋼板表面に、各種酸化物、ホウ化物、珪化物、リン化物、硫化物と地鉄との混合極薄層と、その上に絶縁性塗布焼付層とを設ける方法が開示されている。しかしながら、かかる方法はいずれも、鋼板と絶縁性塗布焼付層との密着性は優れるものの、鋼板の鏡面平滑効果が地鉄と酸化物との混合極薄層の存在によって消去され、また、焼鈍を行うと混合極薄層中の酸素やホウ素等が鋼板中に拡散して磁気特性が劣化するという問題がある。
特開昭62−103374号公報 特開平6−248465号公報 特開平6−287764号公報
For example, in Patent Documents 6 to 8, on the surface of a steel plate that has been finished smoothly by polishing, a mixed ultrathin layer of various oxides, borides, silicides, phosphides, sulfides, and ground irons, and insulation thereon A method of providing an adhesive coating and baking layer is disclosed. However, in any of these methods, although the adhesion between the steel sheet and the insulating coating and baking layer is excellent, the mirror smoothing effect of the steel sheet is eliminated by the presence of the mixed ultrathin layer of the base iron and oxide, and annealing is not performed. When it does, there exists a problem that oxygen, boron, etc. in a mixed ultrathin layer will diffuse in a steel plate, and a magnetic characteristic will deteriorate.
JP-A-62-103374 JP-A-6-248465 JP-A-6-287764

一方、特許文献9には、ゾル−ゲル法によってセラミック被膜を形成する方法が、また、特許文献10には平滑化した地鉄表面に金属めっきを施した後、低圧プラズマ溶射法によって珪化物を形成する方法が開示されている。しかしながら、これらの方法はいずれも、被膜と鋼板との密着性が劣り、十分な張力効果が得られていない。
特公平2−243770号公報 特開平3−294468号公報
On the other hand, Patent Document 9 discloses a method of forming a ceramic coating by a sol-gel method, and Patent Document 10 discloses a method of forming a silicide by low-pressure plasma spraying after metal plating is applied to a smoothed surface of the iron surface. A method of forming is disclosed. However, all of these methods are inferior in adhesion between the coating and the steel sheet, and a sufficient tension effect is not obtained.
Japanese Examined Patent Publication No. 2-243770 JP-A-3-294468

特許文献11には、無機質被膜のない仕上焼鈍済の方向性電磁鋼板の表面に形成させる下地シリカ層の量を100mg/m以下にすることで、張力被膜の密着性だけでなく、良好な鉄損値をも実現しようとしているが、張力付与型絶縁皮膜の密着性が不十分で必ずしも完全ではなかった。
特開平9−78252号公報
In Patent Document 11, not only the adhesion of the tension coating but also the goodness is achieved by making the amount of the base silica layer formed on the surface of the finish annealed grain-oriented electrical steel sheet without an inorganic coating to be 100 mg / m 2 or less. An attempt was made to achieve an iron loss value, but the adhesion of the tension-imparting insulating film was insufficient and not always perfect.
Japanese Patent Laid-Open No. 9-78252

特許文献12には、珪酸塩系被膜を設けた後、クロム酸やリン酸を主体とする絶緑被膜を形成する方法が開示されている。かかる方法は、密着性の改善効果はあるものの、珪酸塩被膜およびクロム酸−リン酸被膜のいずれもが鋼板に対する張力付与効果がなく、本発明の主目的である被膜張力による鉄損低減効果は全く得られない。
特開昭63−57781号公報
Patent Document 12 discloses a method of forming an green coating mainly composed of chromic acid or phosphoric acid after providing a silicate-based film. Although this method has an effect of improving adhesion, neither the silicate film nor the chromic acid-phosphoric acid film has a tension imparting effect on the steel sheet, and the iron loss reducing effect by the film tension, which is the main purpose of the present invention, is I cannot get it at all.
JP 63-57781 A

特許文献13等には、平滑化した方向性電磁鋼板にCVD(Chemical Vapor Deposition)法(化学蒸着法)やイオンプレーティング、イオンインプランテーション等のPVD(Physical Vapor Deposition)法(物理蒸着法)により窒化物や炭化物のうちから選んだ1種または2種以上の張力被膜を被成することで超低鉄損が得られることが開示されている。特に硬質で熱膨張係数の小さな窒化物や炭化物が熱残留応力を利用した張力付与に有効であるのはいうまでもない。ただし、強い被膜張力は、鋼板と張力被膜との界面に強い剪断応力が作用するため、その界面の密着性確保が特に重要である。従来、これらセラミック被膜を被成後、その上に張力付与型の絶縁コーティングを施したり、剪断歪みを除去する目的で歪取焼鈍を実施した時に、セラミック被膜が変色などの変質を起こしたり、鉄損値が劣化する場合があった。
特公昭63−54767号公報
In Patent Document 13, etc., a smoothed grain-oriented electrical steel sheet is subjected to a CVD (Chemical Vapor Deposition) method (chemical vapor deposition method), an ion plating, an ion implantation, or other PVD (Physical Vapor Deposition) method (physical vapor deposition method). It is disclosed that an ultra-low iron loss can be obtained by depositing one or more tension films selected from nitrides and carbides. Needless to say, nitrides and carbides that are particularly hard and have a small coefficient of thermal expansion are effective in applying tension using thermal residual stress. However, since strong coating tension causes strong shear stress to act on the interface between the steel sheet and the tension coating, it is particularly important to ensure adhesion at the interface. Conventionally, after applying these ceramic coatings, when applying a tension-providing insulation coating on the ceramic coating or carrying out strain relief annealing for the purpose of removing shearing strain, the ceramic coating is subject to alteration such as discoloration, The loss value sometimes deteriorated.
Japanese Patent Publication No. 63-54767

本発明の目的は、フォルステライト被膜のない平滑な鋼板表面に、例えばCVD法やPVD法によって被成される、金属窒化物および/又は金属炭化物からなるセラミック被膜と鋼板との界面の熱的安定性に優れるとともに、セラミック被膜上に施される絶縁被膜の密着性も良好であり、しかも、きわめて低い鉄損値を有する方向性電磁鋼板の製造方法を提供することにある。 The object of the present invention is to provide thermal stability of the interface between a steel film and a ceramic film made of metal nitride and / or metal carbide formed on a smooth steel sheet surface without a forsterite film, for example, by CVD or PVD. Another object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet that is excellent in properties, has good adhesion of an insulating coating applied on a ceramic coating, and has an extremely low iron loss value.

発明者らは、上述の熱処理時における金属炭化物および/または金属窒化物からなる被膜と鋼板表面との界面における剥落の機構を検討の結果明らかにし、本発明を完成させた。   The inventors have clarified the peeling mechanism at the interface between the metal carbide and / or metal nitride coating and the steel plate surface during the heat treatment described above, and completed the present invention.

すなわち、本発明は、Si:1.5質量%以上7.0質量%以下含有する方向性電磁鋼板表面に、金属窒化物および/または金属炭化物からなるセラミック被膜をPVD法もしくはCVD法により形成させる方向性電磁鋼板の製造方法であって、
前記セラミック被膜をPVD法で形成する場合には、前記方向性電磁鋼板の基板加熱温度、およびターゲットからの蒸着源の蒸発量と反応ガスの供給量との関係の少なくともいずれかを調整し、前記セラミック被膜をCVD法で形成する場合には、反応ガスの組成、反応温度および成膜時間の少なくともいずれかを調整することにより、該セラミック被膜の、膜厚をt(μm)、平均結晶粒径をR(μm)で表わすとき、tとRが、t>0.8×Rの関係式を満たし、かつ、前記セラミック被膜中の、金属のモル数を[M]、窒素のモル数を[N]および炭素のモル数を[C]で表わすとき、[M]と、[N]および/または[C]とのモル比が、[M]/([N]+[C])<1.2の関係式を満たすよう制御することを特徴とする方向性電磁鋼板の製造方法である
That is, the present invention provides a directional electromagnetic wave in which a ceramic coating made of metal nitride and / or metal carbide is formed on the surface of a grain- oriented electrical steel sheet containing Si: 1.5 mass% or more and 7.0 mass% or less by PVD or CVD. A method of manufacturing a steel sheet,
When the ceramic coating is formed by the PVD method, the substrate heating temperature of the grain-oriented electrical steel sheet and at least one of the relationship between the evaporation amount of the evaporation source from the target and the supply amount of the reaction gas are adjusted, When the ceramic coating is formed by the CVD method , the thickness of the ceramic coating is adjusted to t (μm) and the average crystal grain size is adjusted by adjusting at least one of the composition of the reaction gas, the reaction temperature, and the film formation time. Is represented by R (μm), t and R satisfy the relationship of t 2 > 0.8 × R, and the number of moles of metal in the ceramic coating is [M] and the number of moles of nitrogen is [N ] And the number of moles of carbon represented by [C], the molar ratio of [M] to [N] and / or [C] is [M] / ([N] + [C]) <1.2. Write oriented electrical steel you and controlling so as to satisfy the relation It is a method of manufacture.

本発明によれば、フォルステライト被膜のない平滑な鋼板表面に、例えばCVD法やPVD法によって被成される、金属窒化物および/又は金属炭化物からなるセラミック被膜と鋼板との界面の熱的安定性に優れるとともに、セラミック被膜上に施される絶縁被膜の密着性も良好であり、しかも、きわめて低い鉄損値を有する方向性電磁鋼板を得ることが可能となる。   According to the present invention, the thermal stability of the interface between a steel film and a ceramic film made of metal nitride and / or metal carbide formed on, for example, a CVD method or a PVD method on a smooth steel plate surface without a forsterite film. It is possible to obtain a grain-oriented electrical steel sheet that is excellent in property and adhesion of the insulating coating applied on the ceramic coating and that has an extremely low iron loss value.

以下、本発明について詳細に説明する。
3質量%Siを含有する最終板厚0.23mmに圧延された冷延板を脱炭、一次再結晶焼鈍した後、MgOを主体とし塩化アンチモンを添加した焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を施し、フォルステライト膜のない鏡面方向性電磁鋼板を得た。
Hereinafter, the present invention will be described in detail.
Cold-rolled sheet rolled to a final thickness of 0.23 mm containing 3 mass% Si is decarburized and subjected to primary recrystallization annealing, followed by application of an annealing separator mainly composed of MgO and added with antimony chloride, followed by secondary recrystallization. A final annealing process including a process and a purification process was performed to obtain a mirror-oriented electrical steel sheet without a forsterite film.

その後、950〜1150℃の間でTiC1ガス、HガスおよびNガスを主体とする雰囲気中で化学気相蒸着を行い、種々の膜厚のTiN膜を形成した。ついで、リン酸塩とコロイダルシリカを主成分とするコーティング液を塗布し、850℃で被成した。主に成膜温度によりTiNの平均結晶粒径は変化し、成膜温度が高いほど粒径は大きくなる傾向があった。また、TiC1ガスとNガスとの分圧比によっても粒径は変化した。 Thereafter, chemical vapor deposition was performed at 950 to 1150 ° C. in an atmosphere mainly composed of TiC1 4 gas, H 2 gas and N 2 gas to form TiN films having various thicknesses. Next, a coating liquid mainly composed of phosphate and colloidal silica was applied and formed at 850 ° C. The average crystal grain size of TiN mainly changed depending on the deposition temperature, and the grain size tended to increase as the deposition temperature increased. The particle size also changed depending on the partial pressure ratio between TiC1 4 gas and N 2 gas.

化学気相蒸着で得られたTiNの組成は、TiとNの比がほぼ1:1の完全なTiNとなっており、そのモル比Ti/Nは0.9〜1.1の範囲であった。   The composition of TiN obtained by chemical vapor deposition was complete TiN with a ratio of Ti and N of approximately 1: 1, and the molar ratio Ti / N was in the range of 0.9 to 1.1.

その後、窒素ガス中で800℃、3時間の歪取焼鈍を行い、外観と曲げ密着性の評価を行った。曲げ密着性は10mmφの丸棒に試料を巻き付け、被膜が剥落するかを判断した。   Thereafter, strain relief annealing was performed in nitrogen gas at 800 ° C. for 3 hours, and the appearance and bending adhesion were evaluated. For bending adhesion, a sample was wound around a 10 mmφ round bar, and it was judged whether the coating was peeled off.

歪取焼鈍後の密着性は外観と対応しており、密着性の悪い試料は、歪取焼鈍の前後の外観が金色から黒変化していた。黒変化した試料では、曲げ密着試験時に被膜の密着力が弱く、剥落するが、その剥落面は常に鋼板表面とTiN被膜との界面であった。さらに密着性の悪い試料では、歪取焼鈍中にTiNごと剥落して銀白色の鋼板表面が露出していた。   The adhesion after strain relief annealing corresponds to the appearance, and the samples with poor adhesion had the appearance before and after strain relief annealing changed from gold to black. In the sample changed to black, the adhesive force of the coating was weak and peeled off during the bending adhesion test, but the peeling surface was always the interface between the steel plate surface and the TiN coating. Furthermore, in the sample with poor adhesion, the TiN was peeled off during the strain relief annealing and the silver white steel plate surface was exposed.

黒色化した試料表面をX線分析したところ、TiO等のTi酸化物が形成されていることがわかった。かかるTi酸化物は、歪取焼鈍時に窒素中に含まれる微量の酸素等で界面が酸化され、TiNがTiO等に変化したことによって形成されたものであると考えられる。酸化物は、一般に窒化物や炭化物と比較して密度が低いために、窒化物や炭化物が酸化により酸化物に変化する際に体積膨張を伴う。 X-ray analysis of the blackened sample surface revealed that a Ti oxide such as TiO 2 was formed. Such Ti oxide is considered to be formed by the interface being oxidized by a small amount of oxygen or the like contained in nitrogen during strain relief annealing and changing TiN to TiO 2 or the like. Since oxides generally have a lower density than nitrides and carbides, volume expansion occurs when nitrides and carbides are converted to oxides by oxidation.

このため、黒色化した密着性の悪い試料では、鋼板表面とTiNとの界面にTiO等の酸化物が形成され、かかる酸化物の体積膨張によって界面が押し広げられた結果、剥落を招いたものと推定される。 For this reason, in the blackened sample with poor adhesion, an oxide such as TiO 2 was formed at the interface between the steel sheet surface and TiN, and the interface was expanded by the volume expansion of the oxide, resulting in peeling. Estimated.

さて、界面の酸化を抑止するTiN成膜条件を見直してみると、TiN被膜の膜厚(μm)とその平均結晶粒径R(μm)の関係が非常に重要であることがわかった。なお、TiN被膜の膜厚tおよびTiN被膜の平均結晶粒径Rは、ともにSEM(Scanning Electron Microscope)による直接観察より求めた。   By reviewing the TiN film formation conditions for suppressing interface oxidation, it was found that the relationship between the thickness of the TiN film (μm) and the average crystal grain size R (μm) is very important. The film thickness t of the TiN film and the average crystal grain size R of the TiN film were both determined by direct observation with a SEM (Scanning Electron Microscope).

図1は、前記膜厚tを前記平均結晶粒径Rで除した値を横軸とし、前記膜厚tを縦軸として、被膜密着性をプロットしたものである。なお、図中の記号「〇」が密着性良好である試料を示し、また、図中の記号「●」が黒変化して密着性の劣った試料を示す。ここで、図中の横軸の値は、前記膜厚tに対して平均結晶粒径Rが小さいほど大きくなる値で、被膜中に膜厚方向へ平均で何個の窒化物結晶粒が積層しているかにおおよそ対応している。   FIG. 1 is a plot of film adhesion with the horizontal axis representing the value obtained by dividing the film thickness t by the average crystal grain size R and the vertical axis representing the film thickness t. The symbol “◯” in the figure indicates a sample with good adhesion, and the symbol “●” in the figure changes to black to indicate a sample with poor adhesion. Here, the value on the horizontal axis in the figure is a value that becomes larger as the average crystal grain size R is smaller than the film thickness t, and an average number of nitride crystal grains are laminated in the film thickness direction in the film. It roughly corresponds to what you are doing.

図1から、平均結晶粒径Rに対する膜厚tの比である横軸の値が大きくなるほど、すなわち、被膜の平均結晶粒径Rが小さいほど、被膜の膜厚tが小さくても十分な密着性を確保でき、反対に、横軸の値が小さくなるほど、すなわち、被膜の平均結晶粒径Rが大きくなるほど、必要な膜厚t(縦軸の値)は大きくなることがわかる。   From FIG. 1, the larger the value of the horizontal axis, which is the ratio of the film thickness t to the average crystal grain size R, that is, the smaller the average crystal grain size R of the film, the better the adhesion even when the film thickness t of the film is small. On the contrary, it can be seen that the smaller the value on the horizontal axis, that is, the larger the average crystal grain size R of the film, the larger the required film thickness t (value on the vertical axis).

そして、図1から読み取れる関係式は、t>0.8/(t/R)であり、この関係式をさらに書き換えると、
>0.8×R
となる。
The relational expression that can be read from FIG. 1 is t> 0.8 / (t / R), and when this relational expression is further rewritten,
t 2 > 0.8 × R
It becomes.

これは、歪取焼鈍中に被膜表面より侵入した酸素が、窒化物の粒界を介して拡散し、鋼板表面と窒化物との界面に到達することによって、前記界面の酸化が生じることを示唆している。すなわち、前記平均結晶粒径Rが小さく、窒化物の粒界形状が複雑なほど、酸素は拡散しにくくなり界面まで酸素が到達しないので、酸化物が形成されず密着性が維持されると考えられる。なお、被膜の膜厚tが大きい場合には、被膜表面から前記界面への酸素の拡散距離が長くなるので、平均結晶粒径Rが大きくても構わないと考えられる。   This suggests that oxygen entering from the coating surface during strain relief annealing diffuses through the nitride grain boundaries and reaches the interface between the steel sheet surface and the nitride, resulting in oxidation of the interface. is doing. That is, the smaller the average crystal grain size R and the more complicated the grain boundary shape of the nitride, the more difficult it is for oxygen to diffuse and oxygen does not reach the interface. It is done. When the thickness t of the coating is large, the oxygen diffusion distance from the coating surface to the interface becomes long, so the average crystal grain size R may be large.

さらに発明者らは、CVD法と比較して成膜温度の低いPVD法に着目し、平均結晶粒径の小さなTiNを成膜し、密着性確保に必要な膜厚の低減を検討した。   Furthermore, the inventors focused on the PVD method having a lower film formation temperature than the CVD method, and formed a TiN film having a small average crystal grain size, and studied the reduction of the film thickness necessary for ensuring adhesion.

CVD法と同様の方法でフォルステライト被膜のない鏡面方向電磁鋼板を作製し、この鋼板表面に、ホローカソード法によってTiN被膜を形成した。鋼板の基板加熱温度やTiターゲットからのTi蒸発量に対するN供給量等を変更し、TiNの平均結晶粒径Rと膜厚tを変化させ、種々の試料を作製した。また、TiN被膜中のTiとNのモル比Ti/Nも合わせて変化させた。 A mirror-oriented electromagnetic steel sheet without a forsterite film was prepared by the same method as the CVD method, and a TiN film was formed on the surface of the steel sheet by the hollow cathode method. Various samples were prepared by changing the substrate heating temperature of the steel plate, the N 2 supply amount with respect to the Ti evaporation amount from the Ti target, etc., and changing the average crystal grain size R and the film thickness t of TiN. Further, the molar ratio Ti / N of Ti and N in the TiN coating was also changed.

TiN成膜後、CVD法の場合と同様、リン酸塩とコロイダルシリカを主成分とするコーティング液を塗布被成後、800℃、3時間の歪取焼鈍を行い、外観及び被膜密着性を同一の方法で評価した。   After TiN film formation, as in the case of the CVD method, after applying a coating solution mainly composed of phosphate and colloidal silica, it is subjected to strain relief annealing at 800 ° C for 3 hours, and the appearance and film adhesion are the same. The method was evaluated.

図2は、前記被膜中のTiとNのモル比[Ti]/[N]を横軸とし、上述の膜厚tと平均結晶粒径Rの関係t/Rを縦軸として、歪取焼鈍後の被膜密着性評価をプロットしたものである。 FIG. 2 is a graph showing the strain removal with the horizontal ratio of Ti and N [Ti] / [N] in the coating film as the horizontal axis and the relationship between the film thickness t and the average crystal grain size R t 2 / R as the vertical axis. It is a plot of coating adhesion evaluation after annealing.

図2より、t2/R>0.8の関係を満たすだけでなく、TiとNのモル比[Ti]/[N]にも留意しなければならないことが判明した。すなわち、窒化物からなるセラミック被膜の密着性確保のためには、膜厚tと、平均結晶粒径Rの関係だけでなく、金属元素であるTiと窒素Nのモル比[Ti]/[N]が1.2より小さいことが同時に必要である。 FIG. 2 shows that not only the relationship of t 2 /R>0.8 is satisfied, but also the molar ratio [Ti] / [N] of Ti and N must be noted. That is, in order to ensure the adhesion of the ceramic coating made of nitride, not only the relationship between the film thickness t and the average crystal grain size R but also the molar ratio of the metal element Ti and nitrogen N [Ti] / [N ] Must be less than 1.2 at the same time.

これは、モル比換算で窒素に対して金属元素が過剰に存在する場合、フリーな金属元素は、窒素と結合して窒化物を形成している金属元素と比較して、酸素と結合しやすいため、歪取焼鈍中の酸化を助長しているためではないかと考えられる。   This is because when a metal element is present in excess relative to nitrogen in terms of molar ratio, the free metal element is more easily bonded to oxygen than the metal element that is bonded to nitrogen to form a nitride. Therefore, it is thought that it is because it promotes oxidation during strain relief annealing.

この知見は、炭化物からなるセラミック被膜の場合、あるいは窒素と炭素を同時供給して形成させた炭窒化物からなるセラミック被膜の場合にも当てはまることが確かめられた。   This finding has been confirmed to apply to the case of a ceramic coating made of carbide, or the case of a ceramic coating made of carbonitride formed by simultaneously supplying nitrogen and carbon.

いずれにしても、酸化物は、窒化物や炭化物と比較してエネルギー的に安定であるため、本発明では、前記セラミック被膜中の、金属のモル数[M]と、窒素のモル数[N]および/または炭素のモル数[C]とのモル比[M]/([N]+[C])を、1.2より小さくすることが肝要である。なお、本発明でいうセラミック被膜中の「金属」は、SiやBなどの半金属も含まれる。   In any case, since oxides are more stable in energy than nitrides and carbides, in the present invention, the number of moles of metal [M] and the number of moles of nitrogen [N ] And / or the molar ratio [M] / ([N] + [C]) to the number of moles of carbon [C] is important to be smaller than 1.2. The “metal” in the ceramic coating referred to in the present invention includes semimetals such as Si and B.

窒化物、炭化物および炭窒化物からなるセラミック被膜の成膜方法としては、CVD法やPVD法のような蒸着法を用いるのが好ましいが、鋼板表面に、適正なセラミック被膜を形成できるのであれば、その他の方法でも構わない。   As a method of forming a ceramic film made of nitride, carbide, and carbonitride, it is preferable to use a vapor deposition method such as a CVD method or a PVD method, as long as an appropriate ceramic film can be formed on the surface of the steel sheet. Other methods are also acceptable.

CVD法としては、よく知られているようにTiC1等の金属塩化物ガスと、もう一方の原料ガスとして、窒化物ならば、N、NH、(CHN、(CHNHガスなど、炭化物ならば、CH、CO、CH、CH、CH、CH、i-CH12などを混合した雰囲気中で鋼板を加熱することにより、セラミック被膜を得る。もちろん、両者を混合して炭窒化物からなるセラミック被膜を成膜しても何ら問題はない。 As a CVD method, as is well known, a metal chloride gas such as TiC1 4 and the other raw material gas are nitride, N 2 , NH 3 , (CH 3 ) 3 N, (CH 3 ) If it is a carbide such as 2 NH gas, the steel plate is heated in an atmosphere containing CH 4 , CO, C 2 H 4 , C 3 H 6 , C 3 H 8 , C 2 H 6 , iC 5 H 12, etc. Thus, a ceramic coating is obtained. Of course, there is no problem even if both are mixed to form a ceramic coating made of carbonitride.

その他、バランスガスとしてArガスなどが使用される。金属源として、有機金属ガスを用いるいわゆるMO-CVD法やプラズマやレーザー、光誘起などを併用し、より低温化を指向したCVD手法も近年盛んになりつつあるが、試料あるいは化学蒸着槽全体を加熱する熱CVD法がより好適である。ただし、蒸着速度向上等を目的として上記手法を併用するのは、本発明の範囲内であれば、何ら差し支えない。   In addition, Ar gas or the like is used as a balance gas. The so-called MO-CVD method using an organic metal gas as a metal source, plasma, laser, photo-induced, etc. are used together, and CVD methods aiming at lower temperatures are becoming popular recently. A thermal CVD method for heating is more preferable. However, the combination of the above methods for the purpose of improving the deposition rate or the like is not a problem as long as it is within the scope of the present invention.

PVD法としては、ホローカソード法やマグネトロンスパッタリング法、マルチアーク放電法等が挙げられる。金属源は、蒸発用のターゲットより供給され、窒素や炭素はCVD法と同様のガスを利用することが可能である。   Examples of the PVD method include a hollow cathode method, a magnetron sputtering method, and a multi-arc discharge method. The metal source is supplied from the evaporation target, and nitrogen and carbon can use the same gas as in the CVD method.

得られるセラミック被膜としては、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Co、NiおよびAlの金属元素、並びにBおよびSiの半金属元素の中から選択される1種以上の金属元素の窒化物および/または炭化物からなり、異なるセラミック被膜を2層以上積層しても構わない。なお、セラミック被膜を2層以上積層する場合には、積層被膜全体の膜厚tと平均結晶粒径Rの関係、および積層被膜中の金属元素に対する窒素および/または炭素のモル比を考慮すればよい。結晶の平均粒径Rについては、セラミック膜の割断面のSEM観察等の方法を利用して計測できる。成膜温度が低いような場合は、粒径が判別できないアモルファス状の金属炭化物および/または金属窒化物からなるセラミック被膜が形成されるが歪取焼鈍後の密着性が悪くなる。   The ceramic coating obtained is one selected from the metal elements Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni and Al, and the semi-metal elements B and Si. Two or more different ceramic coatings made of the above-described nitrides and / or carbides of metal elements may be laminated. When two or more ceramic coatings are laminated, the relationship between the film thickness t of the whole multilayer coating and the average crystal grain size R, and the molar ratio of nitrogen and / or carbon to metal elements in the multilayer coating are considered. Good. The average grain size R of the crystal can be measured by using a method such as SEM observation of the fractured surface of the ceramic film. When the film forming temperature is low, a ceramic film made of amorphous metal carbide and / or metal nitride whose particle size cannot be distinguished is formed, but the adhesion after strain relief annealing is deteriorated.

セラミック被膜の膜厚については、0.01〜5μmの範囲が好ましい。前記膜厚が0.01μmに満たない場合、十分な張力付与効果や被膜密着性が得られず、5μmを超えると、被膜密着性や占積率において不利となる。   About the film thickness of a ceramic film, the range of 0.01-5 micrometers is preferable. When the film thickness is less than 0.01 μm, sufficient tension imparting effect and film adhesion cannot be obtained, and when it exceeds 5 μm, the film adhesion and space factor are disadvantageous.

本発明において、セラミック被膜を形成する鋼板表面としては、単にフォルステライト等の無機質被膜を除去しただけの地鉄面でも有効ではあるが、さらに表面に平滑化処理を施した方が鉄損値の低下にはより効果的である。例えば、サーマルエッチングや化学研磨等により表面の粗度を極力小さくし、鏡面状態に仕上げた表面やハロゲン化物水洛液中での電解による結晶方位強調処理で得られるグレイニング様面等が挙げられる。   In the present invention, the steel sheet surface for forming the ceramic coating is effective even on the surface of the steel plate from which the inorganic coating such as forsterite is simply removed, but the iron loss value is further improved by smoothing the surface. It is more effective for lowering. For example, the surface roughness is made as small as possible by thermal etching, chemical polishing, etc., and the surface is finished in a mirror state or the graining-like surface obtained by crystal orientation enhancement treatment by electrolysis in a halide solution. .

また、打ち抜き性等の加工性を重視し、仕上げ焼鈍に使用する焼鈍分離剤の主成分を替えたり、添加物を加えることが、仕上げ焼鈍被膜の形成を抑止した方向性電磁鋼板を得る上で好適である。   In addition, emphasizing workability such as punchability, changing the main component of the annealing separator used for finish annealing, or adding additives, to obtain a grain-oriented electrical steel sheet that suppresses the formation of a finish annealing coating Is preferred.

CVD法で蒸着したセラミック被膜上に被成する絶縁コートとしては、方向性電磁鋼板に使用される無機質コートが利用可能である。特に、張力付与効果を有するコーティングは、超低鉄損化を達成するために表面を平滑化した方向性電磁鋼板との組合せで極めて有効である。張力付与型コーティングの種類としては、熱膨張係数を低下させるシリカを含むコーティングが有効であり、従来からフォルステライト被膜を有する方向性電磁鋼板に用いられているリン酸塩−コロイダルシリカ−クロム酸系のコーティング等が、その効果およびコスト、均一処理性などの点から好適である。   As the insulating coating formed on the ceramic coating deposited by the CVD method, an inorganic coating used for grain-oriented electrical steel sheets can be used. In particular, a coating having a tension imparting effect is extremely effective in combination with a grain-oriented electrical steel sheet having a smooth surface in order to achieve ultra-low iron loss. As a kind of tension imparting type coating, a coating containing silica that lowers the thermal expansion coefficient is effective, and a phosphate-colloidal silica-chromic acid system conventionally used for grain oriented electrical steel sheets having a forsterite film From the viewpoint of the effect and cost, uniform processability, and the like.

絶縁コートの厚みとしては、張力付与効果や占積率、被膜密着性等の点から、0.3〜10μmの範囲が好ましい。   The thickness of the insulating coat is preferably in the range of 0.3 to 10 μm from the viewpoint of tension imparting effect, space factor, film adhesion and the like.

また、張力コーティングとして、これ以外にも特開平6−65754号公報、特開平6−65755号公報、特開平6−299366号公報などで提案されているホウ酸−アルミナ等の酸化物系被膜を適用することも可能である。   In addition, as the tension coating, oxide-based films such as boric acid-alumina proposed in JP-A-6-65754, JP-A-6-65755, JP-A-6-299366, etc. It is also possible to apply.

以下、この発明の電磁鋼板について、望ましい成分組成について説明する。
この発明で使用される鋼板の成分としては、Siを1.5質量%以上含有させることが必要である。
Hereinafter, the desirable component composition of the electrical steel sheet according to the present invention will be described.
As a component of the steel sheet used in the present invention, it is necessary to contain Si by 1.5% by mass or more.

すなわち、Siは製品の電気抵抗を高め鉄損を低減するのに有効な成分であり、また、最終仕上げ焼鈍中に変態を生じて安定した2次再結晶組織が得られようにする観点から、Si含有量は1.5質量%以上とすることが必要である。なお、Siは7.0質量%を超えると、硬度が高くなり製造や加工が困難になるおそれがあるため、Si含有量の上限は7.0質量%とすることが好ましい。   That is, Si is an effective component for increasing the electrical resistance of the product and reducing iron loss, and from the viewpoint of obtaining a stable secondary recrystallized structure by causing transformation during final finish annealing. The Si content needs to be 1.5% by mass or more. Note that if Si exceeds 7.0% by mass, the hardness is increased and manufacturing and processing may be difficult, so the upper limit of Si content is preferably 7.0% by mass.

なお、C、S、Nなどの不純物はいずれも、磁気特性上有害な作用があり、特に鉄損を劣化させるので、それぞれC:0.003質量%以下、S:0.002質量%以下、N:0.002質量%以下にとすることが好ましい。   Note that impurities such as C, S, and N all have harmful effects on magnetic properties, and particularly deteriorate iron loss. Therefore, C: 0.003% by mass or less, S: 0.002% by mass or less, N: 0. The content is preferably 002% by mass or less.

次に、本発明の電磁鋼板の製造方法について、その必須条件と理由について述べる。まず、出発成分として、上記した成分の他、適宜以下の成分を含有させる。   Next, the essential conditions and reasons for the method of manufacturing the electrical steel sheet according to the present invention will be described. First, in addition to the above-described components, the following components are appropriately contained as starting components.

Alは、インヒビター元素であり、結晶配向性を向上させる効果を有するため、出発成分として0.006質量%以上含有させることが好ましい。なお、Al含有量が0.06質量%を超えると、再び結晶配向の劣化が生じるおそれがあるため、Al含有量の上限は0.06質量%とすることが好ましい。   Since Al is an inhibitor element and has an effect of improving crystal orientation, it is preferable to contain 0.006% by mass or more as a starting component. If the Al content exceeds 0.06% by mass, the crystal orientation may be deteriorated again. Therefore, the upper limit of the Al content is preferably 0.06% by mass.

Nは、Alとともに含有させることでインヒビターであるAlNを形成するが、N含有量が100質量ppmを超えると、ふくれ欠陥の発生が生じやすくなることから、N含有量の上限は100質量ppmとすることが好ましい。なお、N含有量の下限は特に規定しないが、20質量ppm以下に工業的に低下させるのは経済的に困難である。   N is added together with Al to form AlN as an inhibitor. If the N content exceeds 100 ppm by mass, blister defects are likely to occur. Therefore, the upper limit of the N content is 100 ppm by mass. It is preferable to do. In addition, although the minimum of N content is not prescribed | regulated in particular, it is economically difficult to reduce industrially to 20 mass ppm or less.

また、鋼中には、上記の元素の他に公知の方向性電磁鋼板の製造に適するインヒビター成分として、B、Bi、Sb、Mo、Te、Sn、P、Ge、As、Nb、Cr、Ti、Cu、Pb、ZnおよびInなどが知られていて、これらの元素を単独または複合で含有させることができる。   In addition to the above-mentioned elements, B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, Cr, Ti are contained in the steel as inhibitor components suitable for the production of known grain-oriented electrical steel sheets. Cu, Pb, Zn and In are known, and these elements can be contained alone or in combination.

また、本発明では、1次再結晶焼鈍後に増窒素処理を行う工程にも適合し、その有無により、以下の通り出発成分が変化する。増窒化処理を行わない場合には、出発成分にSeとSを、それらの含有量の合計で0.01〜0.06質量%含有させることが必須であり、加えて、Mn化合物として析出させるためにMnを0.02〜0.2質量%含有させることが必要である。SeとSの含有量の合計およびMn含有量のそれぞれが少なすぎると、2次再結晶を生じるための析出物が過小となり、また、多すぎると熱間圧延前の固溶が困難となる。増窒化処理を行う場合にはMnは必ずしも必要ではないが、鋼の延性改善などの目的で適宜添加可能である。なお、Al、N、Se、SおよびBは最終仕上焼鈍時に純化され、他は製品中に残存する。   Moreover, in this invention, it adapts also to the process of performing nitrogen increase treatment after primary recrystallization annealing, and a starting component changes as follows by the presence or absence. When the nitriding treatment is not performed, it is essential to contain Se and S as starting components in a total content of 0.01 to 0.06% by mass, and in addition, Mn is precipitated in order to precipitate as an Mn compound. It is necessary to contain 0.02 to 0.2 mass%. If the total content of Se and S and the content of Mn are too small, the precipitates for causing secondary recrystallization are too small, and if too large, solid solution before hot rolling becomes difficult. In the case of performing nitriding, Mn is not necessarily required, but can be added as appropriate for the purpose of improving the ductility of steel. In addition, Al, N, Se, S, and B are purified at the time of final finish annealing, and others remain in the product.

所定の成分に調整された鋼は、通常スラブ加熱に供された後、熱間圧延により熱延コイルとされるが、このスラブの加熱温度については1300℃以上の高温度とする場合と1250℃以下の低温度とする場合のいずれでも良い。また近年、スラブ加熱を行わず連続鋳造後、直接熱間圧延を行う方法が開発されているが、この方法で熱間圧延される場合にも適用できる。   Steel that has been adjusted to a predetermined component is usually subjected to slab heating, and then hot rolled into a hot rolled coil. The heating temperature of this slab is 1300 ° C or higher. Any of the following low temperatures may be used. In recent years, a method of directly performing hot rolling after continuous casting without performing slab heating has been developed. However, it can also be applied to the case of hot rolling by this method.

熱間圧延後の鋼板は、必要に応じて熱延板焼鈍が施され、1回の冷間圧延もしくは中間焼鈍を挟む複数回の圧延によって最終冷間圧延板とされる。これらの圧延については動的時効を狙ったいわゆる温間圧延や静的時効を狙ったパス間時効を施したものであっても良い。   The hot-rolled steel sheet is subjected to hot-rolled sheet annealing as necessary, and is formed into a final cold-rolled sheet by a plurality of times of rolling with one cold rolling or intermediate annealing. These rollings may be so-called warm rolling aiming at dynamic aging or pass aging aiming at static aging.

最終冷間圧延後の鋼板は、脱炭焼鈍を兼ねる1次再結晶焼鈍が施され、最終仕上焼鈍により2次再結晶処理が施されることにより、方向性電磁鋼板を得る。最終仕上焼鈍を高温で行う場合には、通常1次再結晶焼鈍後に焼鈍分離剤を塗布し、これにより酸化物被膜を形成させるが、この焼鈍分離剤の組成を調整して、鋼板表面の酸化物被膜の生成を抑制させることもできる。   The steel sheet after the final cold rolling is subjected to primary recrystallization annealing that also serves as decarburization annealing, and subjected to secondary recrystallization treatment by final finish annealing to obtain a grain-oriented electrical steel sheet. When the final finish annealing is performed at a high temperature, an annealing separator is usually applied after the primary recrystallization annealing, thereby forming an oxide film, but the composition of the annealing separator is adjusted to oxidize the steel sheet surface. It is also possible to suppress the formation of a material film.

このようにして得られた鋼板に、更なる鉄損低減を目的としてレーザーあるいはプラズマ炎等を照射して、磁区の細分化を行っても絶縁コーティングの密着性にはなんら問題ない。また、本発明の方向性電磁鋼板の製造工程の任意の段階で、磁区細分化のため、表面にエッチングや歯形ロールで一定間隔の溝を形成することも、いっそうの鉄損低減を図る手段として有効である。   Even if the steel plate obtained in this way is irradiated with a laser or a plasma flame for the purpose of further reducing iron loss, and the magnetic domain is subdivided, there is no problem in the adhesion of the insulating coating. In addition, at any stage of the grain-oriented electrical steel sheet manufacturing process of the present invention, it is possible to further reduce iron loss by forming grooves at regular intervals by etching or tooth profile rolls for magnetic domain subdivision. It is valid.

上述したところは、この発明の実施形態の一部を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description shows only some of the embodiments of the present invention, and various modifications can be made within the scope of the claims.

3質量%Siを含有する最終板厚0.23mmに圧延された冷延板に、磁区細分化処理のため5mm間隔のエッチング溝を形成した後、脱炭、一次再結晶焼鈍を施し、その後、MgOを主成分とし塩化アンチモンを1mass%を含む焼鈍分離剤を塗布し、フォルステライト被膜のない平滑な表面を有する最終仕上焼鈍板を得た。得られた鋼板に対し、TiCl、H、CHの混合ガスからなる雰囲気中でTiCを両面形成した。HガスおよびCHガスは種々の混合比とし、TiCl濃度はHガスをキャリアガスとしTiCl液中をバブリングさせることで調整した。反応温度についても900〜1150℃まで変化させ、成膜時間変化と合わせて膜厚および粒径を調整した。
その後、硼酸とベーマイトを主成分とする絶縁コーティング液(酸化物換算モル比B/A10=0.5)をロールコーターにて塗布し、800℃で120秒間焼き付けた。さらに800℃で3時間の歪取焼鈍を行った。
表1に、TiC蒸着条件と膜厚t、平均結晶粒径R、TiとCのモル比、歪取焼鈍後の鉄損値W17/50と表面外観変化、曲げ密着性をまとめた。なお、曲げ密着性は、各試料を、セラミック被膜が外側になるように20mmφの丸棒に巻き付け、剥落しなかった場合には○、剥落した場合には×を示した。
After forming etched grooves at intervals of 5 mm for magnetic domain refinement treatment on a cold-rolled sheet rolled to a final thickness of 0.23 mm containing 3 mass% Si, decarburization and primary recrystallization annealing were performed, and then MgO An annealing separator containing 1 mass% of antimony chloride as a main component was applied to obtain a final finish annealing plate having a smooth surface without a forsterite film. TiC was formed on both sides of the obtained steel sheet in an atmosphere composed of a mixed gas of TiCl 4 , H 2 and CH 4 . H 2 gas and CH 4 gas were mixed at various ratios, and the TiCl 4 concentration was adjusted by bubbling through the TiCl 4 liquid using H 2 gas as a carrier gas. The reaction temperature was also changed from 900 to 1150 ° C., and the film thickness and particle size were adjusted together with the film formation time change.
Thereafter, an insulating coating liquid (molar ratio in terms of oxide B 2 O 3 / A1 2 0 3 = 0.5) containing boric acid and boehmite as main components was applied with a roll coater and baked at 800 ° C. for 120 seconds. Further, strain relief annealing was performed at 800 ° C. for 3 hours.
Table 1 summarizes TiC deposition conditions, film thickness t, average grain size R, molar ratio of Ti and C, iron loss value W 17/50 after strain relief annealing, surface appearance change, and bending adhesion. The bending adhesion was indicated by ◯ when each sample was wound around a 20 mmφ round bar so that the ceramic coating was on the outside, and x when peeled off.

Figure 0004192818
Figure 0004192818

表1から明らかなように、試料1-5および1-6は、本発明に適合するCVD法によるTiCからなるセラミック被膜の形成条件で作製し、いずれもt/R>0.8、[Ti]/[C]<1.2の適合範囲内である方向性電磁鋼板であり、表面外観が美麗であり、被膜密着性に優れ、鉄損値が極めて低い。
一方、セラミック被膜の膜厚tと平均結晶粒径Rの関係t/Rが0.8以下である試料1-1および1-2、セラミック被膜中の[Ti]/[C]モル比が1.2以上である試料1-3、並びにt/Rが0.8以下でかつセラミック被膜中の[Ti]/[C]モル比が1.2以上である試料1-4は、いずれもセラミック被膜中を通して鋼板との界面に酸化が起こり、表面外観が悪く、密着性が著しく劣る。その結果、密着界面を介した被膜の張力付与効果が小さく、試料の鉄損値は向上しなかった。
As is clear from Table 1, Samples 1-5 and 1-6 were prepared under the conditions for forming a ceramic film made of TiC by the CVD method suitable for the present invention, and both were t 2 /R>0.8, [ It is a grain-oriented electrical steel sheet within a conforming range of [Ti] / [C] <1.2, has a beautiful surface appearance, excellent film adhesion, and extremely low iron loss.
On the other hand, the relationship between the film thickness t of the ceramic coating t and the average crystal grain size R is Samples 1-1 and 1-2 in which t 2 / R is 0.8 or less, and the [Ti] / [C] molar ratio in the ceramic coating is 1.2 or more. sample 1-4 sample 1-3, and [Ti] / [C] molar ratio of t 2 / R is and the ceramic coating is 0.8 or less 1.2 or more is are all of the steel throughout the ceramic coating Oxidation occurs at the interface, the surface appearance is poor, and the adhesion is extremely poor. As a result, the effect of applying tension to the coating via the adhesion interface was small, and the iron loss value of the sample was not improved.

3質量%Siを含有する最終板厚0.23mmに圧延された冷延板を、脱炭、一次再結晶焼鈍した後、酸洗によりSiO被膜を除去し、その後、焼鈍分離剤としてアルミナを用いることにより、フォルステライト被膜のない平滑な表面を有する最終仕上げ焼鈍板を得た。得られた鋼板に対し、PVD法により、種々の窒化物を成膜した。
その後、第一リン酸マグネシウムに重クロム酸カリウムを15重量部加えた水溶液に、30質量%コロイダルシリカを30重量部混合した後、ロールコーターで塗布し、800℃で1分間焼き付け、絶縁被膜を形成させた。さらに歪取焼鈍として850℃で3時間の焼鈍を行った。
表2に、蒸着した窒化物の種類と膜厚tと平均結晶粒径Rの関係t/R、セラミック被膜中の金属元素Mと窒素Nのモル比[M]/[N]、歪取焼鈍後の鉄損値W17/50と表面外観変化、曲げ密着性をまとめた。
A cold-rolled sheet rolled to a final thickness of 0.23 mm containing 3 mass% Si is decarburized and subjected to primary recrystallization annealing, and then the SiO 2 film is removed by pickling, and then alumina is used as an annealing separator. As a result, a final annealed plate having a smooth surface without a forsterite film was obtained. Various nitrides were formed on the obtained steel sheet by the PVD method.
Then, after mixing 30 parts by weight of 30% by weight colloidal silica with an aqueous solution of 15 parts by weight of potassium dichromate in primary magnesium phosphate, it was applied with a roll coater and baked at 800 ° C. for 1 minute to form an insulating coating. Formed. Furthermore, annealing was performed at 850 ° C. for 3 hours as strain relief annealing.
Table 2 shows the relationship between the kind of deposited nitride, the film thickness t, and the average crystal grain size R, t 2 / R, the molar ratio of metal element M to nitrogen N in the ceramic coating [M] / [N], strain relief The iron loss value W 17/50 after annealing, surface appearance change, and bending adhesion were summarized.

Figure 0004192818
Figure 0004192818

表2から明らかなように、試料2-6〜2-9はいずれも、本発明に適合するCVD法による窒化物からなるセラミック被膜の形成条件で作製し、いずれもt/R>0.8、[Ti]/[C]<1.2の適合範囲内である方向性電磁鋼板であり、表面外観が美麗であり、被膜密着性に優れ、鉄損値が極めて低い。
一方、セラミック被膜の膜厚tと平均結晶粒径Rの関係t/Rが0.8以下である試料2-1、2-2および2-4、セラミック被膜中の[Ti]/[C]モル比が1.2以上である試料2-3、並びにt/Rが0.8以下でかつセラミック被膜中の[Ti]/[C]モル比が1.2以上である試料2-5は、いずれもセラミック被膜中を通して鋼板との界面に酸化が起こり、表面外観が悪く、密着性が著しく劣る。その結果、密着界面を介した被膜の張力付与効果が小さく、試料の鉄損値は向上しなかった。
As is apparent from Table 2, all of Samples 2-6 to 2-9 were prepared under the conditions for forming a ceramic film made of nitride by a CVD method suitable for the present invention, and all of t 2 / R> 0. 8. It is a grain-oriented electrical steel sheet that falls within the applicable range of [Ti] / [C] <1.2, has a beautiful surface appearance, excellent film adhesion, and extremely low iron loss.
On the other hand, Samples 2-1, 2-2 and 2-4 in which the relationship t 2 / R between the film thickness t of the ceramic coating and the average crystal grain size R is 0.8 or less, and [Ti] / [C] mol in the ceramic coating Sample 2-3 in which the ratio is 1.2 or more and Sample 2-5 in which t 2 / R is 0.8 or less and the [Ti] / [C] molar ratio in the ceramic coating is 1.2 or more are both in the ceramic coating. Through this, oxidation occurs at the interface with the steel sheet, the surface appearance is poor, and the adhesion is remarkably inferior. As a result, the effect of applying tension to the coating via the adhesion interface was small, and the iron loss value of the sample was not improved.

本発明によれば、フォルステライト被膜のない平滑な鋼板表面に、例えばCVD法やPVD法によって被成される、金属窒化物および/又は金属炭化物からなるセラミック被膜と鋼板との界面の熱的安定性に優れるとともに、セラミック被膜上に施される絶縁被膜の密着性も良好であり、しかも、きわめて低い鉄損値を有する方向性電磁鋼板を得ることが可能となる。   According to the present invention, the thermal stability of the interface between a steel film and a ceramic film made of metal nitride and / or metal carbide formed on, for example, a CVD method or a PVD method on a smooth steel plate surface without a forsterite film. It is possible to obtain a grain-oriented electrical steel sheet that is excellent in property and adhesion of the insulating coating applied on the ceramic coating and that has an extremely low iron loss value.

セラミック被膜の膜厚tをその平均結晶粒径Rで除した値t/Rを横軸とし、前記膜厚tを縦軸として、被膜密着性をプロットした図である。It is the figure which plotted the film adhesiveness by making the horizontal axis the value t / R which remove | divided the film thickness t of the ceramic film by the average crystal grain diameter R, and making the said film thickness t into the vertical axis | shaft. セラミック被膜中のTiとNのモル比[Ti]/[N]を横軸とし、セラミック被膜の膜厚tと平均結晶粒径Rの関係t/Rを縦軸として、歪取焼鈍後の被膜密着性評価をプロットした図である。The ratio of Ti and N in the ceramic coating [Ti] / [N] is the horizontal axis, and the relationship between the thickness t of the ceramic coating and the average crystal grain size R is t 2 / R, and the post-strain annealing annealing is performed. It is the figure which plotted film adhesion evaluation.

Claims (1)

Si:1.5質量%以上7.0質量%以下含有する方向性電磁鋼板表面に、金属窒化物および/または金属炭化物からなるセラミック被膜をPVD法もしくはCVD法により形成させる方向性電磁鋼板の製造方法であって、
前記セラミック被膜をPVD法で形成する場合には、前記方向性電磁鋼板の基板加熱温度、およびターゲットからの蒸着源の蒸発量と反応ガスの供給量との関係の少なくともいずれかを調整し、
前記セラミック被膜をCVD法で形成する場合には、反応ガスの組成、反応温度および成膜時間の少なくともいずれかを調整することにより
該セラミック被膜の、膜厚をt(μm)、平均結晶粒径をR(μm)で表わすとき、tとRが、t>0.8×R
の関係式を満たし、かつ、
前記セラミック被膜中の、金属のモル数を[M]、窒素のモル数を[N]および炭素のモル数を[C]で表わすとき、[M]と、[N]および/または[C]とのモル比が、
[M]/([N]+[C])<1.2
の関係式を満たすよう制御することを特徴とする方向性電磁鋼板の製造方法
Si: A method for producing a grain-oriented electrical steel sheet in which a ceramic coating made of metal nitride and / or metal carbide is formed on the surface of a grain- oriented electrical steel sheet containing 1.5% by mass or more and 7.0% by mass or less by a PVD method or a CVD method. And
When the ceramic coating is formed by the PVD method, the substrate heating temperature of the grain-oriented electrical steel sheet, and at least one of the relationship between the evaporation amount of the evaporation source from the target and the supply amount of the reaction gas are adjusted,
When the ceramic coating is formed by a CVD method, by adjusting at least one of the composition of the reaction gas, the reaction temperature, and the film formation time ,
When the film thickness of the ceramic coating is represented by t (μm) and the average grain size is represented by R (μm), t and R are t 2 > 0.8 × R
Satisfy the relational expression of
When the number of moles of metal in the ceramic coating is represented by [M], the number of moles of nitrogen by [N] and the number of moles of carbon by [C], [M] and [N] and / or [C] And the molar ratio is
[M] / ([N] + [C]) <1.2
Method for producing oriented electrical steel sheets towards you and controlling so as to satisfy the relational expression.
JP2004078719A 2004-03-18 2004-03-18 Oriented electrical steel sheet Expired - Lifetime JP4192818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078719A JP4192818B2 (en) 2004-03-18 2004-03-18 Oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078719A JP4192818B2 (en) 2004-03-18 2004-03-18 Oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2005264234A JP2005264234A (en) 2005-09-29
JP4192818B2 true JP4192818B2 (en) 2008-12-10

Family

ID=35089089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078719A Expired - Lifetime JP4192818B2 (en) 2004-03-18 2004-03-18 Oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4192818B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074486A1 (en) 2016-10-18 2018-04-26 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290213A (en) * 2006-04-24 2007-11-08 Sumitomo Heavy Ind Ltd Mold clamping device
KR101448596B1 (en) * 2012-12-27 2014-10-08 주식회사 포스코 Oriented electrical steel steet and method for the same
WO2018116829A1 (en) * 2016-12-21 2018-06-28 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074486A1 (en) 2016-10-18 2018-04-26 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
KR20190049819A (en) 2016-10-18 2019-05-09 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRIC STEEL SHEET
CN109804105A (en) * 2016-10-18 2019-05-24 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
EP3514262A4 (en) * 2016-10-18 2019-07-24 JFE Steel Corporation Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
CN109804105B (en) * 2016-10-18 2021-12-07 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
US11326219B2 (en) 2016-10-18 2022-05-10 Jfe Steel Corporation Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2005264234A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US4713123A (en) Method of producing extra-low iron loss grain oriented silicon steel sheets
EP3396022B1 (en) Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
KR100479353B1 (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
JP4192818B2 (en) Oriented electrical steel sheet
US7435304B2 (en) Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
JP5047466B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP4232407B2 (en) Method for producing grain-oriented electrical steel sheet
JP2006253555A6 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP5063862B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP4259061B2 (en) Method for producing grain-oriented electrical steel sheet
CN114106593B (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
JP4232408B2 (en) Method for producing grain-oriented electrical steel sheet
JP3280279B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet
JP4725711B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP2002180134A (en) Method for depositing insulation film on grain oriented silicon steel sheet
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JP2003034880A (en) Method for forming insulation film superior in adhesiveness on surface of grain-oriented electrical steel sheet, and method for manufacturing grain- oriented electrical steel sheet
JP4016756B2 (en) Method for producing grain-oriented electrical steel sheet
JP3274409B2 (en) Grain-oriented electrical steel sheet with excellent coating adhesion and extremely low iron loss, and method for producing the same
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JP4374108B2 (en) Method for producing grain-oriented electrical steel sheet
JP7269504B2 (en) Manufacturing method of grain-oriented electrical steel sheet
RU2768905C1 (en) Method of producing electrotechnical steel sheet with oriented grain structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Ref document number: 4192818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term