JP2002180134A - Method for depositing insulation film on grain oriented silicon steel sheet - Google Patents

Method for depositing insulation film on grain oriented silicon steel sheet

Info

Publication number
JP2002180134A
JP2002180134A JP2000376041A JP2000376041A JP2002180134A JP 2002180134 A JP2002180134 A JP 2002180134A JP 2000376041 A JP2000376041 A JP 2000376041A JP 2000376041 A JP2000376041 A JP 2000376041A JP 2002180134 A JP2002180134 A JP 2002180134A
Authority
JP
Japan
Prior art keywords
steel sheet
mass
group
coating
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000376041A
Other languages
Japanese (ja)
Other versions
JP3979004B2 (en
Inventor
Hiroshi Yamaguchi
山口  広
Minoru Takashima
高島  稔
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000376041A priority Critical patent/JP3979004B2/en
Publication of JP2002180134A publication Critical patent/JP2002180134A/en
Application granted granted Critical
Publication of JP3979004B2 publication Critical patent/JP3979004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a grain oriented silicon steel sheet which has extremely small iron loss by depositing a firmly adhering insulation film on a silicon steel sheet having a magnetically smooth surface. SOLUTION: A magnetically smooth grain oriented silicon steel sheet which has no forsterite based finish-annealed film is coated with a coating slution containing phosphate, free phosphoric acid, colloidal silica and an organometallic compound having a hydrophilic group or an organic bonding group and a metallic bonding group, and, baking is performed to deposit an insulation film thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器や発電機の
鉄心に利用される方向性電磁鋼板に関し、特に鉄損が極
めて低い方向性電磁鋼板に関するものである。
The present invention relates to a grain-oriented electrical steel sheet used for an iron core of a transformer and a generator, and more particularly to a grain-oriented electrical steel sheet having extremely low iron loss.

【0002】[0002]

【従来の技術】方向性電磁鋼板は主として変圧器やその
他の電気機器の鉄心材料として広く用いられているが、
磁束密度および鉄損値等の磁気特性に優れることが重要
であり、特にエネルギーロスを少なくするために低鉄損
にすることが求められている。
2. Description of the Related Art Grain-oriented electrical steel sheets are widely used mainly as core materials for transformers and other electrical equipment.
It is important to have excellent magnetic properties such as magnetic flux density and iron loss value. In particular, it is required to reduce iron loss in order to reduce energy loss.

【0003】鉄損を低減するためには鋼板の板厚を薄く
する方法、鋼板に有効なSiを含有させ電気抵抗を高め
る方法、またヒステリシス損を低下させるために有効な
鋼板の結晶方位の配向性を高める方法などがあるが、さ
らに鋼板に張力を付与することが有効であることが知ら
れており、そのために鋼板より熱膨張係数が小さい材質
の被膜を設けることが行われている。
[0003] In order to reduce iron loss, a method for reducing the thickness of a steel sheet, a method for increasing the electrical resistance by containing effective Si in the steel sheet, and an orientation of the crystal orientation of the steel sheet effective for reducing the hysteresis loss Although there is a method of improving the heat resistance, it is known that it is effective to further apply a tension to the steel sheet. For this purpose, a coating of a material having a smaller thermal expansion coefficient than that of the steel sheet is provided.

【0004】例えば、最終的に結晶方位を揃える二次再
結晶と鋼板の純化を兼ねる仕上焼鈍工程で、鋼板表面の
酸化物と鋼板表面に塗布した焼鈍分離剤が反応してフォ
ルステライトを主成分とする被膜が形成されるが、この
被膜は鋼板に与える張力が大きく、鉄損低減に効果があ
る。さらに張力を上げるために、フォルステライト被膜
の上に、低熱膨張性のコーティング液を上塗りして製品
(方向性電磁鋼板)とする方法が行われている。
[0004] For example, in the finish annealing step which combines the secondary recrystallization to finally align the crystal orientation and the purification of the steel sheet, the oxide on the steel sheet surface reacts with the annealing separator applied to the steel sheet surface to form forsterite as the main component. This film has a large tension applied to the steel sheet, and is effective in reducing iron loss. In order to further increase the tension, a method of overcoating a forsterite coating with a low thermal expansion coating liquid to obtain a product (oriented electrical steel sheet) has been performed.

【0005】ところが、近年、鋼板表面を磁気的に平滑
化する手法が開発された。例えば、特公昭52−244
99号公報には仕上焼鈍後、酸洗により表面生成物を除
去し、ついで、化学研磨または電解研磨することにより
鏡面状態に仕上げる方法が提案されている。また特開平
5−43943号公報にはフォルステライト被膜を除去
した後、1000〜1200℃の水素中でサーマルエッ
チングする方法が提案されている。
However, in recent years, a technique for magnetically smoothing the surface of a steel sheet has been developed. For example, Japanese Patent Publication No. 52-244
No. 99 proposes a method in which after finishing annealing, surface products are removed by pickling, followed by chemical polishing or electrolytic polishing to finish the mirror surface. Japanese Patent Application Laid-Open No. 5-43943 proposes a method of removing a forsterite film and performing thermal etching in hydrogen at 1000 to 1200 ° C.

【0006】そして、仕上焼鈍工程で意図的にフォルス
テライト被膜を除去した鋼板表面をさらに平滑に仕上げ
ると、著しい鉄損の低減が認められることが明らかにな
った。このような表面処理により鉄損が低減するのは、
磁化過程において鋼板の表面近傍の磁壁移動の妨げとな
るピニングサイトが減少するためである。
[0006] It has been found that when the surface of the steel sheet from which the forsterite coating is intentionally removed in the finish annealing step is further smoothed, a remarkable reduction in iron loss is observed. The reason iron loss is reduced by such surface treatment is that
This is because the number of pinning sites that hinder the movement of the domain wall near the surface of the steel sheet during the magnetization process is reduced.

【0007】なお、ヒステリシス損失を減少させる磁気
的に平滑な表面の状態とは、一般にRa(中心線平均粗
さ)で表現される、いわゆる表面粗度だけが低減された
ものではなく、特公平4−72920号公報に示される
表面生成物を除去した後、ハロゲン化水溶液中で電解す
る結晶方位強調処理により得られるような表面状態であ
ることが有効である。
The state of the magnetically smooth surface that reduces the hysteresis loss is not a state in which only the so-called surface roughness, which is generally expressed by Ra (center line average roughness), is reduced. It is effective that the surface state is such that it can be obtained by a crystal orientation enhancement treatment in which electrolysis is performed in a halogenated aqueous solution after removing the surface product disclosed in Japanese Patent No. 4-72920.

【0008】現在、フォルステライト被膜を有する方向
性電磁鋼板に適用される張力付与型絶縁コーティング液
は、Alやアルカリ土類金属のリン酸塩とコロイダルシ
リカ、無水クロム酸またはクロム酸塩を主成分とした処
理液であり、これを塗布し、焼き付けすることが多い。
張力付与型の絶縁被膜は、鋼板より熱膨張係数の小さい
コロイダルシリカに代表される無機質を含有するコーテ
ィング液を高温で塗布して形成されるので、その際の地
鉄と絶縁被膜との熱膨張差を利用して、常温において張
力を鋼板に付与するものである。その形成方法は特公昭
53−28375号公報、特公昭56−52117号公
報などに記載されている。
[0008] At present, a tension-imparting insulating coating solution applied to a grain-oriented electrical steel sheet having a forsterite film is mainly composed of a phosphate of Al or an alkaline earth metal and colloidal silica, chromic anhydride or chromate. It is often applied and baked.
The tension-imparting insulating film is formed by applying a coating solution containing an inorganic substance, such as colloidal silica, having a smaller coefficient of thermal expansion than a steel sheet at a high temperature, so that the thermal expansion between the ground iron and the insulating film at that time is performed. By utilizing the difference, tension is applied to the steel sheet at normal temperature. The formation method is described in JP-B-53-28375 and JP-B-56-52117.

【0009】この方法で形成される絶縁被膜は鋼板に対
する張力付与効果が大きく、鉄損低減に有効である。し
かし、この方法による場合は、鋼板に対する張力付与の
大きい絶縁被膜ほど下地との密着力を強くしなければ、
絶縁被膜が剥離するという問題がある。すなわち、フォ
ルステライト系の仕上焼鈍被膜が鋼板表面に存在する場
合には、該焼鈍被膜の張力付与型絶縁被膜に対する密着
性に問題はないが、フォルステライト系の仕上焼鈍被膜
を除去し、特に鏡面化などの表面平滑化処理を行った場
合には、該表面に張力付与型コーティング液を付着させ
ることができない。このため、表面を磁気的に平滑化
し、鉄損を低減する技術と張力付与型絶縁被膜による鉄
損低減技術とを並立させることはできなかった。
The insulating coating formed by this method has a large effect of imparting tension to the steel sheet, and is effective in reducing iron loss. However, in the case of using this method, unless an insulating film having a large tension applied to a steel sheet has a stronger adhesion to a base,
There is a problem that the insulating coating peels off. That is, when the forsterite-based finish-annealed film is present on the steel sheet surface, there is no problem in the adhesion of the annealed film to the tension-imparting insulating film, but the forsterite-based finish-annealed film is removed, and particularly the mirror surface is removed. When a surface smoothing treatment such as surface treatment is performed, a tension-imparting coating liquid cannot be adhered to the surface. For this reason, the technique of magnetically smoothing the surface to reduce iron loss and the technique of reducing iron loss using a tension-imparting insulating film could not be made parallel.

【0010】フォルステライト系被膜がない表面、さら
に調整された平滑な表面に張力付与型絶縁被膜を形成す
る方法として、従来いくつかの方法が提案されている。
例えば、前述の特公昭52−24499号公報には金属
めっき後、特開平6−184762号公報には酸化ケイ
素薄膜を形成させた後、張力付与型コーティング液を塗
布、焼付けする方法が開示されている。
Several methods have conventionally been proposed as methods for forming a tension-imparting insulating film on a surface free of a forsterite-based film and on a conditioned smooth surface.
For example, the above-mentioned Japanese Patent Publication No. 52-24499 discloses a method in which metal plating is performed, and in Japanese Patent Application Laid-Open No. 6-184762, a silicon oxide thin film is formed, and then a tension-imparting coating liquid is applied and baked. I have.

【0011】さらに、特公昭56−4150号公報には
セラミックス薄膜を蒸着、スパッタリング、溶射などに
よって形成させる方法が、特公昭63−54767号公
報には窒化物や炭化物のセラミックス被膜をイオンプレ
ーティングまたはイオンプランテーションによって形成
する方法が開示されている。特公平2−243770号
公報にはいわゆるゾル−ゲル法によって高張力付与型の
セラミックス被膜を鋼板表面に直接形成する方法が開示
されている。
Japanese Patent Publication No. Sho 56-4150 discloses a method of forming a ceramic thin film by vapor deposition, sputtering, thermal spraying, etc., and Japanese Patent Publication No. Sho 63-54767 discloses a method of ion-plating or coating a ceramic film of nitride or carbide. A method of forming by ion plantation is disclosed. Japanese Patent Publication No. 2-243770 discloses a method of directly forming a high-tension imparting ceramic coating on a steel sheet surface by a so-called sol-gel method.

【0012】これらの方法は平滑な表面を有する鋼板に
張力を付与する方法として考案されたものではあるが、
幾つかの問題点を有し、実用化されるに至っていない。
すなわち、金属薄めっきを下地とし、その上にコーティ
ング処理する方法では均一なめっき面の平滑さゆえに絶
縁被膜の密着性が十分でなかったり、酸化ケイ素薄膜を
形成させる方法は張力付与効果が劣るなど、鉄損の改善
効果は十分でなかった。
Although these methods have been devised as methods for applying tension to a steel sheet having a smooth surface,
It has some problems and has not been put to practical use.
In other words, the method of coating with a thin metal plating as a base and then coating it on it does not have sufficient adhesion of the insulating film due to the uniform smoothness of the plated surface, and the method of forming a silicon oxide thin film is inferior in the effect of imparting tension. However, the effect of improving iron loss was not sufficient.

【0013】また、窒化物や炭化物あるいはその組合せ
からなるセラミックス被膜はいずれもその熱膨張係数が
地鉄と比較してかなり低いため熱膨張係数の差による張
力付与効果が大きいが、反面、地鉄と被膜との曲げ密着
性に問題があった。さらに蒸着、スパッタリング、溶
射、イオンプレーティングまたはイオンプランテーショ
ンによるセラミック被膜の形成は高コストである上、大
面積を大量処理する際の均一性確保が困難であったり、
ゾル−ゲル法では従来と同様な塗布、焼付けによる被膜
形成が可能であるものの、0.5μm以上の厚さの均一
美麗な被膜の形成が極めて困難なため、大きな張力付与
効果をもたらすに至らず、所期の鉄損改善効果が得られ
なかった。
[0013] In addition, ceramic coatings made of nitrides, carbides, or a combination thereof have a significantly lower coefficient of thermal expansion than that of ground iron, so that the effect of imparting tension due to the difference in the coefficient of thermal expansion is large. There was a problem in bending adhesion between the film and the coating. Furthermore, the formation of a ceramic coating by vapor deposition, sputtering, thermal spraying, ion plating or ion plantation is expensive, and it is difficult to ensure uniformity when processing large areas in large quantities,
In the sol-gel method, a coating film can be formed by the same application and baking as in the past, but it is extremely difficult to form a uniform and beautiful film having a thickness of 0.5 μm or more, so that a large effect of imparting tension cannot be obtained. However, the expected effect of improving iron loss was not obtained.

【0014】[0014]

【発明が解決しようとする課題】本発明は、これらの従
来技術の問題点を解決し、極めて鉄損値の低い方向性電
磁鋼板を低コストで工業的に生産することができる製造
方法を提供することを目的としてなされたものである。
本発明者は、リン酸塩系絶縁コーティング液の鋼板への
密着性を改善させる組成について鋭意研究を行った結
果、コーティング液の主剤の第一リン酸塩水溶液に特
定量のリン酸を添加し、親水基または有機結合基と金
属結合基を有する有機金属化合物を密着性改善剤として
添加すると鋼板表面と絶縁被膜との密着性が著しく改善
すること、絶縁コーティング液の反応性向上に伴う地
鉄と絶縁被膜との界面における反応を、コロイダルシリ
カを一定量以上添加することにより抑止し、ヒステリシ
ス損失の増加を防止できることを知見し、本発明を完成
させた。
SUMMARY OF THE INVENTION The present invention solves these problems of the prior art and provides a manufacturing method capable of industrially producing a grain-oriented electrical steel sheet having an extremely low iron loss value at low cost. It was done for the purpose of doing.
The present inventor has conducted intensive studies on a composition for improving the adhesion of a phosphate-based insulating coating solution to a steel sheet.As a result, a specific amount of phosphoric acid was added to a primary phosphate aqueous solution as a main component of the coating solution. When an organometallic compound having a hydrophilic group or an organic bonding group and a metal bonding group is added as an adhesion improver, the adhesion between the steel sheet surface and the insulating coating is remarkably improved, and the ground iron accompanying the improvement of the reactivity of the insulating coating solution is improved. It has been found that the reaction at the interface between the film and the insulating film can be suppressed by adding a certain amount of colloidal silica to prevent an increase in hysteresis loss, and completed the present invention.

【0015】[0015]

【課題を解決するための手段】本発明は、フォルステラ
イトの生成を抑止またはフォルステライトを除去した方
向性電磁鋼板に、リン酸塩を主成分とするコーティング
液を塗布、焼き付けすることによって張力付与型絶縁被
膜を形成する方法において、該液のリン酸塩のリン酸基
100質量部に対して、リン酸を50〜300質量部、
親水基および/または有機結合基と金属結合基を有する
有機金属化合物を0.5〜30質量部、およびコロイダ
ルシリカを20〜200質量部配合したことを特徴とす
る方向性電磁鋼板の絶縁被膜形成方法である。
SUMMARY OF THE INVENTION According to the present invention, a coating solution containing a phosphate as a main component is applied to a grain-oriented electrical steel sheet from which forsterite is suppressed or forsterite is removed, and tension is applied by baking. In the method for forming a mold insulating film, phosphoric acid is added in an amount of 50 to 300 parts by mass with respect to 100 parts by mass of a phosphate group of a phosphate of the liquid.
The formation of an insulating coating on a grain-oriented electrical steel sheet, comprising 0.5 to 30 parts by mass of an organic metal compound having a hydrophilic group and / or an organic binding group and a metal binding group, and 20 to 200 parts by mass of colloidal silica. Is the way.

【0016】好ましい本発明は、コーティング液の塗布
前に方向性電磁鋼板表面を平滑化することを特徴とする
前記の方向性電磁鋼板の絶縁被膜形成方法である。
The preferred present invention is the above-described method for forming an insulating film on a grain-oriented electrical steel sheet, which comprises smoothing the surface of the grain-oriented electrical steel sheet before applying a coating liquid.

【0017】[0017]

【発明の実施の形態】絶縁被膜と鋼板表面との密着性向
上には、コーティング液の反応性を高めることが重要と
考えられたので、前述した本願出願人が提案した第一リ
ン酸塩を含むコーティング液に、フリーのリン酸(リン
酸塩となっていないもの)を配合したコーティング液を
調製した。そして該コーティング液の組成を変えて、下
記の方法で製造、処理して得た平滑化電磁鋼板に、溝付
きゴムロールを用いて片面当たり4.0g/m2塗布し、8
50℃で焼き付けを行い、絶縁被膜が強固に密着した電
磁鋼板を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It was considered important to enhance the reactivity of a coating solution in order to improve the adhesion between an insulating coating and the surface of a steel sheet. A coating solution was prepared by mixing free phosphoric acid (non-phosphate) with the coating solution containing the phosphoric acid. Then, 4.0 g / m 2 was applied per one side to a smoothed magnetic steel sheet produced and processed by the following method using a grooved rubber roll, while changing the composition of the coating liquid.
Baking was performed at 50 ° C. to obtain an electromagnetic steel sheet to which the insulating coating was firmly adhered.

【0018】すなわち、3質量%のSiを含有する冷延
鋼板(最終板厚0.23mm)を脱炭、一次再結晶焼鈍し
た後、マグネシアを主成分とする焼鈍分離剤を塗布し、
二次再結晶過程と純化過程を含む最終焼鈍を施し、さら
に硫酸酸洗し、表面のフォルステライトを除去し、つい
で、リン酸−クロム酸浴中で電解研磨を行い、表面を磁
気的に平滑化した鋼板を用いた。
That is, a cold-rolled steel sheet (final sheet thickness: 0.23 mm) containing 3% by mass of Si is decarburized, subjected to primary recrystallization annealing, and then coated with an annealing separator mainly composed of magnesia.
Perform final annealing including secondary recrystallization process and purification process, further wash with sulfuric acid to remove forsterite on the surface, and then perform electropolishing in a phosphoric acid-chromic acid bath to magnetically smooth the surface. A steel plate was used.

【0019】図1は第一リン酸アルミニウム水溶液中に
含まれるリン酸塩のリン酸基(PO 4 )100質量部お
よびコロイダルシリカ100質量部に対し、リン酸を添
加した場合のコーティング液の地鉄被覆率を目視で判断
した結果である。リン酸添加量が50質量部未満では、
焼付け後に絶縁被膜は剥離し、密着すらしなかったのに
対し、50質量部以上では絶縁被膜の密着性改善効果が
現れ、ほぼ100%の被覆率を得ることができた。コー
ティング液中のフリーのリン酸が鋼板表面との反応性を
高め、造膜過程で強固な密着力を発現させたためと考え
られる。しかし、350質量部を超えて添加した場合に
は、絶縁被膜におねしょ模様と呼ばれるエッチング模様
が現れた。これはリン酸により地鉄表面が部分的にエッ
チングされたために起こった現象と推定され、外観を著
しく損なった。好ましい添加量は150〜250質量部
である。
FIG. 1 shows an example in an aqueous solution of aluminum phosphate monobasic.
Phosphate groups (PO Four) 100 parts by mass
And 100 parts by mass of colloidal silica
Visually determine the base iron coverage of the coating liquid when added
This is the result. If the amount of phosphoric acid is less than 50 parts by mass,
The insulation coating peeled off after baking and did not even adhere
On the other hand, when the amount is 50 parts by mass or more, the effect of improving the adhesion of the insulating film is not obtained.
Appearance and almost 100% coverage could be obtained. Co
Of free phosphoric acid in the plating solution
It is thought to have increased and developed strong adhesion in the film formation process.
Can be However, when adding over 350 parts by mass,
Is an etching pattern called a wetting pattern on the insulation coating
Appeared. This is because the surface of the iron base is partially etched by phosphoric acid.
It is presumed to be a phenomenon that occurred due to
Damaged. The preferred addition amount is 150 to 250 parts by mass.
It is.

【0020】図2は第一リン酸マグネシウム水溶液中に
含まれるリン酸塩のリン酸基(PO 4 )100質量部に
対しリン酸200質量部を添加し、さらに添加するコロ
イダルシリカの量を変化させた時の鉄損W17/50 値の測
定結果である。コロイダルシリカを全く添加していない
場合、鉄損値劣化は特に大きいことから、リン酸を添加
する時、コロイダルシリカを20〜200質量部、好ま
しくは50〜150質量部同時に添加することが重要で
ある。
FIG. 2 shows an example in an aqueous solution of magnesium monophosphate.
Phosphate groups (PO Four) 100 parts by mass
On the other hand, add 200 parts by mass of phosphoric acid, and
Iron loss W when the amount of idal silica was changed17/50Measuring values
It is a fixed result. No colloidal silica added
In this case, phosphoric acid is added because iron loss value deterioration is particularly large.
When the colloidal silica is used in an amount of 20 to 200 parts by mass.
Or 50-150 parts by weight at the same time
is there.

【0021】絶縁被膜が形成された電磁鋼板の断面SE
M観察を行うと、絶縁被膜と接している地鉄部で内部酸
化が起こり、地鉄の内方にシリカ層が形成され、コーテ
ィング液塗布前は平滑であった平滑面が著しく乱れてい
た。薄膜X線回折を行うと、りん酸鉄が形成されている
こともわかった。コロイダルシリカをリン酸塩含有コー
ティング液に添加し、絶縁被膜を形成させることにより
熱膨張係数を低下させ、鋼板の張力付与効果を向上させ
るが、コロイダルシリカを本発明のコーティング液に添
加する場合に、添加量が20質量部未満であると、密着
性の改善効果はあるものの、鉄損値劣化を招く。
Section SE of magnetic steel sheet on which insulating film is formed
When M observation was performed, internal oxidation occurred in the ground iron portion in contact with the insulating coating, a silica layer was formed inside the ground iron, and the smooth surface that had been smooth before the application of the coating liquid was significantly disturbed. When thin film X-ray diffraction was performed, it was also found that iron phosphate was formed. Colloidal silica is added to the phosphate-containing coating solution to lower the coefficient of thermal expansion by forming an insulating film, thereby improving the effect of imparting tension to the steel sheet. However, when colloidal silica is added to the coating solution of the present invention, If the addition amount is less than 20 parts by mass, the effect of improving the adhesion is obtained, but the iron loss value is degraded.

【0022】ところが、コロイダルシリカを20質量部
以上添加した場合には、界面は平滑なままで、地鉄から
外方へごく薄い層が形成されていた。コロイダルシリカ
添加は絶縁被膜と地鉄との界面の酸化挙動を変化させ、
内部酸化を抑制する効果があるものと思われる。この層
の正体や形成機構は明らかではないが、地鉄の外部に形
成されるため、磁気的平滑性を失うことなく、バインダ
ーの役割を果して密着性向上に寄与しているものと推定
される。コロイダルシリカを200質量部より多く添加
した場合には、発粉が起こり絶縁被膜の外観も悪くなっ
た。
However, when colloidal silica was added in an amount of 20 parts by mass or more, a very thin layer was formed outward from the base iron while the interface was kept smooth. The addition of colloidal silica changes the oxidation behavior of the interface between the insulating coating and the ground iron,
It seems to have the effect of suppressing internal oxidation. Although the identity and formation mechanism of this layer is not clear, it is presumed that it is formed outside of the base iron and plays a role of a binder without losing magnetic smoothness, contributing to the improvement of adhesion. . When more than 200 parts by mass of colloidal silica was added, powdering occurred and the appearance of the insulating coating was also poor.

【0023】本発明の第三の特徴はコーティング液に、
親水基および/または有機結合基を有し、さらに金属結
合基を有する有機金属化合物を添加する点である。ここ
で、金属結合基は鋼板またはごく薄い形成層と化学的に
結合して絶縁被膜の密着に寄与するものと推定される。
また、有機結合基や親水基は同じく化学的に絶縁被膜と
作用して密着に寄与するものと推定される。
The third feature of the present invention is that the coating liquid
The point is that an organic metal compound having a hydrophilic group and / or an organic bonding group and further having a metal bonding group is added. Here, it is presumed that the metal bonding group chemically bonds to the steel plate or the very thin forming layer and contributes to the adhesion of the insulating film.
Further, it is presumed that the organic bonding group and the hydrophilic group also chemically act on the insulating film and contribute to the adhesion.

【0024】有機金属化合物の添加量は地鉄と絶縁被膜
との界面に作用すればよいので少量でよく、0.5〜3
0質量部、特に5〜15質量部であるのが好ましい。
0.5質量部未満では絶縁被膜の密着性改善効果がな
く、逆に30質量部を超える場合には、コーティング液
の造膜に悪影響を及ぼし、短時間内では成膜しにくくな
る。
The addition amount of the organometallic compound may be small since it only needs to act on the interface between the ground iron and the insulating coating.
It is preferably 0 parts by mass, particularly preferably 5 to 15 parts by mass.
When the amount is less than 0.5 part by mass, there is no effect of improving the adhesion of the insulating film, and when the amount exceeds 30 parts by mass, the film formation of the coating liquid is adversely affected, and it becomes difficult to form the film in a short time.

【0025】本発明に用いる有機金属化合物はメタン、
エタン、プロパン、ブタンなどの直鎖状炭化水素、シク
ロヘキサンなどの脂環状炭化水素などの炭化水素に、A
l、Fe、Si、Ti、Zrなどの金属が一つ(金属単
体)または二つ以上結合した化合物などを骨格とするも
のであるが、もちろん例示したものに限定されるもので
はない。本発明の有機金属化合物は、上記骨格に加え
て、親水基および/または有機結合基と金属結合基を有
するものであるが、ビニルトリクロロシランのように、
骨格の炭化水素が有機結合基を兼ねるものも含む。
The organometallic compound used in the present invention is methane,
Hydrocarbons such as linear hydrocarbons such as ethane, propane and butane, and alicyclic hydrocarbons such as cyclohexane,
The skeleton is made of a compound in which one or more metals such as l, Fe, Si, Ti, and Zr are bonded together (single metal) or two or more, but is not limited to those exemplified as a matter of course. The organometallic compound of the present invention has a hydrophilic group and / or an organic bonding group and a metal bonding group in addition to the above skeleton.
It also includes those in which the skeleton hydrocarbon also serves as an organic bonding group.

【0026】金属結合基としては、メトキシ基、エトキ
シ基などの加水分解によってM−O−Fe型の金属結合
を生じるアルコシキル基やその加水分解基、アセトキシ
基などのアシル基、メトキシカルボニル基などの低級ア
ルコキシカルボニル基や塩素原子などのハロゲン原子を
挙げることができる。ここにMは有機金属化合物中の金
属であり、上記したAl、Fe、Si、Ti、Zrなど
の一つまたは二つ以上であるが、Siが後述のように安
定した結合を形成できるのでより好ましい。
Examples of the metal binding group include an alkoxy group which produces an MO--Fe type metal bond by hydrolysis such as a methoxy group and an ethoxy group, a hydrolyzable group thereof, an acyl group such as an acetoxy group, and a methoxycarbonyl group. Examples include a halogen atom such as a lower alkoxycarbonyl group and a chlorine atom. Here, M is a metal in the organometallic compound, and is one or more of Al, Fe, Si, Ti, and Zr described above. However, since Si can form a stable bond as described later, preferable.

【0027】親水基としてはアミノ基、カルボキシル
基、水酸基、カルボニル基、スルホ基などを挙げること
ができる。
Examples of the hydrophilic group include an amino group, a carboxyl group, a hydroxyl group, a carbonyl group and a sulfo group.

【0028】有機結合基としてはビニル基、エポキシ
基、メタクリル基、メタクリロキシ基、メルカプト基、
ウレイド基、グリシドキシ基など、単純なアルキル基以
外の有機基や塩素原子などのハロゲン原子を挙げること
ができる。
As the organic bonding group, a vinyl group, an epoxy group, a methacryl group, a methacryloxy group, a mercapto group,
Examples include organic groups other than simple alkyl groups such as ureido groups and glycidoxy groups, and halogen atoms such as chlorine atoms.

【0029】好適な有機金属化合物はシランカップリン
グ剤として知られる有機ケイ素化合物、またはそのオリ
ゴマーである。具体的にはビニルトリクロロシラン、ビ
ニルトリス(β−メトキシエトキシ)シラン、ビニルト
リエトキシシラン、ビニルトリメトキシシラン、γ−
(メタクリロイルオキシプロピル)トリメトキシシラン
などの有機結合基含有系有機金属化合物、β−(3,4
−エポキシシクロヘキシル)エチルトリメトキシシラ
ン、γ−グリシジルオキシプロピルトリメトキシシラ
ン、γ−グリシドキシプロピルメチルジエトキシシラ
ン、N−β−(アミノエチル)−γ−アミノプロピルト
リメトキシシラン、γ−アミノプロピルトリエトキシシ
ラン、γ−メルカプトプロピルトリメトキシシランなど
の親水基含有系有機金属化合物を挙げることができる。
好ましいのはγ−アミノプロピルトリエトキシシラン、
γ−グリシジルオキシプロピルトリメトキシシランであ
る。
Preferred organometallic compounds are the organosilicon compounds known as silane coupling agents, or oligomers thereof. Specifically, vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-
(Methacryloyloxypropyl) trimethoxysilane and other organic bonding group-containing organometallic compounds, β- (3,4
-Epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyl Examples include hydrophilic group-containing organometallic compounds such as triethoxysilane and γ-mercaptopropyltrimethoxysilane.
Preferred is γ-aminopropyltriethoxysilane,
γ-glycidyloxypropyltrimethoxysilane.

【0030】本発明のコーティング液が塗布される対象
の方向性電磁鋼板は、フォルステライトの生成を抑止さ
れたか、またはフォルステライトを除去する仕上焼鈍後
のものである。仕上焼鈍後の金属表面としては、単にフ
ォルステライトなどの無機質被膜を除去しただけの地鉄
面でも有効ではあるが、さらに表面に平滑化処理を施し
た方が鉄損値の低下の点からより有効である。例えば、
サーマルエッチングや化学研磨などにより表面の粗度を
極力小さくし、鏡面状態に仕上げた表面やハロゲン化物
水溶液中での電解による結晶方位強調処理で得られるグ
レイニング様面などとしたものが好適である。
The grain-oriented electrical steel sheet to which the coating solution of the present invention is applied is one after the formation of forsterite has been suppressed or after the finish annealing for removing forsterite. As a metal surface after finish annealing, it is effective to use a ground iron surface that simply removes an inorganic coating such as forsterite, but it is more effective to further smooth the surface from the viewpoint of lowering iron loss value. It is valid. For example,
The surface roughness is preferably minimized by thermal etching, chemical polishing, or the like, and the surface is preferably mirror-finished or a graining-like surface obtained by crystal orientation enhancement treatment by electrolysis in an aqueous halide solution. .

【0031】以下、本発明の電磁鋼板の成分組成につい
て説明する。電磁鋼板の成分としては、Siを1.5〜
7.0質量%含有させることが望ましい。すなわち、S
iは製品の電気抵抗を高め、鉄損を低減するのに有効な
成分であるが、Si含有量が7.0質量%を超えると硬
度が高くなり、製造や加工が困難になりがちである。S
i含有量が1.5質量%未満であると最終仕上焼鈍中に
変態を生じて安定した二次再結晶組織が得られない。
Hereinafter, the component composition of the magnetic steel sheet of the present invention will be described. As a component of the magnetic steel sheet, Si is 1.5 to
It is desirable to make it contain 7.0 mass%. That is, S
i is an effective component for increasing the electrical resistance of the product and reducing the iron loss, but when the Si content exceeds 7.0% by mass, the hardness increases, and the production and processing tend to be difficult. . S
If the i content is less than 1.5% by mass, transformation occurs during the final finish annealing, and a stable secondary recrystallized structure cannot be obtained.

【0032】インヒビター元素としてAlを初期鋼中に
0.006質量%以上含有させることにより結晶配向性
をより一層向上させることができる。上限は0.06質
量%で、これを超えると再び結晶配向性の劣化が始ま
る。窒素も同様の作用があり、上限はふくれ欠陥の発生
から100ppm が好ましい。窒素の含有量の下限値は特
に規定しないが、工業的規模で20ppm 未満に低下させ
るのは経済的に困難であり、20ppm が好適である。
The crystal orientation can be further improved by adding 0.006% by mass or more of Al as an inhibitor element in the initial steel. The upper limit is 0.06% by mass. If the upper limit is exceeded, degradation of crystal orientation starts again. Nitrogen has the same effect, and the upper limit is preferably 100 ppm from the occurrence of blistering defects. Although the lower limit of the nitrogen content is not particularly specified, it is economically difficult to reduce the nitrogen content to less than 20 ppm on an industrial scale, and 20 ppm is preferred.

【0033】また、一次再結晶焼鈍後に増窒素処理を行
う工程の付加も有効である。増窒素処理を行わない場合
には、副インヒビターとしてMnSe、MnSを析出さ
せるために、初期鋼中に0.02〜0.2質量%のMn
と、Seおよび/またはSを両元素の和で0.01〜
0.06質量%含有させることが重要である。それぞれ
の含有量が少なすぎると二次再結晶を生じるための析出
物が過少となり、また多すぎると熱延前の固溶が困難と
なる。増窒素処理を行う場合は、Mnを必ずしも添加す
る必要はないが、鋼板の延性改善などの目的で適宜添加
するのがよい。
It is also effective to add a step of performing a nitrogen increasing treatment after the primary recrystallization annealing. When the nitrogen increasing treatment is not performed, 0.02 to 0.2% by mass of Mn is contained in the initial steel in order to precipitate MnSe and MnS as sub-inhibitors.
And Se and / or S are 0.01 to
It is important to contain 0.06% by mass. If the respective contents are too small, the amount of precipitates for secondary recrystallization will be too small, and if too large, it will be difficult to form a solid solution before hot rolling. When performing the nitrogen increasing treatment, Mn is not necessarily added, but it is preferable to add as appropriate for the purpose of improving the ductility of the steel sheet.

【0034】鋼中には、上記の元素の他に、方向性電磁
鋼板の製造に適するインヒビター成分としてB、Bi、
Sb、Mo、Te、Sn、P、Ge、As、Nb、N
i、Cr、Ti、Cu、Pb、ZnおよびInから選ば
れる元素を単独、または複合で0.0005〜2.0質
量%程度含有させることができる。
In the steel, besides the above-mentioned elements, B, Bi,
Sb, Mo, Te, Sn, P, Ge, As, Nb, N
An element selected from i, Cr, Ti, Cu, Pb, Zn and In can be contained alone or in a composite of about 0.0005 to 2.0% by mass.

【0035】また、C、S、Nなどの不純物はいずれ
も、磁気特性上有害な作用があり、特に鉄損を劣化させ
るので、それぞれC:0.003質量%以下、S:0.
002質量%以下、N:0.002質量%以下に低減す
ることが好ましい。
Further, impurities such as C, S and N all have a harmful effect on magnetic properties and particularly deteriorate iron loss, so that C: 0.003% by mass or less and S: 0.
It is preferable to reduce the content to 002% by mass or less and N: 0.002% by mass or less.

【0036】つぎに本発明の電磁鋼板の製造方法につい
て好適条件とその理由を説明する。所定の成分に調整さ
れた鋼は通常スラブ加熱に供された後、熱間圧延により
熱延コイルとされるが、このスラブの加熱温度は130
0℃以上の高温、1250℃以下の低温のいずれでもよ
い。また、近年、スラブ加熱を行わず、連続鋳造後、直
接熱間圧延を行う方法が開発されているが、この方法に
よる鋼板にも、本発明の方法が適用できる。
Next, the preferred conditions and the reasons for the method for producing an electromagnetic steel sheet of the present invention will be described. After the steel adjusted to the predetermined component is usually subjected to slab heating, it is turned into a hot-rolled coil by hot rolling.
Any of a high temperature of 0 ° C. or higher and a low temperature of 1250 ° C. or lower may be used. In recent years, a method of performing direct hot rolling after continuous casting without performing slab heating has been developed. However, the method of the present invention can also be applied to a steel sheet by this method.

【0037】熱間圧延後の鋼板に必要に応じて熱延板焼
鈍を施し、1回の冷延または中間焼鈍を挟む複数回の圧
延によって最終冷間圧延板とする。これらの圧延につい
ては、動的時効を狙った、いわゆる温間圧延や静的時効
を狙ったパス間時効を施したものであってもよい。
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing as necessary, and a final cold-rolled sheet is obtained by performing one cold rolling or a plurality of rolling steps including intermediate annealing. These rollings may be those subjected to so-called warm rolling aiming at dynamic aging or inter-pass aging aiming at static aging.

【0038】最終冷間圧延後の鋼板は脱炭焼鈍を兼ねる
一次再結晶焼鈍を施され、最終仕上げ焼鈍により二次再
結晶処理され、方向性を得る。最終仕上げ焼鈍を行う場
合には、通常一次再結晶焼鈍後に焼鈍分離剤を塗布し、
これにより酸化物被膜を形成させるが、この焼鈍分離剤
の組成を調整して、鋼板表面上の酸化物被膜の生成を抑
制することもできる。
The steel sheet after the final cold rolling is subjected to primary recrystallization annealing also serving as decarburization annealing, and is subjected to secondary recrystallization treatment by final finish annealing to obtain a directionality. When performing final finish annealing, usually apply an annealing separator after primary recrystallization annealing,
Although an oxide film is thereby formed, the composition of the annealing separator can be adjusted to suppress the formation of an oxide film on the steel sheet surface.

【0039】このようにして得られた鋼板に、さらなる
鉄損低減を目的としてレーザーまたはプラズマ炎などを
照射して、磁区の細分化を行っても、絶縁被膜の密着性
にはなんらの問題もない。また、本発明の方向性電磁鋼
板の製造工程の任意の段階で、磁区細分化のため、表面
にエッチングや歯形ロールで一定間隔の溝を形成するこ
とも一層の鉄損低減を図る手段として有効である。
Even if the steel sheet thus obtained is irradiated with a laser or plasma flame for the purpose of further reducing iron loss, and the magnetic domains are subdivided, there is no problem in the adhesion of the insulating film. Absent. Also, at any stage of the production process of the grain-oriented electrical steel sheet of the present invention, for magnetic domain refinement, etching or forming grooves at regular intervals on the surface with tooth-shaped rolls is also effective as a means for further reducing iron loss. It is.

【0040】[0040]

【実施例】(実施例1〜4、比較例1〜6)Siを3質
量%含有する冷間圧延鋼板(最終板厚0.23mm)を脱
炭、一次再結晶焼鈍した後、マグネシアに対して塩化鉛
を0.3質量%含む焼鈍分離剤を用いて、フォルステラ
イト膜の形成を抑制しつつ、磁区細分化のために溝形成
を行った後、二次再結晶させて方向性電磁鋼板を得た。
EXAMPLES (Examples 1 to 4, Comparative Examples 1 to 6) A cold-rolled steel sheet (final sheet thickness: 0.23 mm) containing 3% by mass of Si was decarburized and subjected to primary recrystallization annealing. Using an annealing separator containing 0.3% by mass of lead chloride to suppress the formation of a forsterite film, form grooves for subdividing magnetic domains, and then recrystallize the grain-oriented electrical steel sheet. I got

【0041】リン酸基100質量部の第一リン酸マグネ
シウムに、重クロム酸カリウム15質量部を加えた水溶
液に、コロイダルシリカ、リン酸、および金属結合基と
してエトキシ基、親水基としてアミノ基を有するアミノ
プロピルエトキシシランを表1に示す割合で混合してコ
ーティング液を調製した。該液をロールコーターで上記
鋼板に塗布し、800℃で焼付けして、約4.0g/m2
厚さの被膜を形成した。
Colloidal silica, phosphoric acid, an ethoxy group as a metal binding group and an amino group as a hydrophilic group were added to an aqueous solution obtained by adding 15 parts by weight of potassium dichromate to 100 parts by weight of magnesium phosphate having a phosphate group. The aminopropylethoxysilane was mixed at a ratio shown in Table 1 to prepare a coating solution. The liquid was applied to the above steel sheet with a roll coater and baked at 800 ° C. to form a coating having a thickness of about 4.0 g / m 2 .

【0042】得られた鋼板の被膜密着性と鉄損W17/50
値を下記の方法により評価した。液組成と評価結果を表
1にまとめて示した。
The film adhesion and iron loss W 17/50 of the obtained steel sheet
The value was evaluated by the following method. Table 1 summarizes the liquid composition and the evaluation results.

【表1】 鉄損は50Hzの周波数で1.7Tに磁化させた場合の
損失[W17/50 (W/kg)]を測定した。被膜の密着性は種
々の径を持つ丸棒に試料を巻き付け、被膜が剥離しない
最小径(mm)で評価した。また、外観は目視によった。
[Table 1] The iron loss was measured by measuring a loss [W 17/50 (W / kg)] when magnetized to 1.7 T at a frequency of 50 Hz. The adhesion of the coating was evaluated by wrapping the sample around a round bar having various diameters and the minimum diameter (mm) at which the coating did not peel off. The appearance was visually observed.

【0043】表1から明らかなように、試料2、8、
9、10は本発明のコーティング液組成に適合するの
で、優れた外観と被膜密着性(最小曲げ剥離径)と鉄損
17/50値を示している。これらに対し、リン酸、コロ
イダルシリカ、または金属結合基を有する有機金属化合
物の添加量が本発明の組成に適合しない、すなわち、試
料1、3〜7は密着性や外観が悪かったり、磁気特性が
劣化した。
As is clear from Table 1, Samples 2, 8,
Since Nos . 9 and 10 are compatible with the coating liquid composition of the present invention, they show excellent appearance, coating adhesion (minimum bending peel diameter), and iron loss W 17/50 value. On the other hand, the addition amount of phosphoric acid, colloidal silica, or an organometallic compound having a metal binding group is not compatible with the composition of the present invention. That is, Samples 1, 3 to 7 have poor adhesion and appearance, and have poor magnetic properties. Has deteriorated.

【0044】(実施例5〜8、比較例7〜12)Siを
3質量%含有する冷間圧延鋼板(最終板厚0.23mm)
に、磁区細分化のために5mm間隔のエッチング溝を形
成、脱炭、一次再結晶焼鈍した後、マグネシアを主成分
とし塩化鉛を0.3質量%含む焼鈍分離剤を塗布し、最
終仕上げ焼鈍板を得た。さらに追加処理として塩化ナト
リウム水溶液中での電解による結晶方位強調処理である
平滑化処理を施し、表面を磁気的に平滑化した。
(Examples 5 to 8, Comparative Examples 7 to 12) Cold rolled steel sheet containing 3% by mass of Si (final sheet thickness: 0.23 mm)
After forming etching grooves at intervals of 5 mm for subdividing magnetic domains, decarburizing and performing primary recrystallization annealing, an annealing separator containing magnesia as a main component and containing 0.3% by mass of lead chloride is applied, and final finish annealing is performed. I got a board. Further, as an additional treatment, a smoothing treatment as a crystal orientation enhancement treatment by electrolysis in an aqueous sodium chloride solution was performed to magnetically smooth the surface.

【0045】リン酸基100質量部の第一リン酸アルミ
ニウムとクロム酸10質量部を含む水溶液に、コロイダ
ルシリカ、リン酸、および金属結合基としてメトキシ
基、有機結合基としてグリシドキシ基を有するグリシド
キシプロピルトリメトキシシランを混合して調製したコ
ーティング液を、上記の鋼板に塗布し、850℃で焼付
け、約5.0g/m2の厚さの被膜を形成した。該電磁鋼板
の外観、密着性および磁気特性を評価し、評価結果を液
組成とともに表2にまとめて示した。
In an aqueous solution containing 100 parts by mass of a phosphate group and 10 parts by mass of chromic acid, colloidal silica, phosphoric acid, and a glycide having a methoxy group as a metal binding group and a glycidoxy group as an organic binding group. A coating solution prepared by mixing xypropyltrimethoxysilane was applied to the above steel plate and baked at 850 ° C. to form a coating having a thickness of about 5.0 g / m 2 . The appearance, adhesion and magnetic properties of the magnetic steel sheet were evaluated, and the evaluation results are shown together with the liquid composition in Table 2.

【表2】 [Table 2]

【0046】表2から明らかなように、試料12、1
6、19、20は本発明のコーティング液組成に適合す
るので、優れた外観と被膜密着性と鉄損W17/50 値を示
している。これらに対し、リン酸やコロイダルシリカ、
または金属結合基を有する有機金属化合物の添加量が本
発明の組成に適合しない、試料11、13〜15、1
7、18は絶縁被膜がうまく成膜しなかったり、磁気特
性が劣化した。
As is clear from Table 2, Samples 12, 1
Nos. 6, 19 and 20 are suitable for the coating liquid composition of the present invention, and thus have excellent appearance, film adhesion and iron loss W17 / 50 value. In contrast, phosphoric acid and colloidal silica,
Samples 11, 13 to 15, 1 and 1 in which the amount of the organometallic compound having a metal binding group is not compatible with the composition of the present invention.
In Nos. 7 and 18, the insulating film was not formed well or the magnetic properties were deteriorated.

【0047】[0047]

【発明の効果】本発明の方法によれば、仕上げ焼鈍被膜
のない平滑な方向性電磁鋼板の表面に密着性のよい絶縁
被膜を形成でき、鉄損低減が大幅に改善された方向性電
磁鋼板を低コストで工業的規模で製造することができ
る。得られた鋼板は変圧器などの鉄心材料として好適に
使用できる。
According to the method of the present invention, it is possible to form an insulating coating having good adhesion on the surface of a smooth grain-oriented electrical steel sheet having no finish-annealed coating, and to significantly reduce iron loss. Can be produced on an industrial scale at low cost. The obtained steel sheet can be suitably used as a core material of a transformer or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 コーティング液のリン酸添加量とコーティン
グ液の鋼板に対する被覆率との関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the amount of phosphoric acid added to a coating solution and the coverage of the coating solution on a steel plate.

【図2】 コーティング液のコロイダルシリカ添加量と
絶縁被膜が形成された鋼板の鉄損値との関係を示すグラ
フ。
FIG. 2 is a graph showing the relationship between the amount of colloidal silica added to a coating solution and the iron loss value of a steel sheet on which an insulating film has been formed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K026 AA03 AA22 BA01 BA03 BB05 CA23 CA26 CA41 DA02 EA01 EA06 EA07 EB11 4K033 RA04 TA04 TA08 5E041 AA02 BC08 CA02 HB14  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mitsumasa Kurosawa 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. EA01 EA06 EA07 EB11 4K033 RA04 TA04 TA08 5E041 AA02 BC08 CA02 HB14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】フォルステライトの生成を抑止またはフォ
ルステライトを除去した方向性電磁鋼板に、リン酸塩を
主成分とするコーティング液を塗布、焼き付けすること
によって張力付与型絶縁被膜を形成する方法において、
該液のリン酸塩のリン酸基100質量部に対して、リン
酸を50〜350質量部、親水基または有機結合基と金
属結合基を有する有機金属化合物を0.5〜30質量
部、およびコロイダルシリカを20〜200質量部配合
したことを特徴とする方向性電磁鋼板の絶縁被膜形成方
法。
1. A method for forming a tension-imparting insulating film by applying and baking a coating solution containing phosphate as a main component to a grain-oriented electrical steel sheet in which forsterite formation is suppressed or forsterite is removed. ,
50 to 350 parts by mass of phosphoric acid, 0.5 to 30 parts by mass of an organometallic compound having a hydrophilic group or an organic binding group and a metal binding group, based on 100 parts by mass of the phosphate group of the phosphate of the solution. And 20 to 200 parts by mass of colloidal silica.
【請求項2】コーティグ液の塗布前に、方向性電磁鋼板
表面を平滑化することを特徴とする請求項1に記載の方
向性電磁鋼板の絶縁被膜形成方法。
2. The method for forming an insulating coating on a grain-oriented electrical steel sheet according to claim 1, wherein the surface of the grain-oriented electrical steel sheet is smoothed before applying the coating liquid.
JP2000376041A 2000-12-11 2000-12-11 Method for forming insulating coating on grain-oriented electrical steel sheet Expired - Fee Related JP3979004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376041A JP3979004B2 (en) 2000-12-11 2000-12-11 Method for forming insulating coating on grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376041A JP3979004B2 (en) 2000-12-11 2000-12-11 Method for forming insulating coating on grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2002180134A true JP2002180134A (en) 2002-06-26
JP3979004B2 JP3979004B2 (en) 2007-09-19

Family

ID=18844958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376041A Expired - Fee Related JP3979004B2 (en) 2000-12-11 2000-12-11 Method for forming insulating coating on grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3979004B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136115A1 (en) * 2006-05-19 2007-11-29 Nippon Steel Corporation Directional electromagnetic steel sheet having high tension insulating coating film and method for processing the insulating coating film
JP2010261063A (en) * 2009-04-30 2010-11-18 Sumitomo Metal Ind Ltd Electrical steel sheet having insulating film, and method for manufacturing the same, and treatment solution
WO2013064260A1 (en) * 2011-11-04 2013-05-10 Tata Steel Uk Limited Coated grain oriented steel
CN113272459A (en) * 2019-01-16 2021-08-17 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113286905A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP2021533263A (en) * 2018-07-30 2021-12-02 ポスコPosco Manufacturing method of electrical steel sheet, insulating coating composition for electrical steel sheet, and electrical steel sheet
JP7465380B2 (en) 2018-07-30 2024-04-10 ポスコ カンパニー リミテッド Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136115A1 (en) * 2006-05-19 2007-11-29 Nippon Steel Corporation Directional electromagnetic steel sheet having high tension insulating coating film and method for processing the insulating coating film
US7998284B2 (en) 2006-05-19 2011-08-16 Nippon Steel Corporation Grain-oriented electrical steel sheet having high tensile strength insulating film and method of treatment of such insulating film
JP5026414B2 (en) * 2006-05-19 2012-09-12 新日本製鐵株式会社 Grain-oriented electrical steel sheet having high-tensile insulation coating and method for treating the insulation coating
JP2010261063A (en) * 2009-04-30 2010-11-18 Sumitomo Metal Ind Ltd Electrical steel sheet having insulating film, and method for manufacturing the same, and treatment solution
JP2015501389A (en) * 2011-11-04 2015-01-15 タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited Coated grain oriented steel
CN104024443A (en) * 2011-11-04 2014-09-03 塔塔钢铁英国有限公司 Coated grain oriented steel
WO2013064260A1 (en) * 2011-11-04 2013-05-10 Tata Steel Uk Limited Coated grain oriented steel
JP2021533263A (en) * 2018-07-30 2021-12-02 ポスコPosco Manufacturing method of electrical steel sheet, insulating coating composition for electrical steel sheet, and electrical steel sheet
JP7291203B2 (en) 2018-07-30 2023-06-14 ポスコ カンパニー リミテッド Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
JP7465380B2 (en) 2018-07-30 2024-04-10 ポスコ カンパニー リミテッド Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
CN113272459A (en) * 2019-01-16 2021-08-17 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113286905A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
EP3913091A4 (en) * 2019-01-16 2022-10-12 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
CN113272459B (en) * 2019-01-16 2023-06-09 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet
CN113286905B (en) * 2019-01-16 2023-11-17 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3979004B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
KR100479353B1 (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
WO2020149321A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
JP3979004B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
WO2020149337A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3280279B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP4232407B2 (en) Method for producing grain-oriented electrical steel sheet
WO2020149327A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JP4259061B2 (en) Method for producing grain-oriented electrical steel sheet
JP4232408B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003034880A (en) Method for forming insulation film superior in adhesiveness on surface of grain-oriented electrical steel sheet, and method for manufacturing grain- oriented electrical steel sheet
JP4192818B2 (en) Oriented electrical steel sheet
JP5063862B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JP4725711B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
WO2020149346A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP4016756B2 (en) Method for producing grain-oriented electrical steel sheet
JPH03240922A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and bendability
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
WO2020149336A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149325A1 (en) Method for manufacturing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3979004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees