JP7465380B2 - Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet - Google Patents

Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet Download PDF

Info

Publication number
JP7465380B2
JP7465380B2 JP2023021994A JP2023021994A JP7465380B2 JP 7465380 B2 JP7465380 B2 JP 7465380B2 JP 2023021994 A JP2023021994 A JP 2023021994A JP 2023021994 A JP2023021994 A JP 2023021994A JP 7465380 B2 JP7465380 B2 JP 7465380B2
Authority
JP
Japan
Prior art keywords
insulating coating
group
weight
electrical steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023021994A
Other languages
Japanese (ja)
Other versions
JP2023075104A (en
Inventor
ソク クォン,ミン
シム,ホ-ギョン
コ,ヒョンチョル
キム,ビョン-チョル
キム,ジュン-ウ
チェ,ホン-ジョ
ノ,テヨン
Original Assignee
ポスコ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180088697A external-priority patent/KR102177040B1/en
Priority claimed from KR1020180165656A external-priority patent/KR102176355B1/en
Priority claimed from JP2021505751A external-priority patent/JP7291203B2/en
Application filed by ポスコ カンパニー リミテッド filed Critical ポスコ カンパニー リミテッド
Publication of JP2023075104A publication Critical patent/JP2023075104A/en
Application granted granted Critical
Publication of JP7465380B2 publication Critical patent/JP7465380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/26Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、電磁鋼板、電磁鋼板用絶縁被膜組成物および電磁鋼板の製造方法に関し、より具体的には、特定の化学構造を含むシラン化合物を使用し、応力除去焼鈍時の耐熱性および熱伝導度に優れた電磁鋼板、電磁鋼板用絶縁被膜組成物および電磁鋼板の製造方法に関する。 The present invention relates to an electromagnetic steel sheet, an insulating coating composition for an electromagnetic steel sheet, and a method for manufacturing an electromagnetic steel sheet, and more specifically, to an electromagnetic steel sheet, an insulating coating composition for an electromagnetic steel sheet, and a method for manufacturing an electromagnetic steel sheet, which use a silane compound containing a specific chemical structure and have excellent heat resistance and thermal conductivity during stress relief annealing.

モータや変圧器などに使用される電磁鋼板の絶縁被膜は、層間抵抗だけでなく様々な特性が求められる。例えば、加工成形時の便利性、保管、使用時の安定性などである。また、電磁鋼板は多様な用途に使用されるため、その用途に応じて様々な絶縁被膜の開発が実施されている。例えば、電磁鋼板はパンチング加工、せん断加工、曲げ加工などを実施すると残留変形によって磁気特性が劣化する。そのため、劣化した磁気特性を回復させるために高温で応力除去焼鈍(SRA,Stress Relief Annealing)を実施する場合がある。したがって、絶縁被膜は応力除去焼鈍時剥離されず固有電気絶縁を維持する耐熱特性が必要である。 The insulating coating of electromagnetic steel sheets used in motors, transformers, etc. is required to have various properties in addition to interlaminar resistance. For example, convenience during processing and shaping, and stability during storage and use are required. In addition, because electromagnetic steel sheets are used for a variety of purposes, various insulating coatings are being developed according to the purpose. For example, when electromagnetic steel sheets are subjected to punching, shearing, bending, etc., the magnetic properties deteriorate due to residual deformation. Therefore, stress relief annealing (SRA) may be performed at high temperatures to restore the deteriorated magnetic properties. Therefore, the insulating coating needs to have heat resistance properties that do not peel off during stress relief annealing and maintain its inherent electrical insulation.

既に知られている絶縁被膜組成物として、無水クロム酸、酸化マグネシウム、アクリル系樹脂またはアクリル-スチレン共重合体樹脂を混合適用して耐食性と絶縁性向上を図った。ただし、このような絶縁被膜組成物では最近求められる応力除去焼鈍時の耐熱性を満足させるには限界がある。また、金属リン酸塩を絶縁被膜組成物の主成分として使用して応力除去焼鈍時の密着性を改善する方法が提案された。しかし、この方法は耐吸性が強いリン酸塩の特徴のために表面に白化欠陥が発生して製品加工時粉塵が発生する問題があり、白化欠陥が発生した部位に耐熱性がかえって劣る問題がある。 Insulation coating compositions that are already known are made by mixing chromic anhydride, magnesium oxide, and acrylic resin or acrylic-styrene copolymer resin to improve corrosion resistance and insulation. However, these insulation coating compositions have limitations in terms of the heat resistance required during stress relief annealing, which is a recent requirement. A method has also been proposed in which metal phosphate is used as the main component of the insulation coating composition to improve adhesion during stress relief annealing. However, this method has the problem that due to the characteristics of phosphate, which has strong absorption resistance, whitening defects occur on the surface, generating dust during product processing, and there is also the problem that the heat resistance is actually inferior in the areas where whitening defects occur.

本発明の目的は、電磁鋼板用絶縁被膜組成物および絶縁被膜を含む電磁鋼板を提供することにある。より具体的には、特定の化学構造を有するシラン化合物を使用し、応力除去焼鈍時の耐熱性および熱伝導度に優れた電磁鋼板用絶縁被膜組成物および絶縁被膜を含む電磁鋼板を提供することにある。 The object of the present invention is to provide an insulating coating composition for electrical steel sheets and electrical steel sheets including the insulating coating. More specifically, the object is to provide an insulating coating composition for electrical steel sheets and electrical steel sheets including the insulating coating that use a silane compound having a specific chemical structure and have excellent heat resistance and thermal conductivity during stress relief annealing.

本発明の一実施例による電磁鋼板は、電磁鋼板基材および電磁鋼板基材の一面または両面に位置した絶縁被膜を含み、絶縁被膜は下記化学式1で表されるシラン化合物および水酸化金属を含むことを特徴とする。
[化学式1]

Figure 0007465380000001
(化学式1において、RおよびRはそれぞれ独立して、水素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~4の整数であり、nは4-mである。) An electrical steel sheet according to an embodiment of the present invention includes an electrical steel sheet substrate and an insulating coating located on one or both sides of the electrical steel sheet substrate, and the insulating coating includes a silane compound represented by the following Chemical Formula 1 and a metal hydroxide.
[Chemical Formula 1]
Figure 0007465380000001
(In Chemical Formula 1, R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L is a direct bond or a divalent linking group; m is an integer of 1 to 4; and n is 4-m.)

シラン化合物は下記化学式2で表されることを特徴とする。
[化学式2]

Figure 0007465380000002
(化学式2において、RおよびRはそれぞれ独立して、水素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~4の整数であり、nは4-mである。) The silane compound is characterized by being represented by the following chemical formula 2.
[Chemical Formula 2]
Figure 0007465380000002
(In Chemical Formula 2, R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L 1 is a direct bond or a divalent linking group; m is an integer of 1 to 4; and n is 4-m.)

シラン化合物は、トリアセトキシメチルシラン(Triacetoxy(methyl)silane)、トリアセトキシビニルシラン(Triacetoxy(vinyl)silane)、ジメチルジメタクロイルオキシ-1-エトキシシラン(Dimethyl-di(methacroyloxy-1-ethoxy)silane)および3-(トリメトキシシリル)プロピルメタクリレート(3-(trimethoxysilyl)propylmethacrylate)のうちの1種以上を含むことを特徴とする。 The silane compound is characterized by containing one or more of triacetoxymethylsilane (Triacetoxy(methyl)silane), triacetoxyvinylsilane (Triacetoxy(vinyl)silane), dimethyldi(methacryloyloxy-1-ethoxy)silane, and 3-(trimethoxysilyl)propylmethacrylate.

水酸化金属は、Ni(OH)、Co(OH)、Cu(OH)、Sr(OH)、Ba(OH)、Pd(OH)、In(OH)、(CHCOCr(OH)、Bi(OH)およびSn(OH)のうちの1種以上を含むことを特徴とする。 The metal hydroxides are characterized as comprising one or more of Ni(OH) 2 , Co(OH) 2 , Cu(OH) 2 , Sr(OH) 2 , Ba(OH) 2 , Pd( OH ) 2 , In(OH) 3 , ( CH3CO2 ) 7Cr3 (OH) 2 , Bi(OH) 3 and Sn(OH) 2 .

絶縁被膜は金属窒化物をさらに含み、金属窒化物0.1~40重量%、シラン化合物25~75重量%および水酸化金属0.5~60重量%を含むことを特徴とする。 The insulating coating further contains a metal nitride, and is characterized by containing 0.1 to 40% by weight of metal nitride, 25 to 75% by weight of a silane compound, and 0.5 to 60% by weight of a metal hydroxide.

金属窒化物は、BN、AlN、Si、Mg、Ca、Sr、BaおよびGeのうちの1種以上を含むことを特徴とする。 The metal nitrides are characterized by including one or more of BN, AlN , Si3N4 , Mg3N2 , Ca3N2 , Sr3N2 , Ba3N2 , and Ge3N4 .

電磁鋼板は下記一般式1を満足することを特徴とする。
[一般式1]
20≦TC≦200W/mK
(前記一般式1において、TCは600×400mmの試験片を230℃誘導加熱してPPMS(Physical Property Measurement System)で測定した熱伝導度値を示す。)
The electrical steel sheet is characterized in that it satisfies the following general formula 1.
[General Formula 1]
20≦TC≦200W/mK
(In the above formula 1, TC represents the thermal conductivity value measured by induction heating a 600×400 mm test piece at 230° C. using a PPMS (Physical Property Measurement System).)

電磁鋼板基材は、C:0.01重量%以下、Si:6.0重量%以下、P:0.5重量%以下、S:0.005重量%以下、Mn:0.1~1.0重量%、Al:0.40~2.0重量%、N:0.005重量%以下、Ti:0.005重量%以下およびSb、Sn、Niまたはこれらの組み合わせ:0.01~0.15重量%を含み、残部はFeおよび不可避不純物からなることを特徴とする。 The electromagnetic steel sheet substrate contains C: 0.01% by weight or less, Si: 6.0% by weight or less, P: 0.5% by weight or less, S: 0.005% by weight or less, Mn: 0.1-1.0% by weight, Al: 0.40-2.0% by weight, N: 0.005% by weight or less, Ti: 0.005% by weight or less, and Sb, Sn, Ni or a combination thereof: 0.01-0.15% by weight, with the balance being Fe and unavoidable impurities.

本発明の一実施例による電磁鋼板用絶縁被膜組成物は、下記化学式1で表されるシラン化合物および水酸化金属を含むことを特徴とする。
[化学式1]

Figure 0007465380000003
(化学式1において、RおよびRはそれぞれ独立して、水素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~4の整数であり、nは4-mである。) The insulating coating composition for electrical steel sheets according to one embodiment of the present invention includes a silane compound represented by the following Chemical Formula 1 and a metal hydroxide.
[Chemical Formula 1]
Figure 0007465380000003
(In Chemical Formula 1, R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L is a direct bond or a divalent linking group; m is an integer of 1 to 4; and n is 4-m.)

金属窒化物をさらに含み、固形分を基準として、金属窒化物0.1~40重量%、シラン化合物25~75重量%および水酸化金属0.5~60重量%を含むことを特徴とする。 It further contains metal nitride, and is characterized by containing 0.1 to 40 wt % of metal nitride, 25 to 75 wt % of silane compound, and 0.5 to 60 wt % of metal hydroxide based on the solid content.

金属窒化物は、BN、AlN、Si、Mg、Ca、Sr、BaおよびGeのうちの1種以上を含むことを特徴とする。 The metal nitrides are characterized by including one or more of BN, AlN , Si3N4 , Mg3N2 , Ca3N2 , Sr3N2 , Ba3N2 , and Ge3N4 .

本発明の一実施例による電磁鋼板の製造方法は、スラブを熱間圧延して熱間圧延板を製造後、冷間圧延を経た後、最終焼鈍を完了した鋼板を準備する段階、および鋼板に絶縁被膜組成物を塗布して絶縁被膜を形成する段階を含み、絶縁被膜組成物は下記化学式1で表されるシラン化合物および水酸化金属を含むことを特徴とする。
[化学式1]

Figure 0007465380000004
(化学式1において、RおよびRはそれぞれ独立して、水素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~4の整数であり、nは4-mである。) A method for manufacturing an electrical steel sheet according to an embodiment of the present invention includes the steps of: preparing a steel sheet by hot rolling a slab to produce a hot-rolled sheet, cold rolling the steel sheet, and then completing final annealing; and applying an insulating coating composition to the steel sheet to form an insulating coating, the insulating coating composition including a silane compound represented by Chemical Formula 1 below and a metal hydroxide.
[Chemical Formula 1]
Figure 0007465380000004
(In Chemical Formula 1, R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L is a direct bond or a divalent linking group; m is an integer of 1 to 4; and n is 4-m.)

絶縁被膜が形成された電磁鋼板は下記一般式1を満足することを特徴とする。
[一般式1]
20≦TC≦200W/mK
(前記一般式1において、TCは600x400mmの試験片を230℃誘導加熱してPPMS(Physical Property Measurement System)で測定した熱伝導度値を示す。)
The electrical steel sheet having an insulating coating formed thereon is characterized in that it satisfies the following general formula 1.
[General Formula 1]
20≦TC≦200W/mK
(In the above formula 1, TC represents the thermal conductivity value measured by induction heating a 600 x 400 mm test piece at 230°C using a PPMS (Physical Property Measurement System).)

本発明の一実施例による電磁鋼板用絶縁被膜組成物は、下記化学式1で表されるシラン化合物シラン化合物、および無水クロム酸、クロム酸塩および重クロム酸塩のうちの1種以上のクロム酸化合物、を含むことを特徴とする。
[化学式1]

Figure 0007465380000005
(化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。) An insulating coating composition for electrical steel sheet according to an embodiment of the present invention includes a silane compound represented by the following Chemical Formula 1, and one or more chromate compounds selected from chromic anhydride, chromate salts, and dichromate salts.
[Chemical Formula 1]
Figure 0007465380000005
(In Chemical Formula 1, R1 is hydrogen, a halogen element, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group, L is a direct bond or a divalent linking group, m is an integer of 1 to 3, and n is 4-m.)

シラン化合物およびクロム酸化合物の合量100重量部に対して、シラン化合物10~80重量部およびクロム酸化合物20~90重量部を含むことを特徴とする。 It is characterized by containing 10 to 80 parts by weight of a silane compound and 20 to 90 parts by weight of a chromate compound per 100 parts by weight of the combined total of the silane compound and the chromate compound.

化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基またはアルコキシ基であることを特徴とする。 In Chemical Formula 1, R 1 is a hydrogen atom, a halogen atom, a linear or branched alkyl group, or an alkoxy group.

化学式1において、Lは直接結合、アルキレン基および-CF-のうちの1種以上であることを特徴とする。 In Chemical Formula 1, L is at least one of a direct bond, an alkylene group, and --CF 2 --.

シラン化合物は下記化学式2で表されることを特徴とする。
[化学式2]

Figure 0007465380000006
(化学式2において、R~Rはそれぞれ独立して水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。) The silane compound is characterized by being represented by the following chemical formula 2.
[Chemical Formula 2]
Figure 0007465380000006
(In Chemical Formula 2, R 1 to R 3 are each independently a hydrogen atom, a halogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L 1 is a direct bond or a divalent linking group; m is an integer of 1 to 3; and n is 4-m.)

化学式2において、RおよびRはそれぞれ独立して、水素またはハロゲン元素であることを特徴とする。 In Chemical Formula 2, R2 and R3 are each independently a hydrogen or halogen element.

シラン化合物は、Triethyl(trifluoromethyl)silane(トリエチル(トリフルオロメチル)シラン)、Trimethoxy (trifluoropropyl)silane(トリメトキシ(トリフルオロプロピル)シラン)、Dimethoxy-methyl(trifluoropropyl)silane(ジメトキシ-メチル(トリフルオロプロピル)シラン)およびPerfluorooctyl-triethoxysilane(パーフルオロオクチル-トリエトキシシラン)のうちの1種以上を含むことを特徴とする。 The silane compound is characterized by containing one or more of triethyl(trifluoromethyl)silane, trimethoxy(trifluoropropyl)silane, dimethoxy-methyl(trifluoropropyl)silane, and perfluorooctyl-triethoxysilane.

シラン化合物およびクロム酸化合物の合量100重量部に対して、セラミック粉末を0.5~65重量部さらに含むことを特徴とする。 It is characterized by further containing 0.5 to 65 parts by weight of ceramic powder per 100 parts by weight of the combined amount of the silane compound and the chromate compound.

セラミック粉末は、MgO、MnO、Al、SiO、TiO、ZrO、AlSi13、Al・TiO、Y、9Al・B、BN、CrN、BaTiO、SiCおよびTiCのうちの1種以上を含むことを特徴とする。 The ceramic powder is characterized by comprising one or more of MgO , MnO , Al2O3 , SiO2 , TiO2 , ZrO2 , Al6Si2O13 , Al2O3.TiO2 , Y2O3 , 9Al2O3.B2O3 , BN , CrN, BaTiO3 , SiC and TiC .

セラミック粉末の平均粒径は0.05~20μmであることを特徴とする。 The ceramic powder is characterized by an average particle size of 0.05 to 20 μm.

シラン化合物およびクロム酸化合物の合量100重量部に対して、アクリル樹脂、スチレン樹脂、酢酸ビニル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、フェノール樹脂、アルキド樹脂およびエポキシ樹脂のうちの1種以上の高分子樹脂を0.5~30重量部さらに含むことを特徴とする。 It is characterized by further containing 0.5 to 30 parts by weight of one or more polymeric resins selected from acrylic resin, styrene resin, vinyl acetate resin, polyester resin, urethane resin, polyethylene resin, polypropylene resin, polyamide resin, polycarbonate resin, phenolic resin, alkyd resin and epoxy resin, per 100 parts by weight of the combined total of the silane compound and the chromate compound.

シラン化合物およびクロム酸化合物の合量100重量部に対して、エチレングリコール(Ethylene golycol)、プロピレングリコール(Propylene glycol)、グリセリン(Glycerine)、ブチルカルビトール(Butyl carbitol)のうちの1種以上を1~15重量部さらに含むことを特徴とする。 It is characterized by further containing 1 to 15 parts by weight of one or more of ethylene glycol, propylene glycol, glycerine, and butyl carbitol per 100 parts by weight of the combined weight of the silane compound and the chromate compound.

本発明の一実施例による電磁鋼板は、電磁鋼板基材および電磁鋼板基材の一面または両面に位置した絶縁被膜を含み、絶縁被膜は下記化学式1で表されるシラン化合物、および無水クロム酸、クロム酸塩および重クロム酸塩のうちの1種以上のクロム酸化合物、を含むことを特徴とする。
[化学式1]

Figure 0007465380000007
(化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。) An electrical steel sheet according to an embodiment of the present invention includes an electrical steel sheet substrate and an insulating coating located on one or both sides of the electrical steel sheet substrate, and the insulating coating includes a silane compound represented by the following Chemical Formula 1, and one or more chromate compounds selected from chromic anhydride, chromate salts, and dichromate salts.
[Chemical Formula 1]
Figure 0007465380000007
(In Chemical Formula 1, R1 is hydrogen, a halogen element, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group, L is a direct bond or a divalent linking group, m is an integer of 1 to 3, and n is 4-m.)

絶縁被膜はSiを0.1~50重量%およびFを0.01~25重量%含むことを特徴とする。 The insulating coating is characterized by containing 0.1 to 50% by weight of Si and 0.01 to 25% by weight of F.

絶縁被膜の厚さは0.1~10μmであることを特徴とする。 The thickness of the insulating coating is characterized by being 0.1 to 10 μm.

本発明の一実施例による電磁鋼板の製造方法は、電磁鋼板基材を製造する段階、および電磁鋼板基材の一面または両面に絶縁被膜組成物を塗布して絶縁被膜を形成する段階を含み、絶縁被膜組組成物は下記化学式1で表されるシラン化合物、および無水クロム酸、クロム酸塩および重クロム酸塩のうちの1種以上のクロム酸化合物、を含むことを特徴とする。
[化学式1]

Figure 0007465380000008
(化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。) A method for manufacturing an electrical steel sheet according to an embodiment of the present invention includes the steps of manufacturing an electrical steel sheet substrate, and applying an insulating coating composition to one or both sides of the electrical steel sheet substrate to form an insulating coating, the insulating coating composition including a silane compound represented by Chemical Formula 1 below, and one or more chromate compounds selected from chromic anhydride, chromate salts, and dichromate salts:
[Chemical Formula 1]
Figure 0007465380000008
(In Chemical Formula 1, R1 is hydrogen, a halogen element, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group, L is a direct bond or a divalent linking group, m is an integer of 1 to 3, and n is 4-m.)

電磁鋼板基材を製造する段階はスラブを熱間圧延して熱延板を製造する段階、熱延板を冷間圧延して冷延板を製造する段階および冷延板を最終焼鈍する段階を含むことを特徴とする。 The step of manufacturing the electrical steel sheet substrate is characterized by including a step of hot rolling a slab to produce a hot-rolled sheet, a step of cold rolling the hot-rolled sheet to produce a cold-rolled sheet, and a step of final annealing the cold-rolled sheet.

絶縁被膜を形成する段階は100~680℃の温度で絶縁被膜組成物が塗布された鋼板を熱処理する段階を含むことを特徴とする。 The step of forming the insulating coating is characterized by including a step of heat treating the steel sheet coated with the insulating coating composition at a temperature of 100 to 680°C.

絶縁被膜を形成する段階の後、700~1000℃の温度で応力除去焼鈍を行う段階をさらに含むことを特徴とする。 The method further includes a step of performing stress relief annealing at a temperature of 700 to 1000°C after the step of forming the insulating coating.

本発明の一実施形態によれば、絶縁被膜形成後の鉄損特性に優れた電磁鋼板を得ることができる。本発明の一実施形態によれば、占積率に優れた電磁鋼板を得ることができる。本発明の一実施形態によれば、応力除去焼鈍(SRA,Stress Relief Annealing)以後にも密着性および耐剥離性に優れた絶縁被膜を得ることができる。本発明の一実施形態によれば、熱伝導度に優れた電磁鋼板を製造することができ、この電磁鋼板を利用して製造したモータなどの製品は優れた効率を有する。 According to one embodiment of the present invention, an electrical steel sheet having excellent core loss characteristics after the formation of an insulating coating can be obtained. According to one embodiment of the present invention, an electrical steel sheet having excellent space factor can be obtained. According to one embodiment of the present invention, an insulating coating having excellent adhesion and peel resistance even after stress relief annealing (SRA) can be obtained. According to one embodiment of the present invention, an electrical steel sheet having excellent thermal conductivity can be manufactured, and products such as motors manufactured using this electrical steel sheet have excellent efficiency.

本発明の一実施例による電磁鋼板の断面の模式図である。1 is a schematic diagram of a cross section of an electromagnetic steel sheet according to an embodiment of the present invention. 本発明の一実施例による電磁鋼板の製造方法のフローチャートである。1 is a flowchart of a method for manufacturing an electrical steel sheet according to an embodiment of the present invention. 実施例1-2で製造した電磁鋼板単面の走査電子顕微鏡(SEM)写真である。1 is a scanning electron microscope (SEM) photograph of a single surface of the electrical steel sheet produced in Example 1-2. 比較例1-2で製造した電磁鋼板単面の走査電子顕微鏡(SEM)写真である。1 is a scanning electron microscope (SEM) photograph of a single surface of the electrical steel sheet produced in Comparative Example 1-2. 実施例1-2で製造した電磁鋼板被膜のFT-IR-RAS分析結果である。1 shows the results of FT-IR-RAS analysis of the electrical steel sheet coating produced in Example 1-2. 実施例2-2で製造した電磁鋼板単面の走査電子顕微鏡(SEM)写真である。1 is a scanning electron microscope (SEM) photograph of a single surface of the electrical steel sheet produced in Example 2-2. 比較例2-3で製造した電磁鋼板の表面の走査電子顕微鏡(SEM)写真である。1 is a scanning electron microscope (SEM) photograph of the surface of the electrical steel sheet produced in Comparative Example 2-3.

第1、第2および第3などの用語は多様な部分、成分、領域、層および/またはセクションを説明するために使用されるが、これらに限定されない。これらの用語はある部分、成分、領域、層またはセクションを他の部分、成分、領域、層またはセクションと区別するためにのみ使用される。したがって、以下で叙述する第1部分、成分、領域、層またはセクションは本発明の範囲を逸脱しない範囲内で第2部分、成分、領域、層またはセクションと言及される。 Terms such as first, second and third are used to describe various parts, components, regions, layers and/or sections, but are not limited thereto. These terms are used only to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Thus, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.

ここで使用される専門用語は単に特定の実施例を言及するためのものであり、本発明を限定することを意図しない。ここで使用される単数形態は文脈上明らかに逆の意味を示さない限り複数形態も含む。明細書で使用される「含む」の意味は特定の特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特性、領域、整数、段階、動作、要素および/または成分の存在や付加を除外しない。 The terminology used herein is merely for the purpose of referring to particular embodiments and is not intended to limit the invention. As used herein, the singular forms include the plural forms unless the context clearly indicates otherwise. As used in the specification, the term "comprising" means to embody certain features, regions, integers, steps, operations, elements and/or components and does not exclude the presence or addition of other features, regions, integers, steps, operations, elements and/or components.

ある部分が他の部分「上に」または「の上に」あると言及する場合、これはすぐに他の部分の上にまたはの上にあるか、その間に他の部分が伴われる。対照的にある部分が他の部分の「すぐ上に」あると言及する場合、その間に他の部分が介在しない。 When we say that a part is "on" or "above" another part, it means that it is immediately on or above the other part, or that there are other parts between them. In contrast, when we say that a part is "directly on" another part, there are no other parts between them.

特に定義していないが、ここに使用される技術用語および科学用語を含むすべての用語は本発明が属する技術分野における通常の知識を有する者が一般的に理解する意味と同じ意味を有する。一般に用いられている辞書に定義された用語は関連技術文献と現在の開示された内容に合う意味を有するものと追加解釈され、定義しない限り理想的または公式的過ぎる意味に解釈ならない。本明細書で基(原子団)の表記において、置換および無置換を記載しない表記は、置換基を有さないものと共に置換基を有するもの含む。例えば、「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)だけでなく、置換基を有するアルキル基(置換アルキル基)も含む。 Unless otherwise defined, all terms, including technical and scientific terms, used herein have the same meaning as commonly understood by a person of ordinary skill in the art to which this invention belongs. Terms defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the relevant technical literature and the currently disclosed content, and should not be interpreted as being overly ideal or formal unless otherwise defined. In this specification, when describing groups (atomic groups), a notation that does not indicate whether they are substituted or unsubstituted includes those that have a substituent as well as those that do not have a substituent. For example, "alkyl group" includes not only alkyl groups that have no substituents (unsubstituted alkyl groups) but also alkyl groups that have a substituent (substituted alkyl groups).

本明細書で「置換」とは別段の定義がない限り、化合物の少なくとも一つの水素がC1~C30アルキル基;C2~C30アルケニル基、C2~C30アルキニル基、C1~C10アルキルシリル基;C3~C30シクロアルキル基;C6~C30アリール基;C1~C30ヘテロアリール基;C1~C10アルコキシ基;シラン基;アルキルシラン基;アルコキシシラン基;アミン基;アルキルアミン基;アリールアミン基;エチレンオキシル基またはハロゲン基に置換されたものを意味する。 Unless otherwise defined, in this specification, "substituted" means that at least one hydrogen of a compound is substituted with a C1 to C30 alkyl group; a C2 to C30 alkenyl group, a C2 to C30 alkynyl group, a C1 to C10 alkylsilyl group; a C3 to C30 cycloalkyl group; a C6 to C30 aryl group; a C1 to C30 heteroaryl group; a C1 to C10 alkoxy group; a silane group; an alkylsilane group; an alkoxysilane group; an amine group; an alkylamine group; an arylamine group; an ethyleneoxyl group, or a halogen group.

本明細書で「ヘテロ」とは、別段の定義がない限り、N、O、SおよびPからなる群より選ばれる原子を意味する。本明細書で「アルキル(alkyl)基」とは、別段の定義がない限り、あるアルケニル(alkenyl)基やアルキニル(alkynyl)基を含んでいない「飽和アルキル(saturated alkyl)基」;または少なくとも一つのアルケニル基またはアルキニル基を含んでいる「不飽和アルキル(unsaturated alkyl)基」をすべて含むことを意味する。前記「アルケニル基」は、少なくとも二つの炭素原子が少なくとも一つの炭素-炭素二重結合をなしている置換基を意味し、「アルキン基」という少なくとも二つの炭素原子が少なくとも一つの炭素-炭素三重結合をなしている置換基を意味する。前記アルキル基は分枝状、直鎖状または環状である。 In this specification, unless otherwise defined, "hetero" refers to an atom selected from the group consisting of N, O, S, and P. In this specification, unless otherwise defined, "alkyl group" refers to all of "saturated alkyl groups" that do not contain an alkenyl group or an alkynyl group; or "unsaturated alkyl groups" that contain at least one alkenyl group or alkynyl group. The "alkenyl group" refers to a substituent in which at least two carbon atoms form at least one carbon-carbon double bond, and the "alkyne group" refers to a substituent in which at least two carbon atoms form at least one carbon-carbon triple bond. The alkyl group may be branched, linear, or cyclic.

前記アルキル基はC1~C20のアルキル基であり得、具体的にはC1~C6である低級アルキル基、C7~C10である中級アルキル基、C11~C20の高級アルキル基である。例えば、C1~C4アルキル基はアルキル鎖に1~4個の炭素原子が存在することを意味し、これはメチル、エチル、プロピル、イソ-プロピル、n-ブチル、イソ-ブチル、sec-ブチルおよびt-ブチルからなる群より選ばれるものを示す。 The alkyl group can be a C1-C20 alkyl group, specifically a lower alkyl group of C1-C6, a medium alkyl group of C7-C10, or a higher alkyl group of C11-C20. For example, a C1-C4 alkyl group means that there are 1-4 carbon atoms in the alkyl chain, which is selected from the group consisting of methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, and t-butyl.

典型的なアルキル基にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、エテニル基、プロペニル基、ブテニル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などがある。「芳香族基」は環状である置換基のすべての元素がp-オービタルを有しており、これらp-オービタルが共役(conjugation)を形成している置換基を意味する。具体的な例としてアリール基(aryl)とヘテロアリール基がある。 Typical alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, ethenyl, propenyl, butenyl, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. An "aromatic group" refers to a cyclic substituent in which all elements have p-orbitals, and these p-orbitals form conjugation. Specific examples include aryl and heteroaryl groups.

「アリール(aryl)基」は単一環または融合環、すなわち、炭素原子の隣接する対を分け合う複数の環置換基を含む。「ヘテロアリール(heteroaryl)基」はアリール基内にN、O、SおよびPからなる群より選ばれるヘテロ原子が含まれるアリール基を意味する。前記ヘテロアリール基が融合環である場合、それぞれの環ごとに前記ヘテロ原子を1~3個含む。 An "aryl group" includes single or fused rings, i.e., multiple ring substituents sharing adjacent pairs of carbon atoms. A "heteroaryl group" means an aryl group that includes a heteroatom selected from the group consisting of N, O, S, and P within the aryl group. When the heteroaryl group is a fused ring, it contains from 1 to 3 of said heteroatoms in each ring.

本明細書で別段の定義がない限り、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基は置換または非置換されたアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基を意味する。本明細書で別段の定義がない限り、2価の連結基とはアルキレン基、アルケニレン基、アリーレン基、-NR’-、-O-、-SO-、-CO-、-CF-から選択される1種以上の2価の連結基を意味する。R’はアルキル基である。 Unless otherwise defined in this specification, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group means a substituted or unsubstituted alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group. Unless otherwise defined in this specification, a divalent linking group means one or more divalent linking groups selected from an alkylene group, an alkenylene group, an arylene group, -NR'-, -O-, -SO 2 -, -CO-, and -CF 2 -. R' is an alkyl group.

以下、本発明の実施例について本発明が属する技術分野における通常の知識を有する者が容易に実施できるように詳細に説明する。しかし、本発明は様々な異なる形態で実現することができ、ここで説明する実施例に限定されない。 The following describes in detail an embodiment of the present invention so that a person having ordinary skill in the art to which the present invention pertains can easily implement the present invention. However, the present invention can be realized in various different forms and is not limited to the embodiment described here.

電磁鋼板用絶縁被膜組成物
本発明の一実施例による電磁鋼板用絶縁被膜組成物は、下記化学式1で表されるシラン化合物および水酸化金属を含む。
[化学式1]

Figure 0007465380000009
(化学式1において、RおよびRはそれぞれ独立して、水素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~4の整数であり、nは4-mである。) Insulating Coating Composition for Electrical Steel Sheet An insulating coating composition for electrical steel sheet according to an embodiment of the present invention includes a silane compound represented by the following Chemical Formula 1 and a metal hydroxide.
[Chemical Formula 1]
Figure 0007465380000009
(In Chemical Formula 1, R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L is a direct bond or a divalent linking group; m is an integer of 1 to 4; and n is 4-m.)

本発明の一実施例による絶縁被膜組成物は、応力除去焼鈍時の耐熱性と耐食性を画期的に改善するために特有の化学構造を有するシラン化合物を含む。また、シラン化合物を単独で使用する場合、応力除去焼鈍過程で被膜が剥離される問題および電磁鋼板の表面に均一に塗布することに困難性が存在する。これを改善するために水酸化金属もまた含む。 The insulating coating composition according to one embodiment of the present invention contains a silane compound with a unique chemical structure to dramatically improve heat resistance and corrosion resistance during stress relief annealing. Furthermore, when a silane compound is used alone, there are problems with the coating peeling off during the stress relief annealing process and difficulties in applying it uniformly to the surface of the electrical steel sheet. To improve this, a metal hydroxide is also included.

以下では本発明の一実施例による電磁鋼板用絶縁被膜組成物を各成分別に詳細に説明する。 Below, the insulating coating composition for electrical steel sheets according to one embodiment of the present invention will be described in detail for each component.

先に、本発明の一実施例による電磁鋼板用絶縁被膜組成物は、固形分を基準として、化学式1で表されるシラン化合物を含む。具体的にはシラン化合物および水酸化金属の合量100重量部に対して30~75重量部を含む。化学式1で表されるシラン化合物は、化合物内にSi元素とカルボニル基(Carbonyl group)を含有しており耐熱性に優れる。さらにカルボニル基は水酸化金属と反応性に優れ、シラン化合物-水酸化金属複合体を形成して表面品質を画期的に改善することに重要な役割をする。 As mentioned above, the insulating coating composition for electrical steel sheets according to one embodiment of the present invention contains a silane compound represented by Chemical Formula 1 based on the solid content. Specifically, it contains 30 to 75 parts by weight per 100 parts by weight of the total amount of the silane compound and metal hydroxide. The silane compound represented by Chemical Formula 1 contains a silicon element and a carbonyl group within the compound, and has excellent heat resistance. Furthermore, the carbonyl group has excellent reactivity with metal hydroxide, and plays an important role in forming a silane compound-metal hydroxide complex to dramatically improve surface quality.

具体的にはシラン化合物は下記化学式2で表される。
[化学式2]

Figure 0007465380000010
(化学式2において、RおよびRはそれぞれ独立して、水素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~4の整数であり、nは4-mである。) Specifically, the silane compound is represented by the following chemical formula 2.
[Chemical Formula 2]
Figure 0007465380000010
(In Chemical Formula 2, R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L 1 is a direct bond or a divalent linking group; m is an integer of 1 to 4; and n is 4-m.)

具体的には、化学式1および化学式2において、RおよびRは水素またはアルキル基である。より具体的にはRおよびRはメチル基またはエチル基である。具体的には、化学式1において、Lはアルキレン基、-O-および-CO-から選択される1種以上の2価の連結基である。より具体的には化学式1において、Lは-L-O-で表され、Lは直接結合またはアルキレン基、-O-および-CO-から選択される1種以上の2価の連結基である。 Specifically, in Chemical Formula 1 and Chemical Formula 2, R 1 and R 2 are hydrogen or an alkyl group. More specifically, R 1 and R 2 are a methyl group or an ethyl group. Specifically, in Chemical Formula 1, L is one or more divalent linking groups selected from an alkylene group, -O-, and -CO-. More specifically, in Chemical Formula 1, L is represented by -L 1 -O-, and L 1 is a direct bond or one or more divalent linking groups selected from an alkylene group, -O-, and -CO-.

シラン化合物は、トリアセトキシメチルシラン(Triacetoxy(methyl)silane)、トリアセトキシビニルシラン(Triacetoxy(vinyl)silane)、ジメチルジメタクロイルオキシ-1-エトキシシラン(Dimethyl-di(methacroyloxy-1-ethoxy)silane)および3-(トリメトキシシリル)プロピルメタクリレート(3-(trimethoxysilyl)propylmethacrylate)のうちの1種以上を含む。 The silane compound includes one or more of triacetoxymethylsilane (Triacetoxy(methyl)silane), triacetoxyvinylsilane (Triacetoxy(vinyl)silane), dimethyldi(methacryloyloxy-1-ethoxy)silane, and 3-(trimethoxysilyl)propylmethacrylate.

シラン化合物が過度に少なく含まれると、耐熱性が低下して応力除去焼鈍後の鉄損が劣る。シラン化合物が過度に多く含まれると、相対的に金属水酸化物が少なくなり、被膜が剥離される。したがって、前述した範囲にシラン化合物を含み得る。より具体的にはシラン化合物はシラン化合物および水酸化金属の合量100重量部に対して40~55重量部を含む。 If the amount of silane compound is too small, the heat resistance decreases and the iron loss after stress relief annealing becomes poor. If the amount of silane compound is too large, the amount of metal hydroxide becomes relatively small and the coating peels off. Therefore, the amount of silane compound may be within the above-mentioned range. More specifically, the amount of silane compound is 40 to 55 parts by weight per 100 parts by weight of the total amount of silane compound and metal hydroxide.

本発明の一実施例による電磁鋼板用絶縁被膜組成物は水酸化金属を含む。具体的にはシラン化合物および水酸化金属の合量100重量部に対して水酸化金属を25~70重量部を含む。水酸化金属は、溶媒によく分散する特徴があり、シラン化合物の官能基と化学反応により溶媒によく分散するように表面性質を疎水性から親水性に変化させることを助ける役割をする。このような水酸化金属は、電磁鋼板の表面に均一に塗布されるので、絶縁被膜の応力除去焼鈍時の耐熱性と耐食性を画期的に改善することに大きく役立つ。 An insulating coating composition for electrical steel sheets according to one embodiment of the present invention contains metal hydroxide. Specifically, the composition contains 25 to 70 parts by weight of metal hydroxide for every 100 parts by weight of the total of the silane compound and metal hydroxide. Metal hydroxide is characterized by its good dispersibility in solvents, and helps change the surface properties from hydrophobic to hydrophilic so that it disperses well in solvents through a chemical reaction with the functional groups of the silane compound. Such metal hydroxide is uniformly applied to the surface of the electrical steel sheet, which is of great help in dramatically improving the heat resistance and corrosion resistance of the insulating coating during stress relief annealing.

水酸化金属は、水酸基(-OH)を含む金属であれば制限なく使用することができる。具体的には水酸化金属は、Ni(OH)、Co(OH)、Cu(OH)、Sr(OH)、Ba(OH)、Pd(OH)、In(OH)、(CHCOCr(OH)、Bi(OH)およびSn(OH)のうちの1種以上を含み得る。より具体的にはCo(OH)および(CHCOCr(OH)のうちの1種以上を含む。 The metal hydroxide can be any metal containing a hydroxyl group (-OH) without any restrictions. Specifically, the metal hydroxide may include one or more of Ni(OH) 2 , Co(OH) 2 , Cu(OH) 2 , Sr(OH) 2 , Ba(OH) 2 , Pd(OH) 2 , In(OH) 3 , ( CH3CO2 ) 7Cr3 ( OH) 2 , Bi(OH) 3 , and Sn (OH) 2 . More specifically, the metal hydroxide includes one or more of Co(OH) 2 and ( CH3CO2 ) 7Cr3 (OH) 2 .

水酸化金属を過度に少なく含む場合、シラン化合物の分散に問題が発生して均一な塗布が難しい。水酸化金属を過度に多く含む場合、シラン化合物が相対的に少なくなり、応力除去焼鈍時の耐熱性と耐食性の改善が不充分である。より具体的にはシラン化合物および水酸化金属の合量100重量部に対して水酸化金属を45~60重量部を含む。 If the metal hydroxide content is too low, problems occur with dispersing the silane compound, making it difficult to apply uniformly. If the metal hydroxide content is too high, the amount of silane compound becomes relatively small, and the improvement in heat resistance and corrosion resistance during stress relief annealing is insufficient. More specifically, the metal hydroxide content is 45 to 60 parts by weight per 100 parts by weight of the combined amount of silane compound and metal hydroxide.

本発明の一実施例による電磁鋼板用絶縁被膜組成物は、シラン化合物および水酸化金属の他に金属窒化物をさらに含み得る。金属窒化物を適正量さらに含む場合、形成される絶縁被膜の絶縁特性および熱伝導特性がより向上することができる。金属窒化物をさらに含む場合、固形分を基準として、金属窒化物0.1~40重量%、シラン化合物25~75重量%および水酸化金属0.5~60重量%を含む。固形分とは、絶縁被膜組成物内の溶媒など揮発性分を除いた固形部分を100重量%基準としたものを意味する。 The insulating coating composition for electrical steel sheets according to one embodiment of the present invention may further contain a metal nitride in addition to a silane compound and a metal hydroxide. When an appropriate amount of metal nitride is further contained, the insulating properties and thermal conductivity properties of the insulating coating formed can be further improved. When a metal nitride is further contained, the composition contains 0.1 to 40 wt % of metal nitride, 25 to 75 wt % of silane compound, and 0.5 to 60 wt % of metal hydroxide, based on the solid content. The solid content means the solid portion of the insulating coating composition excluding volatile components such as solvents, based on 100 wt %.

金属窒化物が過度に少なく添加されると、絶縁特性および熱伝導特性の向上効果が不充分である。金属窒化物が過度に多く含まれると、相対的にシラン化合物および水酸化金属の量が少なくなり、応力除去焼鈍時の耐熱性と耐食性の改善が不充分である。より具体的には固形分を基準として、金属窒化物1~25重量%、シラン化合物35~65重量%および水酸化金属15~50重量%を含む。金属窒化物は、BN、AlN、Si、Mg、Ca、Sr、BaおよびGeのうちの1種以上を含む。金属窒化物の平均粒径は0.05~20μmである。金属窒化物の粒径が適切である場合のみ、分散性および塗布性が容易である。 If the amount of metal nitride is too small, the effect of improving the insulating properties and the thermal conductivity properties is insufficient. If the amount of metal nitride is too large, the amount of silane compound and metal hydroxide is relatively small, and the improvement of heat resistance and corrosion resistance during stress relief annealing is insufficient. More specifically, based on the solid content, the composition contains 1 to 25 wt% of metal nitride, 35 to 65 wt% of silane compound, and 15 to 50 wt% of metal hydroxide. The metal nitride includes one or more of BN, AlN, Si 3 N 4 , Mg 3 N 2 , Ca 3 N 2 , Sr 3 N 2 , Ba 3 N 2 and Ge 3 N 4. The average particle size of the metal nitride is 0.05 to 20 μm. Only when the particle size of the metal nitride is appropriate, dispersibility and coating property are easy.

本発明の一実施例による電磁鋼板用絶縁被膜組成物は、シラン化合物および金属窒化物の他にエチレングリコール(Ethylene golycol)、プロピレングリコール(Propylene glycol)、グリセリン(Glycerine)、ブチルカルビトール(Butyl carbitol)のうちの1種以上をさらに含む。前述した添加剤をさらに含むことによって、表面光沢に優れ、粗さが非常に美麗な絶縁被膜を形成することができる。前述した添加剤はシラン化合物および水酸化金属の合量100重量部に対して、1~15重量部さらに含まれ得る。添加剤が過度に少なく含まれると、前述した向上効果が不充分である。添加剤がさらに含まれても追加向上効果はなく、かえって分散性が劣る。より具体的には添加剤はシラン化合物および水酸化金属の合量100重量部に対して、3~10重量部を含む。 The insulating coating composition for electrical steel sheets according to one embodiment of the present invention further contains at least one of ethylene glycol, propylene glycol, glycerine, and butyl carbitol in addition to the silane compound and metal nitride. By further containing the above-mentioned additives, an insulating coating having excellent surface gloss and very beautiful roughness can be formed. The above-mentioned additives can be further contained in an amount of 1 to 15 parts by weight per 100 parts by weight of the silane compound and metal hydroxide. If the additive is contained in an excessively small amount, the above-mentioned improving effect is insufficient. Even if the additive is further contained, there is no additional improving effect and the dispersibility is rather deteriorated. More specifically, the additive is contained in an amount of 3 to 10 parts by weight per 100 parts by weight of the silane compound and metal hydroxide.

絶縁被膜組成物は固形物の均一な分散および容易な塗布のために溶媒をさらに含む。溶媒としては水、アルコールなどを使用し得、シラン化合物および水酸化金属の合量100重量部に対して、300~1000重量部を含む。このように絶縁被膜組成物はスラリー形態である。 The insulating coating composition further contains a solvent for uniform dispersion of solids and easy application. The solvent may be water, alcohol, etc., and contains 300 to 1000 parts by weight per 100 parts by weight of the silane compound and metal hydroxide combined. Thus, the insulating coating composition is in the form of a slurry.

本発明の一実施例による電磁鋼板用絶縁被膜組成物は、下記化学式1で表されるシラン化合物シラン化合物;および無水クロム酸、クロム酸塩および重クロム酸塩から選択される1種以上のクロム酸化合物;を含む。
[化学式1]

Figure 0007465380000011
(化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。) An insulating coating composition for electrical steel sheet according to an embodiment of the present invention includes a silane compound represented by the following Chemical Formula 1; and one or more chromate compounds selected from chromic anhydride, chromate salts, and dichromate salts.
[Chemical Formula 1]
Figure 0007465380000011
(In Chemical Formula 1, R1 is hydrogen, a halogen element, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group, L is a direct bond or a divalent linking group, m is an integer of 1 to 3, and n is 4-m.)

本発明の一実施例による絶縁被膜組成物は応力除去焼鈍時の耐熱性と耐食性を画期的に改善するために特有の化学構造を有するシラン化合物を含む。また、シラン化合物を単独で使用する場合、応力除去焼鈍過程で被膜が剥離される問題および電磁鋼板の表面に均一に塗布することに困難性が存在する。これを改善するためにクロム酸化合物をまた含む。 The insulating coating composition according to one embodiment of the present invention contains a silane compound with a unique chemical structure to dramatically improve heat resistance and corrosion resistance during stress relief annealing. Furthermore, when a silane compound is used alone, there are problems with the coating peeling off during the stress relief annealing process and difficulties in applying it uniformly to the surface of the electrical steel sheet. To improve this, a chromate compound is also included.

以下では本発明の一実施例による電磁鋼板用絶縁被膜組成物を各成分別に詳細に説明する。 Below, the insulating coating composition for electrical steel sheets according to one embodiment of the present invention will be described in detail for each component.

先に、本発明の一実施例による電磁鋼板用絶縁被膜組成物は化学式1で表されるシラン化合物を含む。化学式1で表されるシラン化合物は化合物内にSi元素とF元素を含有しており耐熱性がきわめて優れる。特にF元素は絶縁被膜内部に空気中の水分が浸透する化学反応を抑制する効果があり、耐薬品性、絶縁性および耐食性に卓越して電磁鋼板の表面品質を画期的に改善することに重要な役割をする。シラン化合物およびクロム酸化合物の合量100重量部に対して、シラン化合物を10~80重量部を含む。シラン化合物が過度に少なく含まれると、形成される絶縁被膜内のSiおよびF元素の含有量が少なくなり、耐熱性が低下して応力除去焼鈍後の鉄損が劣位になる。溶媒との混用性が低下して均一な絶縁被膜の形成が困難な問題が発生する。したがって、前述した範囲でシラン化合物を含み得る。より具体的にはシラン化合物は40~70重量部を含む。 First, the insulating coating composition for electrical steel sheets according to one embodiment of the present invention contains a silane compound represented by Chemical Formula 1. The silane compound represented by Chemical Formula 1 contains Si and F elements in the compound, and has excellent heat resistance. In particular, the F element has the effect of suppressing the chemical reaction in which moisture in the air penetrates into the insulating coating, and plays an important role in dramatically improving the surface quality of electrical steel sheets by providing excellent chemical resistance, insulation, and corrosion resistance. The silane compound is contained in an amount of 10 to 80 parts by weight per 100 parts by weight of the total amount of the silane compound and the chromate compound. If the silane compound is contained in an excessively small amount, the content of Si and F elements in the insulating coating formed will be low, the heat resistance will decrease, and the iron loss after stress relief annealing will be inferior. The miscibility with the solvent will decrease, making it difficult to form a uniform insulating coating. Therefore, the silane compound may be contained in the above-mentioned range. More specifically, the silane compound is contained in an amount of 40 to 70 parts by weight.

化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基またはアルコキシ基である。mが2以上である場合、複数のRは互いに同じであるかまたは異なってもよい。化学式1において、Lは直接結合、アルキレン基および-CF-のうちの1種以上である。nが2以上である場合、複数のLは互いに同じであるかまたは異なってもよい。 In Chemical Formula 1, R 1 is hydrogen, a halogen atom, a linear or branched alkyl group, or an alkoxy group. When m is 2 or more, the multiple R 1s may be the same or different from each other. In Chemical Formula 1, L is one or more of a direct bond, an alkylene group, and -CF 2 -. When n is 2 or more, the multiple Ls may be the same or different from each other.

具体的にはシラン化合物は下記化学式2で表される。
[化学式2]

Figure 0007465380000012
(化学式2において、R~Rはそれぞれ独立して水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。) Specifically, the silane compound is represented by the following chemical formula 2.
[Chemical Formula 2]
Figure 0007465380000012
(In Chemical Formula 2, R 1 to R 3 are each independently a hydrogen atom, a halogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L 1 is a direct bond or a divalent linking group; m is an integer of 1 to 3; and n is 4-m.)

具体的には、化学式2において、R、m、nは化学式1の説明と同様である。Lは直接結合または2価の連結基である。より具体的にはLは直接結合、アルキレン基および-CF-のうちの1種以上である。RおよびRはそれぞれ独立して、水素またはハロゲン元素である。シラン化合物は、Triethyl(trifluoromethyl)silane(トリエチル(トリフルオロメチル)シラン)、Trimethoxy(trifluoropropyl)silane(トリメトキシ(トリフルオロプロピル)シラン)、Dimethoxy-methyl(trifluoropropyl)silane(ジメトキシ-メチル(トリフルオロプロピル)シラン)およびPerfluorooctyl-triethoxysilane(パーフルオロオクチル-トリエトキシシラン)のうちの1種以上を含む。 Specifically, in Chemical Formula 2, R 1 , m, and n are the same as those in Chemical Formula 1. L 1 is a direct bond or a divalent linking group. More specifically, L 1 is one or more of a direct bond, an alkylene group, and -CF 2 -. R 2 and R 3 are each independently a hydrogen or a halogen element. The silane compound includes one or more of Triethyl(trifluoromethyl)silane, Trimethoxy(trifluoropropyl)silane, Dimethoxy-methyl(trifluoropropyl)silane, and Perfluorooctyl-triethoxysilane.

より具体的には、シラン化合物は、Triethyl(trifluoromethyl)silane、Trimethoxy (3,3,3-trifluoropropyl)silane、Dimethoxy-methyl(3,3,3-trifluoropropyl)silaneおよび1H,1H,2H,2H-Perfluorooctyl-triethoxysilaneのうちの1種以上を含む。 More specifically, the silane compound includes one or more of triethyl(trifluoromethyl)silane, trimethoxy(3,3,3-trifluoropropyl)silane, dimethoxy-methyl(3,3,3-trifluoropropyl)silane, and 1H,1H,2H,2H-perfluorooctyl-triethoxysilane.

本発明の一実施例による電磁鋼板用絶縁被膜組成物は、無水クロム酸、クロム酸塩および重クロム酸塩から選択される1種以上のクロム酸化合物を含む。クロム酸化合物はシラン化合物と化学的に反応して分散安定性を向上させて均一な被膜を形成する役割をする。また、クロム酸化合物は大量生産時に原価を低減する効果があり、絶縁コーティング工程で安定した操業が可能な長所がある。
クロム酸塩および重クロム酸塩としては、例えば、Na、K、Mg、Ca、Mn、Mo、Zn、Alなどの塩を利用することができる。
An insulating coating composition for electrical steel sheets according to an embodiment of the present invention includes at least one chromic acid compound selected from chromic anhydride, chromates, and dichromates. The chromic acid compound chemically reacts with the silane compound to improve dispersion stability and form a uniform coating. In addition, the chromate compound has the effect of reducing costs during mass production and is advantageous in that it allows stable operation in the insulating coating process.
As the chromate and dichromate, for example, salts of Na, K, Mg, Ca, Mn, Mo, Zn, Al, etc. can be used.

シラン化合物およびクロム酸化合物の合量100重量部に対して、クロム酸化合物を20~90重量部を含む。クロム酸化合物を過度に少なく含む場合、シラン化合物の分散に問題が発生して均一な塗布が難しい場合もある。クロム酸化合物を過度に多く含む場合、シラン化合物が相対的に少なくなり、応力除去焼鈍時の耐熱性と耐食性の改善が不充分である。より具体的にはクロム酸化合物は30~60重量部を含む。 The chromate compound is contained in an amount of 20 to 90 parts by weight per 100 parts by weight of the combined total of the silane compound and chromate compound. If the chromate compound is contained in an excessively small amount, problems may occur in dispersing the silane compound, making it difficult to apply the compound uniformly. If the chromate compound is contained in an excessively large amount, the amount of the silane compound will be relatively small, and the improvement in heat resistance and corrosion resistance during stress relief annealing will be insufficient. More specifically, the chromate compound is contained in an amount of 30 to 60 parts by weight.

本発明の一実施例による電磁鋼板用絶縁被膜組成物は、シラン化合物およびクロム酸化合物の他にセラミック粉末をさらに含む。セラミック粉末を適正量さらに含む場合、形成される絶縁被膜の絶縁特性がより向上することができる。セラミック粉末はシラン化合物およびクロム酸化合物の合量100重量部に対して、0.5~65重量部を含む。セラミック粉末が過度に少なく含まれると、絶縁特性向上効果が不充分である。セラミック粉末が過度に多く含まれると、相対的にシラン化合物およびクロム酸化合物の量が少なくなり、応力除去焼鈍時の耐熱性と耐食性の改善が不充分である。より具体的にはセラミック粉末はシラン化合物およびクロム酸化合物の合量100重量部に対して、5~30重量部を含む。 The insulating coating composition for electrical steel sheets according to one embodiment of the present invention further contains ceramic powder in addition to the silane compound and chromate compound. When the composition further contains an appropriate amount of ceramic powder, the insulating properties of the insulating coating formed can be further improved. The ceramic powder is contained in an amount of 0.5 to 65 parts by weight per 100 parts by weight of the total amount of the silane compound and chromate compound. If the amount of ceramic powder is too small, the effect of improving the insulating properties is insufficient. If the amount of ceramic powder is too large, the amount of the silane compound and chromate compound is relatively small, and the improvement of heat resistance and corrosion resistance during stress relief annealing is insufficient. More specifically, the ceramic powder is contained in an amount of 5 to 30 parts by weight per 100 parts by weight of the total amount of the silane compound and chromate compound.

セラミック粉末は、MgO、MnO、Al、SiO、TiO、ZrO、AlSi13、Al・TiO、Y、9Al・B、BN、CrN、BaTiO、SiCおよびTiCのうちの1種以上を含む。より具体的には、セラミック粉末は、MgO、CaO、Al、SiO、TiO、ZrO、Al・TiO、Y、9Al・B、BN、CrN、BaTiO、SiCおよびTiCのうちの1種以上を含む。セラミック粉末の平均粒径は0.05~20μmであり得る。セラミック粉末の粒径が適切である場合のみ、分散性および塗布性が容易である。 The ceramic powder includes one or more of MgO, MnO, Al2O3, SiO2, TiO2, ZrO2, Al6Si2O13, Al2O3.TiO2, Y2O3 , 9Al2O3.B2O3 , BN , CrN , BaTiO3 , SiC, and TiC . More specifically, the ceramic powder includes one or more of MgO, CaO , Al2O3 , SiO2 , TiO2 , ZrO2 , Al2O3.TiO2 , Y2O3 , 9Al2O3.B2O3 , BN , CrN , BaTiO3 , SiC, and TiC. The average particle size of the ceramic powder can be 0.05-20 μm. Only when the particle size of the ceramic powder is appropriate, it can be easily dispersed and applied.

本発明の一実施例による電磁鋼板用絶縁被膜組成物は、シラン化合物およびクロム酸化合物の合量100重量部に対して、アクリル樹脂、スチレン樹脂、酢酸ビニル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、フェノール樹脂、アルキド樹脂およびエポキシ樹脂のうちの1種以上の高分子樹脂を0.5~30重量部さらに含む。前述した高分子樹脂を適正量さらに添加することによって、表面光沢に優れ、粗さが非常に美麗な電磁鋼板を製造することができる。 The insulating coating composition for electrical steel sheets according to one embodiment of the present invention further contains 0.5 to 30 parts by weight of one or more polymer resins selected from acrylic resin, styrene resin, vinyl acetate resin, polyester resin, urethane resin, polyethylene resin, polypropylene resin, polyamide resin, polycarbonate resin, phenol resin, alkyd resin and epoxy resin, per 100 parts by weight of the total amount of the silane compound and the chromate compound. By further adding an appropriate amount of the aforementioned polymer resin, it is possible to manufacture an electrical steel sheet with excellent surface gloss and very beautiful roughness.

本発明の一実施例による電磁鋼板用絶縁被膜組成物は、シラン化合物およびクロム酸化合物の合量100重量部に対して、エチレングリコール(Ethylene golycol)、プロピレングリコール(Propylene glycol)、グリセリン(Glycerine)、ブチルカルビトール(Butyl carbitol)のうちの1種以上を1~15重量部さらに含む。前述した添加剤をさらに含むことによって、表面光沢に優れ、粗さが非常に美麗な絶縁被膜を形成することができる。添加剤が過度に少なく含まれると、前述した向上効果が不充分である。添加剤がさらに含まれても追加向上効果はなく、かえって分散性が劣る。より具体的には添加剤はシラン化合物およびクロム酸化合物の合量100重量部に対して、3~10重量部を含む。 The insulating coating composition for electrical steel sheets according to one embodiment of the present invention further contains 1 to 15 parts by weight of one or more of ethylene glycol, propylene glycol, glycerine, and butyl carbitol per 100 parts by weight of the silane compound and the chromate compound. By further containing the above-mentioned additives, an insulating coating having excellent surface gloss and very beautiful roughness can be formed. If the additive is contained in an excessively small amount, the above-mentioned improving effect is insufficient. Even if an additive is further contained, there is no additional improving effect and dispersibility is rather deteriorated. More specifically, the additive is contained in an amount of 3 to 10 parts by weight per 100 parts by weight of the silane compound and the chromate compound.

絶縁被膜組成物は固形物の均一な分散および容易な塗布のために溶媒をさらに含み得る。溶媒としては水、アルコールなどを使用し、シラン化合物およびクロム酸化合物の合量100重量部に対して、300~1000重量部を含む。このように絶縁被膜組成物はスラリー形態である。 The insulating coating composition may further contain a solvent for uniform dispersion of solids and easy application. The solvent may be water, alcohol, etc., and contains 300 to 1000 parts by weight per 100 parts by weight of the silane compound and chromate compound combined. In this way, the insulating coating composition is in the form of a slurry.

電磁鋼板
本発明の一実施例による電磁鋼板100は、電磁鋼板基材10および電磁鋼板基材10の一面または両面に位置した絶縁被膜20を含む。図1は本発明の一実施例による電磁鋼板の概略的な側断面図を示す。図1では電磁鋼板基材10の上面に絶縁被膜20が形成された場合を示す。
An electromagnetic steel sheet 100 according to an embodiment of the present invention includes an electromagnetic steel sheet substrate 10 and an insulating coating 20 located on one or both sides of the electromagnetic steel sheet substrate 10. Figure 1 shows a schematic side cross-sectional view of an electromagnetic steel sheet according to an embodiment of the present invention. Figure 1 shows a case where an insulating coating 20 is formed on the upper surface of the electromagnetic steel sheet substrate 10.

絶縁被膜20は下記化学式1で表されるシラン化合物および水酸化金属を含む。
[化学式1]

Figure 0007465380000013
(化学式1において、RおよびRはそれぞれ独立して、水素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~4の整数であり、nは4-mである。) The insulating coating 20 contains a silane compound represented by the following chemical formula 1 and a metal hydroxide.
[Chemical Formula 1]
Figure 0007465380000013
(In Chemical Formula 1, R 1 and R 2 are each independently a hydrogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L is a direct bond or a divalent linking group; m is an integer of 1 to 4; and n is 4-m.)

本発明の一実施例による電磁鋼板100の絶縁被膜20は、応力除去焼鈍時の耐熱性と耐食性を画期的に改善し、また、熱伝導率を改善するために特有の化学構造を有するシラン化合物を含む。また、シラン化合物を単独で使用する場合、応力除去焼鈍過程で被膜が剥離される問題および電磁鋼板の表面に均一に塗布することに困難性が存在する。これを改善するために水酸化金属をまた含む。 The insulating coating 20 of the electrical steel sheet 100 according to one embodiment of the present invention contains a silane compound with a unique chemical structure to dramatically improve heat resistance and corrosion resistance during stress relief annealing and also to improve thermal conductivity. Furthermore, when a silane compound is used alone, there are problems with the coating peeling off during the stress relief annealing process and difficulties in applying it uniformly to the surface of the electrical steel sheet. To improve this, a metal hydroxide is also included.

絶縁被膜20の成分に対する内容は前述した絶縁被膜組成物と関連して具体的に説明したので、重複する説明は省略する。絶縁被膜20の形成過程で一部のシラン化合物の化学構造が変形されるが、多くのシラン化合物はその化学構造を維持する。また、絶縁被膜20の形成過程でシラン化合物と水酸化金属が反応して化合物を形成することができ、この場合、化合物内のシラン化合物の比率および水酸化金属の含有量比率を計算し、それぞれシラン化合物および水酸化金属の重量で計算する。絶縁被膜20の形成過程で溶媒などの揮発成分は除去されるので、絶縁被膜20内の成分は絶縁被膜組成物内の固形分成分と実質的に同様である。 The components of the insulating coating 20 have been described in detail in relation to the insulating coating composition described above, so a duplicated description will be omitted. During the process of forming the insulating coating 20, the chemical structure of some silane compounds is changed, but many silane compounds maintain their chemical structure. In addition, during the process of forming the insulating coating 20, a silane compound and a metal hydroxide may react to form a compound. In this case, the ratio of the silane compound and the content ratio of the metal hydroxide in the compound are calculated, and calculated by the weight of the silane compound and the metal hydroxide, respectively. During the process of forming the insulating coating 20, volatile components such as the solvent are removed, so the components in the insulating coating 20 are substantially similar to the solid components in the insulating coating composition.

絶縁被膜20はSiを0.1~50重量%含む。この時、Siはシラン化合物内のSi、金属窒化物としてSiを使用する場合、金属窒化物内のSi、電磁鋼板基材10から拡散されるSiである。Siが適正量含まれて絶縁被膜20の絶縁特性を確保することができる。 The insulating coating 20 contains 0.1 to 50 wt % Si. In this case, the Si is Si in the silane compound, Si in the metal nitride when Si3N4 is used as the metal nitride, and Si diffused from the electrical steel sheet substrate 10. The appropriate amount of Si is contained, so that the insulating properties of the insulating coating 20 can be ensured.

絶縁被膜20はSiの他にもFe、C、Oなど絶縁被膜組成物および電磁鋼板基材10から由来する元素を含む。絶縁被膜20の厚さは、0.1~10μmである。絶縁被膜20の厚さが過度に薄いと、耐熱性が低下して応力除去焼鈍後の鉄損が劣る問題が生じる。絶縁被膜20の厚さが過度に厚いと、占積率が低下してモータ特性が劣る問題が生じる。したがって、絶縁被膜20の厚さを前述した範囲に調節することができる。より具体的には絶縁被膜20の厚さは0.2~5μmである。 In addition to Si, the insulating coating 20 contains elements such as Fe, C, and O derived from the insulating coating composition and the electromagnetic steel sheet substrate 10. The thickness of the insulating coating 20 is 0.1 to 10 μm. If the insulating coating 20 is too thin, the heat resistance decreases, resulting in poor core loss after stress relief annealing. If the insulating coating 20 is too thick, the space factor decreases, resulting in poor motor characteristics. Therefore, the thickness of the insulating coating 20 can be adjusted to the above-mentioned range. More specifically, the thickness of the insulating coating 20 is 0.2 to 5 μm.

電磁鋼板基材10は、無方向性電磁鋼板または方向性電磁鋼板は制限なく使用できる。具体的には無方向性電磁鋼板を使用することができる。本発明の一実施例で絶縁被膜20の成分によって絶縁特性が発生し、電磁鋼板の合金成分とは関係がない。以下では一例として、電磁鋼板の合金成分について説明する。 For the electromagnetic steel sheet substrate 10, non-oriented electromagnetic steel sheet or oriented electromagnetic steel sheet can be used without restrictions. Specifically, non-oriented electromagnetic steel sheet can be used. In one embodiment of the present invention, the insulating properties are generated by the components of the insulating coating 20 and are unrelated to the alloy components of the electromagnetic steel sheet. The alloy components of the electromagnetic steel sheet will be described below as an example.

電磁鋼板は、C:0.01重量%以下、Si:6.0重量%以下、P:0.5重量%以下、S:0.005重量%以下、Mn:0.1~1.0重量%、Al:0.40~2.0重量%、N:0.005重量%以下、Ti:0.005重量%以下およびSb、Sn、Niまたはこれらの組み合わせ:0.01~0.15重量%を含み、残部としてFeおよび不可避不純物を含む。
以下では各合金成分別に具体的に説明する。
The electrical steel sheet contains C: 0.01% by weight or less, Si: 6.0% by weight or less, P: 0.5% by weight or less, S: 0.005% by weight or less, Mn: 0.1 to 1.0% by weight, Al: 0.40 to 2.0% by weight, N: 0.005% by weight or less, Ti: 0.005% by weight or less, and Sb, Sn, Ni, or a combination thereof: 0.01 to 0.15% by weight, with the balance being Fe and unavoidable impurities.
Each alloy component will be described in detail below.

以下では無方向性電磁鋼板基材10成分の限定理由について説明する。 The reasons for limiting the components of the non-oriented electrical steel sheet substrate 10 are explained below.

C:0.01重量%以下
炭素(C)は本発明による実施例で電磁鋼板の磁気的特性向上に大いに役立たない成分であるため、できるだけ除去することが好ましい。Cは最終製品で磁気時効を起こして使用中に磁気的特性を低下させるので、0.01重量%以下で含有し、Cの含有量が低いほど磁気的特性に好ましいので、最終製品では0.005重量%以下に制限することがより好ましい。
C: 0.01 wt% or less Carbon (C) is an ingredient that does not contribute much to improving the magnetic properties of the electrical steel sheet in the embodiment of the present invention, so it is preferable to remove it as much as possible. Since C causes magnetic aging in the final product and reduces the magnetic properties during use, it is contained at 0.01 wt% or less, and since the lower the C content, the better the magnetic properties, it is more preferable to limit it to 0.005 wt% or less in the final product.

Si:6.0重量%以下
シリコン(Si)は鋼の比抵抗を増加させて鉄損のうち渦電流損失を減少させる成分として、Siの含有量が過度に多い場合には脆性が大きくなり、冷間圧延が難しくなる問題が発生し得る。したがって、6.0重量%以下に制限することが好ましい。より具体的にはSiは0.1~4.0重量%含まれる。
Si: 6.0 wt% or less Silicon (Si) is a component that increases the resistivity of steel and reduces eddy current loss among core losses. If the Si content is too high, it can cause problems such as increased brittleness and difficulty in cold rolling. Therefore, it is preferable to limit the Si content to 6.0 wt% or less. More specifically, the Si content is 0.1 to 4.0 wt%.

P:0.5重量%以下
リン(P)は比抵抗を増加させ、集合組織を改善して磁性を向上させるために添加する。過多に添加された場合、冷間圧延性が悪化するので、0.5重量%以下に制限することが好ましい。
P: 0.5% by weight or less Phosphorus (P) is added to increase resistivity, improve texture, and enhance magnetic properties. If added in excess, cold rolling properties deteriorate, so it is preferable to limit the content to 0.5% by weight or less.

S:0.005重量%以下
硫黄(S)は微細な析出物であるMnSおよびCuSを形成して結晶粒成長を抑制して磁気特性を悪化させるため、最大限低く管理することが好ましいので、その含有量を0.005重量%以下に制限する。
S: 0.005% by weight or less Sulfur (S) forms fine precipitates of MnS and CuS, which inhibit crystal grain growth and deteriorate magnetic properties, so it is preferable to control the S content as low as possible. Therefore, the S content is limited to 0.005% by weight or less.

Mn:0.1~1.0重量%
マンガン(Mn)が0.1重量%未満に存在すると微細なMnS析出物が形成されて結晶粒成長を抑制させることにより磁性を悪化させる。したがって、0.1重量%以上存在する場合、粗大なMnSが形成され、また、S成分がより微細な析出物であるCuSとして析出されることを防ぐことができる。しかし、Mnが増加する場合は磁性が劣化するので1.0重量%以下に添加する。
Mn: 0.1 to 1.0% by weight
When manganese (Mn) is present at less than 0.1 wt%, fine MnS precipitates are formed, which inhibits grain growth and deteriorates magnetic properties. Therefore, when present at 0.1 wt% or more, coarse MnS is formed, and the S component can be prevented from precipitating as finer precipitates, CuS. However, when Mn is increased, magnetic properties deteriorate, so it is added to 1.0 wt% or less.

Al:0.40~2.0重量%
Alは比抵抗を増加させて渦流損失を低くすることに有効な成分である。0.40重量%未満の場合、AlNが微細に析出して磁性が劣位であり、また、2.0重量%を超えた場合、加工性が劣化するので、2.0重量%以下に制限することが好ましい。
Al: 0.40 to 2.0% by weight
Al is an effective component for increasing resistivity and reducing eddy current loss. If the content is less than 0.40% by weight, AlN precipitates finely, resulting in inferior magnetic properties, and if the content exceeds 2.0% by weight, workability deteriorates, so it is preferable to limit the content to 2.0% by weight or less.

N:0.005重量%以下
Nは母材内部に微細で長いAlN析出物を形成して結晶粒成長を抑制するので少なく含有させ、0.005重量%以下に制限することが好ましい。
N: 0.005% by weight or less N forms fine, long AlN precipitates inside the base material and inhibits grain growth, so its content should be small, preferably limited to 0.005% by weight or less.

Ti:0.005重量%以下
Tiは微細なTiN、TiCの析出物を形成させて結晶粒成長を抑制し、0.005重量%を超えて添加される場合、多くの微細な析出物が発生して集合組織を悪くして磁性を悪化させる。
Ti: 0.005% by weight or less Ti forms fine precipitates of TiN and TiC to inhibit grain growth, and if added in an amount exceeding 0.005% by weight, many fine precipitates are generated, which deteriorates the texture and deteriorates the magnetic properties.

Sb、Sn、Niまたはこれらの組み合わせ:0.01~0.15重量%
Sb、Sn、またはNiは表面析出元素として鋼板表層部に濃化して窒素の吸着を抑制し、結果的に結晶粒の成長を妨げず鉄損を低くする役割をし、Sb、Sn、またはNiを単独または複合添加した含有量が過度に少ないとその効果が劣る問題が生じる。Sb、Sn、またはNiを単独または複合添加した含有量が過度に多いと結晶粒界偏析が激しくなり鋼板の脆性が大きくなり、圧延時板破断が発生する。Sb、Sn、Niを2種以上複合添加する時、その合量が0.01~0.15重量%である。より具体的にはSbを0.01~0.05重量%、Snを0.01~0.12重量%、Niを0.01~0.06重量%含む。
Sb, Sn, Ni or a combination thereof: 0.01 to 0.15% by weight
Sb, Sn, or Ni is a surface-precipitating element that is concentrated in the surface layer of the steel sheet to suppress the adsorption of nitrogen, and as a result, it plays a role in lowering iron loss without hindering the growth of crystal grains. If the content of Sb, Sn, or Ni added alone or in combination is too small, the effect is inferior. If the content of Sb, Sn, or Ni added alone or in combination is too high, grain boundary segregation becomes severe, the brittleness of the steel sheet increases, and sheet breakage occurs during rolling. When two or more types of Sb, Sn, and Ni are added in combination, the total amount is 0.01 to 0.15 wt%. More specifically, Sb is 0.01 to 0.05 wt%, Sn is 0.01 to 0.12 wt%, and Ni is 0.01 to 0.06 wt%.

本発明の一実施例による電磁鋼板は前述したように、絶縁被膜の形成によって熱伝導度に優れる。具体的には下記一般式1を満足する。
[一般式1]
20≦TC≦200W/mK
(前記一般式1において、TCは600x400mmの試験片を230℃誘導加熱してPPMS(Physical Property Measurement System)で測定した熱伝導度値を示す。)
As described above, the electrical steel sheet according to the embodiment of the present invention has excellent thermal conductivity due to the formation of the insulating coating. Specifically, the following general formula 1 is satisfied.
[General Formula 1]
20≦TC≦200W/mK
(In the above formula 1, TC represents the thermal conductivity value measured by induction heating a 600 x 400 mm test piece at 230°C using a PPMS (Physical Property Measurement System).)

本発明の一実施例による電磁鋼板100の絶縁被膜20は、応力除去焼鈍時の耐熱性と耐食性を画期的に改善するために特有の化学構造を有するシラン化合物を含む。また、シラン化合物を単独で使用する場合、応力除去焼鈍過程で被膜が剥離される問題および電磁鋼板の表面に均一に塗布することに困難性が存在する。これを改善するためにクロム酸化合物をまた含む。 The insulating coating 20 of the electrical steel sheet 100 according to one embodiment of the present invention contains a silane compound having a unique chemical structure to dramatically improve heat resistance and corrosion resistance during stress relief annealing. Furthermore, when a silane compound is used alone, there are problems with the coating peeling off during the stress relief annealing process and difficulties in applying it uniformly to the surface of the electrical steel sheet. To improve this, a chromate compound is also included.

絶縁被膜20の成分に係る内容は前述した絶縁被膜組成物と関連して具体的に説明したので、重複する説明は省略する。絶縁被膜20の形成過程で一部シラン化合物の化学構造が変形されるが、多くのシラン化合物はその化学構造を維持する。また、絶縁被膜20の形成過程でシラン化合物とクロム酸化合物が反応して化合物を形成することができ、この場合、化合物内のシラン化合物の比率およびクロム酸化合物の含有量比率を計算し、それぞれシラン化合物およびクロム酸化合物の重量で計算する。絶縁被膜20の形成過程で溶媒などの揮発成分は除去されるので、絶縁被膜20内の成分は絶縁被膜組成物内の固形分成分と実質的に同一である。固形分とは、絶縁被膜組成物内の溶媒など揮発性分を除いた固形部分を100重量%基準としたものを意味する。 The components of the insulating coating 20 have been specifically described in relation to the insulating coating composition described above, so a duplicated description will be omitted. During the process of forming the insulating coating 20, the chemical structure of some silane compounds is changed, but most silane compounds maintain their chemical structure. In addition, during the process of forming the insulating coating 20, a silane compound and a chromate compound may react to form a compound. In this case, the ratio of the silane compound and the content ratio of the chromate compound in the compound are calculated and calculated by the weight of the silane compound and the chromate compound, respectively. During the process of forming the insulating coating 20, volatile components such as the solvent are removed, so the components in the insulating coating 20 are substantially the same as the solid components in the insulating coating composition. The solid content refers to the solid portion of the insulating coating composition excluding volatile components such as the solvent, based on 100% by weight.

絶縁被膜20はSiを0.1~50重量%およびFを0.01~25重量%含む。この時、Siはシラン化合物内のSi、セラミック粉末としてSiOを使用する場合、セラミック粉末内のSi、電磁鋼板基材10から拡散されるSiである。Siが適正量含まれて絶縁被膜20の絶縁特性を確保することができる。
また、Fはシラン化合物内のFから由来する。Fが適正量含まれ、絶縁被膜20の耐薬品性、絶縁性および耐食性を向上させることができる。絶縁被膜20はSi、Fの他にもCr、Fe、C、Oなど絶縁被膜組成物および電磁鋼板基材10から由来する元素を含む。
The insulating coating 20 contains 0.1 to 50 wt % Si and 0.01 to 25 wt % F. In this case, the Si is Si in the silane compound, Si in the ceramic powder when SiO2 is used as the ceramic powder, and Si diffused from the electrical steel sheet substrate 10. The appropriate amount of Si is contained, so that the insulating properties of the insulating coating 20 can be ensured.
Furthermore, F originates from F in the silane compound. The appropriate amount of F is contained, which can improve the chemical resistance, insulating properties, and corrosion resistance of the insulating coating 20. In addition to Si and F, the insulating coating 20 also contains elements such as Cr, Fe, C, and O that originate from the insulating coating composition and the electrical steel sheet substrate 10.

絶縁被膜20の厚さは0.1~10μmである。絶縁被膜20の厚さが過度に薄いと、耐熱性が低下して応力除去焼鈍後の鉄損が劣る問題が生じる。絶縁被膜20の厚さが過度に厚いと、占積率が低下してモータ特性が劣る問題が生じる。したがって、絶縁被膜20の厚さを前述した範囲に調節することができる。より具体的には絶縁被膜20の厚さは0.2~5μmである。 The thickness of the insulating coating 20 is 0.1 to 10 μm. If the thickness of the insulating coating 20 is too thin, the heat resistance decreases, resulting in poor core loss after stress relief annealing. If the thickness of the insulating coating 20 is too thick, the space factor decreases, resulting in poor motor characteristics. Therefore, the thickness of the insulating coating 20 can be adjusted to the above-mentioned range. More specifically, the thickness of the insulating coating 20 is 0.2 to 5 μm.

電磁鋼板の製造方法
図2では本発明の一実施例による電磁鋼板の製造方法のフローチャートを概略的に示す。図2の電磁鋼板の製造方法のフローチャートは単に本発明を例示するためであり、本発明はこれに限定されるものではない。したがって電磁鋼板の製造方法を多様に変形することができる。
2 is a schematic flow chart of a method for manufacturing an electrical steel sheet according to an embodiment of the present invention. The flow chart of the method for manufacturing an electrical steel sheet in FIG. 2 is merely for the purpose of illustrating the present invention, and the present invention is not limited thereto. Therefore, the method for manufacturing an electrical steel sheet can be modified in various ways.

図2に示すように、電磁鋼板の製造方法は電磁鋼板基材を製造する段階(S10)、および電磁鋼板基材の一面または両面に絶縁被膜組成物を塗布して絶縁被膜を形成する段階(S20)を含む。この他に、電磁鋼板の製造方法は他の段階をさらに含む。先に段階(S10)では電磁鋼板基材を製造する。電磁鋼板基材の合金成分については具体的に説明したので、繰り返しの説明は省略する。 As shown in FIG. 2, the method for manufacturing an electromagnetic steel sheet includes a step of manufacturing an electromagnetic steel sheet substrate (S10), and a step of forming an insulating coating by applying an insulating coating composition to one or both sides of the electromagnetic steel sheet substrate (S20). In addition, the method for manufacturing an electromagnetic steel sheet further includes other steps. In the previous step (S10), an electromagnetic steel sheet substrate is manufactured. The alloy components of the electromagnetic steel sheet substrate have been specifically described, so a repeated description will be omitted.

電磁鋼板基材を製造する段階はスラブを熱間圧延して熱延板を製造する段階;熱延板を冷間圧延して冷延板を製造する段階および冷延板を最終焼鈍する段階を含む。先に、スラブを加熱する。この時、スラブ加熱は1,200℃以下で加熱する。次に、加熱したスラブを熱間圧延して熱延板を製造する。製造された熱延板を熱延焼鈍する。 The steps of manufacturing the electrical steel sheet substrate include hot rolling a slab to manufacture a hot-rolled sheet; cold rolling the hot-rolled sheet to manufacture a cold-rolled sheet; and final annealing of the cold-rolled sheet. First, the slab is heated to a temperature of 1,200°C or less. Next, the heated slab is hot rolled to manufacture a hot-rolled sheet. The manufactured hot-rolled sheet is then hot-rolled annealed.

次に、熱延板を冷間圧延して冷延板を製造する。冷間圧延を1回実施したり、中間焼鈍を含む2回以上の冷間圧延を実施することができる。次に、冷延板を最終焼鈍する。この時、冷延板を最終焼鈍する段階は、冷延板に存在する圧延油を脱脂して1次焼鈍をし、水素と窒素で構成された雰囲気で2次焼鈍する。また、最終焼鈍は表面に酸化物が形成されて磁性が劣化することを防止するための目的で露点温度を-5℃以下に管理する。 Next, the hot-rolled sheet is cold-rolled to produce a cold-rolled sheet. Cold rolling can be performed once or two or more cold rolling steps including intermediate annealing can be performed. Next, the cold-rolled sheet is final annealed. In this step, the cold-rolled sheet is degreased to remove the rolling oil present in the cold-rolled sheet, and the cold-rolled sheet is subjected to a primary annealing, and then a secondary annealing in an atmosphere composed of hydrogen and nitrogen. In addition, the dew point temperature is controlled to -5°C or less during the final annealing to prevent oxides from forming on the surface, which would cause deterioration of the magnetic property.

再び電磁鋼板の製造方法に係る説明に戻ると、次に段階(S20)は電磁鋼板基材の一面または両面に絶縁被膜組成物を塗布して絶縁被膜を形成する。絶縁被膜組成物については前述した内容と同様であるため、重複する説明は省略する。 Returning to the explanation of the method for manufacturing the electromagnetic steel sheet, the next step (S20) is to apply an insulating coating composition to one or both sides of the electromagnetic steel sheet substrate to form an insulating coating. The insulating coating composition is the same as described above, so a duplicated explanation will be omitted.

絶縁被膜を形成する段階は100~680℃の温度で絶縁被膜組成物が塗布された鋼板を熱処理する段階を含む。熱処理温度が過度に低いと、溶媒の除去が容易でなく、美麗な絶縁被膜が形成され難い。熱処理温度が過度に高いと密着性が劣る問題が発生する。より具体的には350~650℃の温度で熱処理する。熱処理時間は5~200秒である。 The step of forming the insulating coating includes heat treating the steel sheet coated with the insulating coating composition at a temperature of 100 to 680°C. If the heat treatment temperature is too low, the solvent is not easily removed and it is difficult to form a beautiful insulating coating. If the heat treatment temperature is too high, problems with poor adhesion occur. More specifically, the heat treatment is performed at a temperature of 350 to 650°C. The heat treatment time is 5 to 200 seconds.

絶縁被膜を形成する段階の後、700~1000℃の温度で応力除去焼鈍を行う段階をさらに含む。本発明の一実施例では絶縁被膜組成物内のシラン化合物および水酸化金属によって応力除去焼鈍以後にも優れた絶縁被膜の密着性および表面特性を維持することができる。応力除去焼鈍の温度が過度に低い場合、目的とする応力除去が円滑に行われない。応力除去焼鈍の温度が過度に高い場合、電磁鋼板の磁性が劣る。応力除去焼鈍を行う段階は窒素雰囲気で行われ、1~5時間の間行われる。 After the step of forming the insulating coating, the method further includes a step of performing stress relief annealing at a temperature of 700 to 1000°C. In one embodiment of the present invention, the silane compound and metal hydroxide in the insulating coating composition allow the insulating coating to maintain excellent adhesion and surface properties even after stress relief annealing. If the stress relief annealing temperature is too low, the desired stress relief is not achieved smoothly. If the stress relief annealing temperature is too high, the magnetic properties of the electrical steel sheet are deteriorated. The stress relief annealing step is performed in a nitrogen atmosphere for 1 to 5 hours.

以下では実施例により本発明をさらに詳細に説明する。しかし、このような実施例は単に本発明を例示するためであり、これに限定されるものではない。 The present invention will be described in more detail below with reference to examples. However, these examples are merely for the purpose of illustrating the present invention and are not intended to be limiting.

実験例1-1:シラン化合物の種類別特性
実施例1-1
シリコン(Si):3.4重量%、アルミニウム(Al):0.80重量%、マンガン(Mn):0.17重量%、チタン(Ti):0.0015重量%、スズ(Sn):0.03重量%、ニッケル(Ni):0.01重量%、炭素(C):0.003重量%、窒素(N):0.0013重量%、リン(P):0.012重量%、硫黄(S):0.001重量%含み、残部はFeおよびその他不可避不純物からなるスラブを準備した。スラブを1130℃で加熱した後2.3mm厚さに熱間圧延して熱延板を製造した。
Experimental Example 1-1: Characteristics of different silane compounds Example 1-1
A slab containing 3.4% by weight of silicon (Si), 0.80% by weight of aluminum (Al), 0.17% by weight of manganese (Mn), 0.0015% by weight of titanium (Ti), 0.03% by weight of tin (Sn), 0.01% by weight of nickel (Ni), 0.003% by weight of carbon (C), 0.0013% by weight of nitrogen (N), 0.012% by weight of phosphorus (P), 0.001% by weight of sulfur (S), and the balance being Fe and other unavoidable impurities was prepared. The slab was heated at 1130°C and then hot-rolled to a thickness of 2.3 mm to produce a hot-rolled sheet.

熱延板を650℃で巻き取った後空気中で冷却し、1040℃で2分間熱延板焼鈍を実施した後水に急冷して酸洗した後、0.35mm厚さに冷間圧延して冷延板を製造した。冷延板を1040℃で50秒間水素20%、窒素80%雰囲気で露点温度を調節して最終焼鈍を行い、焼鈍した鋼板を製造した。 The hot-rolled sheet was coiled at 650°C and cooled in air, and then hot-rolled at 1040°C for 2 minutes, quenched in water, pickled, and cold-rolled to a thickness of 0.35 mm to produce a cold-rolled sheet. The cold-rolled sheet was final-annealed at 1040°C for 50 seconds in a 20% hydrogen, 80% nitrogen atmosphere with the dew point temperature adjusted to produce an annealed steel sheet.

絶縁コーティング組成物としてトリアセトキシメチルシラン60重量部、水酸化ニッケル(Ni(OH))20重量部、水酸化ストロンチウム(Sr(OH))10重量部、窒化ホウ素5重量部およびエチレングリコール5重量部を蒸溜水と混合してスラリー形態に製造し、ロールを用いてスラリーを最終焼鈍した鋼板に塗布した後、650℃条件で30秒間熱処理して空気中で冷却した。電磁鋼板は100%窒素雰囲気、750℃で2時間の間応力除去焼鈍(SRA,Stress Relief Annealing)を行って空気中で冷却した。絶縁被膜の厚さは約0.8μmであった。 The insulating coating composition was prepared by mixing 60 parts by weight of triacetoxymethylsilane, 20 parts by weight of nickel hydroxide (Ni(OH) 2 ), 10 parts by weight of strontium hydroxide (Sr(OH) 2 ), 5 parts by weight of boron nitride, and 5 parts by weight of ethylene glycol with distilled water to prepare a slurry. The slurry was applied to the steel sheet that had been final annealed using a roll, and then heat-treated at 650°C for 30 seconds and cooled in air. The electrical steel sheet was subjected to stress relief annealing (SRA) at 750°C for 2 hours in a 100% nitrogen atmosphere and cooled in air. The thickness of the insulating coating was about 0.8 μm.

実施例1-2ないし1-12
実施例1-1と同様に実施するが、絶縁被膜組成物内のシラン化合物、水酸化金属および金属窒化物の含有量と種類を下記表1のように変えて絶縁被膜を形成した。
Examples 1-2 to 1-12
The same procedure as in Example 1-1 was carried out, but the contents and types of the silane compound, metal hydroxide, and metal nitride in the insulating coating composition were changed as shown in Table 1 below to form an insulating coating.

比較例1-1
実施例1-1と同様に実施するが、水酸化金属なしで、トリアセトキシメチルシラン100重量部を含む絶縁被膜組成物を使用した。
Comparative Example 1-1
The same procedure as in Example 1-1 was carried out, except that no metal hydroxide was present and an insulating coating composition containing 100 parts by weight of triacetoxymethylsilane was used.

比較例1-2
実施例1-1と同様に実施するが、シラン化合物なしで、水酸化クロム100重量部を含む絶縁被膜組成物を使用した。
Comparative Example 1-2
The same procedure as in Example 1-1 was carried out, except that the silane compound was omitted and an insulating coating composition containing 100 parts by weight of chromium hydroxide was used.

比較例1-3
実施例1-1と同様に実施するが、シラン化合物なしで、水酸化クロム60重量部、窒化ホウ素40重量部を含む絶縁被膜組成物を使用した。
Comparative Example 1-3
The same procedure as in Example 1-1 was carried out, except that no silane compound was used and an insulating coating composition containing 60 parts by weight of chromium hydroxide and 40 parts by weight of boron nitride was used.

実施例および比較例で製造した電磁鋼板の特性を測定して下記表2に整理した。鉄損(W15/50)は周波数50Hzの磁場を1.5Teslaまで交流で磁化させたとき現れる電力損失を意味する。また、絶縁特性はASTM A717国際規格に従いFranklin測定機を活用して絶縁被膜の上部を測定した。また、密着性は試験片を10~100mm円弧に接して180°曲げるときに被膜剥離がない最小円弧直径で示したものである。また、表面特徴は均一な被膜を形成して色相が均一な程度を肉眼で評価した結果である。また、熱伝導度は電磁鋼板を230℃誘導加熱して試験片の熱伝導度をPPMS(Physical property measurement system,Quantum Design社製)で測定した。 The properties of the electrical steel sheets manufactured in the examples and comparative examples were measured and summarized in Table 2 below. Core loss (W 15/50 ) refers to the power loss that occurs when a magnetic field of 50 Hz frequency is magnetized with an alternating current up to 1.5 Tesla. Insulation properties were measured on the upper part of the insulating coating using a Franklin measuring device according to the ASTM A717 international standard. Adhesion was expressed as the minimum arc diameter at which the coating did not peel off when the test piece was bent 180° in contact with a 10 to 100 mm arc. Surface characteristics were evaluated with the naked eye to see how uniform the coating was formed and the color was uniform. Thermal conductivity was measured by induction heating the electrical steel sheet at 230°C and measuring the thermal conductivity of the test piece using a PPMS (Physical property measurement system, manufactured by Quantum Design).

Figure 0007465380000014
Figure 0007465380000014

Figure 0007465380000015
Figure 0007465380000015

表1および表2に示すように、比較例に比べて実施例は絶縁被膜特性に優れることを確認することができる。また、シラン化合物または水酸化金属を単独で含む場合には激しい被膜剥離が発生して磁気的特性が劣位になることを確認することができる。 As shown in Tables 1 and 2, it can be confirmed that the insulating coating properties of the Examples are superior to those of the Comparative Examples. It can also be confirmed that when the silane compound or metal hydroxide is contained alone, severe peeling of the coating occurs, resulting in inferior magnetic properties.

図3および図4はそれぞれ実施例1-2および比較例1-2で製造した電磁鋼板単面の走査電子顕微鏡(SEM)写真を示した。図3に示すように、実施例1-2の場合、SRA以後にも美麗な絶縁被膜が維持されることを確認することができる。反面、図4に示すように、比較例1-2の場合、SRA以後、絶縁被膜の表面にクラックが多数生じることを確認することができる。図5では実施例1-2で製造した電磁鋼板被膜のFT-IR-RAS分析結果を示した。図5で確認できるように、被膜内にトリアセトキシビニルシランが存在することを確認することができる。 Figures 3 and 4 show scanning electron microscope (SEM) photographs of a single surface of the electrical steel sheet produced in Example 1-2 and Comparative Example 1-2, respectively. As shown in Figure 3, in the case of Example 1-2, it can be seen that a beautiful insulating coating is maintained even after SRA. In contrast, as shown in Figure 4, in the case of Comparative Example 1-2, it can be seen that numerous cracks appear on the surface of the insulating coating after SRA. Figure 5 shows the results of FT-IR-RAS analysis of the electrical steel sheet coating produced in Example 1-2. As can be seen in Figure 5, it can be seen that triacetoxyvinylsilane is present in the coating.

実験例1-2:占積率評価
実施例1-13
シリコン(Si):4.2重量%、アルミニウム(Al):0.80重量%、マンガン(Mn):0.15重量%、チタン(Ti):0.001重量%、スズ(Sn):0.08重量%、炭素(C):0.004重量%、窒素(N):0.0015重量%、リン(P):0.015重量%、硫黄(S):0.001重量%含み、残部はFeおよびその他不可避不純物からなるスラブを準備した。スラブを1150℃で加熱した後2.3mm厚さに熱間圧延して熱延板を製造した。
Experimental Example 1-2: Space factor evaluation Example 1-13
A slab containing 4.2 wt% silicon (Si), 0.80 wt% aluminum (Al), 0.15 wt% manganese (Mn), 0.001 wt% titanium (Ti), 0.08 wt% tin (Sn), 0.004 wt% carbon (C), 0.0015 wt% nitrogen (N), 0.015 wt% phosphorus (P), 0.001 wt% sulfur (S), and the balance being Fe and other unavoidable impurities was prepared. The slab was heated at 1150°C and then hot-rolled to a thickness of 2.3 mm to produce a hot-rolled sheet.

熱延板を650℃で巻き取った後空気中で冷却し、1040℃で3分間熱延板焼鈍を実施した後水に急冷して酸洗した後、0.35mm厚さに冷間圧延して冷延板を製造した。冷延板を1050℃で60秒間水素30%、窒素70%雰囲気で露点温度-40℃に調節して最終焼鈍を行い、焼鈍した鋼板を製造した。その後、絶縁コーティング組成物としてトリアセトキシメチルシラン25重量部、トリアセトキシビニルシラン25重量部、水酸化クロム((CHCOCr(OH))15重量部、水酸化コバルト(Co(OH))15重量部、水酸化ストロンチウム(Sr(OH))3重量部、窒化ホウ素15重量部およびプロピレングリコール2重量部を蒸溜水と混合してスラリー形態に製造し、ロールを用いてスラリーを厚さで塗布した後、650℃条件で30秒間熱処理して空気中で冷却した。磁鋼板は100%窒素雰囲気、820℃で2時間の間応力除去焼鈍(SRA,Stress Relief Annealing)熱処理を行って空気中で冷却した。応力除去焼鈍した鋼板を60℃、湿度95%条件で24時間処理した後表面に錆の発生程度を評価した結果を下記表3に示した。 The hot-rolled sheet was coiled at 650°C and cooled in air, and then hot-rolled at 1040°C for 3 minutes, quenched in water, pickled, and cold-rolled to a thickness of 0.35 mm to produce a cold-rolled sheet. The cold-rolled sheet was final-annealed at 1050°C for 60 seconds in a 30% hydrogen, 70% nitrogen atmosphere with a dew point temperature adjusted to -40°C to produce an annealed steel sheet. Then, 25 parts by weight of triacetoxymethylsilane, 25 parts by weight of triacetoxyvinylsilane, 15 parts by weight of chromium hydroxide (( CH3CO2 ) 7Cr3 (OH) 2 ), 15 parts by weight of cobalt hydroxide (Co(OH) 2 ), 3 parts by weight of strontium hydroxide (Sr(OH) 2 ), 15 parts by weight of boron nitride, and 2 parts by weight of propylene glycol were mixed with distilled water to prepare an insulating coating composition in the form of a slurry, and the slurry was applied to a thickness using a roll, and then heat-treated at 650°C for 30 seconds and cooled in air. The magnetic steel sheet was subjected to stress relief annealing (SRA) heat treatment in a 100% nitrogen atmosphere at 820°C for 2 hours and cooled in air. The stress-relief annealed steel sheets were treated at 60° C. and 95% humidity for 24 hours, and the degree of rust on the surface was evaluated. The results are shown in Table 3 below.

比較例1-5
イオン水に先にMgOおよびCaO約7重量部をゆっくり投入させた後発熱反応を起こすCrO約20重量部を溶液内(MgO,CaO+イオン水)に徐々に注入して透明な茶色液状になるまで攪拌してブレンディング(Blending)した。
Comparative Examples 1-5
About 7 parts by weight of MgO and CaO were slowly added to the ionized water, and then about 20 parts by weight of CrO3 , which generates an exothermic reaction, was gradually added to the solution (MgO, CaO + ionized water) and stirred until it became a transparent brown liquid.

その後、溶液にアクリル系樹脂またはアクリル-スチレン共重合体樹脂のうち1種約30重量部と還元剤であるブチルカルビトール6.7重量部を注入して絶縁被膜組成物を製造した。実施例1-13と同様に実施するが、前記製造された絶縁被膜組成物を使用して絶縁被膜を形成した。 Then, about 30 parts by weight of either an acrylic resin or an acrylic-styrene copolymer resin and 6.7 parts by weight of butyl carbitol as a reducing agent were added to the solution to prepare an insulating coating composition. The same procedure was carried out as in Example 1-13, but the insulating coating composition prepared above was used to form an insulating coating.

比較例1-6
第1リン酸アルミニウム(Al(HPO)50重量部、第1リン酸亜鉛(Zn(HPO)50重量部、エポキシ樹脂210重量部、コバルトヒドロキシド(cobalt hydroxide)1重量部、ストロンチウムヒドロキシド(strontium hydroxide)1重量部、Tiキレート剤0.05重量部を含む絶縁被膜組成物を使用した。実施例1-13と同様に実施するが、前記絶縁被膜組成物を使用して絶縁被膜を形成した。
Comparative Examples 1-6
An insulating coating composition was used that contained 50 parts by weight of aluminum phosphate dibasic (Al(H 2 PO 4 ) 3 ), 50 parts by weight of zinc phosphate dibasic (Zn(H 2 PO 4 ) 2 ), 210 parts by weight of epoxy resin, 1 part by weight of cobalt hydroxide, 1 part by weight of strontium hydroxide, and 0.05 parts by weight of a Ti chelating agent. The same procedure as in Example 1-13 was repeated, but an insulating coating was formed using the insulating coating composition.

Figure 0007465380000016
Figure 0007465380000016

表3に示すように、比較例1-5および1-6に比べて実施例1-13の特性がはるかに優れることを確認することができる。 As shown in Table 3, it can be seen that the properties of Example 1-13 are far superior to those of Comparative Examples 1-5 and 1-6.

実験例2-1:シラン化合物の種類別特性
実施例2-1
シリコン(Si):3.4重量%、アルミニウム(Al):0.80重量%、マンガン(Mn):0.17重量%、チタン(Ti):0.0015重量%、スズ(Sn):0.03重量%、ビスマス(Bi):0.01重量%、炭素(C):0.003重量%、窒素(N):0.0013重量%、リン(P):0.012重量%、硫黄(S):0.001重量%含み、残部はFeおよびその他不可避不純物からなるスラブを準備した。スラブを1130℃で加熱した後2.3mm厚さに熱間圧延して熱延板を製造した。熱延板を650℃で巻き取った後空気中で冷却し、1040℃で2分間熱延板焼鈍を実施した後水に急冷して酸洗した後、0.35mm厚さに冷間圧延して冷延板を製造した。冷延板を1040℃で50秒間水素20%、窒素80%雰囲気で露点温度を調節して最終焼鈍を行い、焼鈍した鋼板を製造した。
Experimental Example 2-1: Characteristics of different silane compounds Example 2-1
A slab containing 3.4% by weight of silicon (Si), 0.80% by weight of aluminum (Al), 0.17% by weight of manganese (Mn), 0.0015% by weight of titanium (Ti), 0.03% by weight of tin (Sn), 0.01% by weight of bismuth (Bi), 0.003% by weight of carbon (C), 0.0013% by weight of nitrogen (N), 0.012% by weight of phosphorus (P), 0.001% by weight of sulfur (S), and the balance being Fe and other inevitable impurities, was prepared. The slab was heated at 1130°C and then hot-rolled to a thickness of 2.3 mm to produce a hot-rolled sheet. The hot-rolled sheet was coiled at 650°C, cooled in air, and hot-rolled sheet annealed at 1040°C for 2 minutes, then quenched in water and pickled, and cold-rolled to a thickness of 0.35 mm to produce a cold-rolled sheet. The cold-rolled steel sheet was subjected to final annealing at 1040° C. for 50 seconds in an atmosphere of 20% hydrogen and 80% nitrogen while controlling the dew point temperature, to produce an annealed steel sheet.

絶縁コーティング組成物としてTriethyl(trifluoromethyl)silane(トリエチル(トリフルオロメチル)シラン)60重量部、無水クロム酸(CrO)20重量部、酸化マグネシウム(MgO)10重量部およびエチレングリコール5重量部を蒸溜水と混合してスラリー形態に製造し、ロールを用いてスラリーを最終焼鈍した鋼板に塗布した後、650℃条件で25秒間熱処理して空気中で冷却した。電磁鋼板は100%窒素雰囲気、820℃で2時間の間応力除去焼鈍(SRA,Stress Relief Annealing)を行って空気中で冷却した。絶縁被膜の厚さは約0.8μmであった。 As an insulating coating composition, 60 parts by weight of triethyl(trifluoromethyl)silane, 20 parts by weight of chromic anhydride ( CrO3 ), 10 parts by weight of magnesium oxide (MgO), and 5 parts by weight of ethylene glycol were mixed with distilled water to prepare a slurry, and the slurry was applied to the steel sheet that had been final annealed using a roll, and then heat-treated at 650°C for 25 seconds and cooled in air. The electrical steel sheet was subjected to stress relief annealing (SRA) at 820°C for 2 hours in a 100% nitrogen atmosphere and cooled in air. The thickness of the insulating coating was about 0.8 μm.

実施例2-2ないし2-12
実施例2-1と同様に実施するが、絶縁被膜組成物内のシラン化合物、クロム酸化合物およびセラミック粉末の含有量と種類を下記表4ように変えて絶縁被膜を形成した。
Examples 2-2 to 2-12
The same procedure as in Example 2-1 was carried out, but the contents and types of the silane compound, chromate compound and ceramic powder in the insulating coating composition were changed as shown in Table 4 below to form an insulating coating.

比較例2-1
実施例2-1と同様に実施するが、クロム酸化合物なしで、Triethyl(trifluoromethyl)silane(トリエチル(トリフルオロメチル)シラン)100重量部を含む絶縁被膜組成物を使用した。
Comparative Example 2-1
The same procedure as in Example 2-1 was carried out, except that the chromate compound was omitted and an insulating coating composition containing 100 parts by weight of triethyl(trifluoromethyl)silane was used.

比較例2-2
実施例2-1と同様に実施するが、シラン化合物なしで、無水クロム酸100重量部を含む絶縁被膜組成物を使用した。
Comparative Example 2-2
Example 2-1 was carried out in the same manner as Example 2-1, except that the silane compound was omitted and an insulating coating composition containing 100 parts by weight of chromic anhydride was used.

比較例2-3
実施例2-1と同様に実施するが、シラン化合物なしで、無水クロム酸60重量部、酸化マグネシウム40重量部を含む絶縁被膜組成物を使用した。実施例および比較例で製造した電磁鋼板の特性を測定して下記表5に整理した。鉄損(W15/50)は周波数50Hzの磁場を1.5Teslaまで交流で磁化させたとき現れる電力損失を意味する。また、絶縁特性はASTM A717国際規格に従いFranklin測定機を活用して絶縁被膜の上部を測定した。また、密着性は試験片を10~100mm円弧に接して180°曲げるときに被膜剥離がない最小円弧直径で示したものである。また、表面特徴は均一な被膜を形成して色相が均一な程度を肉眼で評価した結果である。
Comparative Example 2-3
The same procedure as in Example 2-1 was carried out, but an insulating coating composition containing 60 parts by weight of chromic anhydride and 40 parts by weight of magnesium oxide was used without the silane compound. The properties of the electrical steel sheets manufactured in the examples and comparative examples were measured and summarized in Table 5 below. Core loss (W 15/50 ) means the power loss that occurs when a magnetic field of 50 Hz frequency is magnetized with an alternating current up to 1.5 Tesla. The insulating properties were measured on the upper part of the insulating coating using a Franklin measuring device in accordance with the ASTM A717 international standard. The adhesion was expressed as the minimum arc diameter at which the coating did not peel off when the test piece was bent 180° in contact with a 10 to 100 mm arc. The surface characteristics were evaluated with the naked eye to see how uniform the color of the uniform coating was formed.

Figure 0007465380000017
Figure 0007465380000017

Figure 0007465380000018
Figure 0007465380000018

表4および表5に示すように、比較例に比べて実施例は絶縁被膜特性に優れることを確認することができる。また、シラン化合物またはクロム酸化合物を単独で含む場合には激しい被膜剥離が発生して磁気的特性が劣位になることを確認することができる。 As shown in Tables 4 and 5, it can be confirmed that the insulating coating properties of the Examples are superior to those of the Comparative Examples. It can also be confirmed that when a silane compound or a chromate compound is contained alone, severe peeling of the coating occurs, resulting in inferior magnetic properties.

図6は実施例2-2で製造した電磁鋼板単面の走査電子顕微鏡(SEM)写真である。図7は比較例2-3で製造した電磁鋼板の表面の走査電子顕微鏡(SEM)写真を示した。図6に示すように、実施例2-2の場合、SRA以後にも美麗な絶縁被膜が維持されることを確認することができる。反面、図7に示すように、比較例2-3の場合、SRA以後、絶縁被膜表面にクラックが多数生じることを確認することができる。 Figure 6 is a scanning electron microscope (SEM) photograph of a single surface of the electrical steel sheet manufactured in Example 2-2. Figure 7 shows a scanning electron microscope (SEM) photograph of the surface of the electrical steel sheet manufactured in Comparative Example 2-3. As shown in Figure 6, in the case of Example 2-2, it can be seen that a beautiful insulating coating is maintained even after SRA. In contrast, as shown in Figure 7, in the case of Comparative Example 2-3, it can be seen that numerous cracks occur on the surface of the insulating coating after SRA.

実験例2-2:高分子樹脂添加効果の評価
実施例2-11
シリコン(Si)を4.5重量%、アルミニウム(Al):0.80重量%、マンガン(Mn):0.15重量%、チタン(Ti):0.001重量%、スズ(Sn):0.05重量%、炭素(C):0.004重量%、窒素(N):0.0015重量%、リン(P):0.015重量%、硫黄(S):0.001重量%含み、残部はFeおよびその他不可避不純物からなるスラブを準備した。
Experimental Example 2-2: Evaluation of the effect of adding polymer resin Example 2-11
A slab was prepared containing 4.5 wt% silicon (Si), 0.80 wt% aluminum (Al), 0.15 wt% manganese (Mn), 0.001 wt% titanium (Ti), 0.05 wt% tin (Sn), 0.004 wt% carbon (C), 0.0015 wt% nitrogen (N), 0.015 wt% phosphorus (P), 0.001 wt% sulfur (S), with the remainder being Fe and other unavoidable impurities.

スラブを1150℃で加熱した後2.3mm厚さに熱間圧延して熱延板を製造した。熱延板を650℃で巻き取った後空気中で冷却し、1040℃で3分間熱延板焼鈍を実施した後水に急冷して酸洗した後、0.35mm厚さに冷間圧延して冷延板を製造した。冷延板を1050℃で60秒間水素30%、窒素70%雰囲気で露点温度-40℃に調節して最終焼鈍を行い、焼鈍した鋼板を製造した。その後、実施例2-2に記載された絶縁コーティング組成物に高分子樹脂を下記表6に整理されたとおり混合してスラリー形態に製造し、650℃条件で30秒間熱処理して空気中で冷却した。前記電磁鋼板は100%窒素雰囲気、820℃で2時間の間応力除去焼鈍(SRA,Stress Relief Annealing)熱処理を行って空気中で冷却した。絶縁被膜は約0.4μmの厚さに形成された。 The slab was heated to 1150°C and hot-rolled to a thickness of 2.3 mm to produce a hot-rolled sheet. The hot-rolled sheet was coiled at 650°C, cooled in air, and hot-rolled at 1040°C for 3 minutes, then quenched in water, pickled, and cold-rolled to a thickness of 0.35 mm to produce a cold-rolled sheet. The cold-rolled sheet was final-annealed at 1050°C for 60 seconds in a 30% hydrogen, 70% nitrogen atmosphere with a dew point temperature of -40°C to produce an annealed steel sheet. Then, the insulating coating composition described in Example 2-2 was mixed with a polymer resin as shown in Table 6 below to produce a slurry, which was heat-treated at 650°C for 30 seconds and cooled in air. The electrical steel sheet was subjected to stress relief annealing (SRA) heat treatment in a 100% nitrogen atmosphere at 820°C for 2 hours and cooled in air. The insulating coating was formed to a thickness of approximately 0.4 μm.

応力除去焼鈍された鋼板を60℃、湿度95%条件で24時間処理した後表面に錆の発生程度を評価した結果を下記表6に示す。 The stress-relief annealed steel sheets were then treated for 24 hours at 60°C and 95% humidity, after which the degree of rust on the surface was evaluated. The results are shown in Table 6 below.

Figure 0007465380000019
Figure 0007465380000019

表6に示すように、高分子樹脂の種類および添加量の変更により鉄損、表面粗さ、占積率および錆の発生面積の変化が確認された。 As shown in Table 6, changes in iron loss, surface roughness, space factor, and rust occurrence area were confirmed by changing the type and amount of polymer resin added.

本発明は、上記の実施例に限定されるものではなく、互いに異なる多様な形態で製造できる。上記の実施例は例示的なものであり、限定的なものではない。 The present invention is not limited to the above examples and can be manufactured in a variety of different forms. The above examples are illustrative and not limiting.

100 電磁鋼板
10 電磁鋼板基材
20 絶縁被膜
100 Electromagnetic steel sheet 10 Electromagnetic steel sheet substrate 20 Insulating coating

Claims (18)

下記化学式1で表されるシラン化合物;および無水クロム酸、クロム酸塩および重クロム酸塩のうちの1種以上のクロム酸化合物、を含み、
前記シラン化合物および前記クロム酸化合物の合量100重量部に対して、前記シラン化合物10~80重量部および前記クロム酸化合物20~90重量部を含むことを特徴とする電磁鋼板用絶縁被膜組成物。
[化学式1]
Figure 0007465380000020
(化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。)
A silane compound represented by the following chemical formula 1; and one or more chromate compounds selected from chromic anhydride, chromate salts, and dichromate salts,
An insulating coating composition for electrical steel sheets, comprising 10 to 80 parts by weight of the silane compound and 20 to 90 parts by weight of the chromate compound per 100 parts by weight of the total amount of the silane compound and the chromate compound.
[Chemical Formula 1]
Figure 0007465380000020
(In Chemical Formula 1, R1 is hydrogen, a halogen element, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group, L is a direct bond or a divalent linking group, m is an integer of 1 to 3, and n is 4-m.)
前記化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基またはアルコキシ基であることを特徴とする請求項1に記載の電磁鋼板用絶縁被膜組成物。 2. The insulating coating composition for electrical steel sheets according to claim 1, wherein in Formula 1, R 1 is hydrogen, a halogen element, a linear or branched alkyl group, or an alkoxy group. 前記化学式1において、Lは直接結合、アルキレン基および-CF-のうちの1種以上であることを特徴とする請求項1または請求項2に記載の電磁鋼板用絶縁被膜組成物。 3. The insulating coating composition for electrical steel sheet according to claim 1, wherein in Chemical Formula 1, L is at least one of a direct bond, an alkylene group, and -CF 2 -. 前記シラン化合物は下記化学式2で表されることを特徴とする請求項1乃至請求項3のいずれか一項に記載の電磁鋼板用絶縁被膜組成物。
[化学式2]
Figure 0007465380000021
(化学式2において、R~Rはそれぞれ独立して水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。)
The insulating coating composition for electrical steel sheets according to claim 1 , wherein the silane compound is represented by the following chemical formula 2:
[Chemical Formula 2]
Figure 0007465380000021
(In Chemical Formula 2, R 1 to R 3 are each independently a hydrogen atom, a halogen atom, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group; L 1 is a direct bond or a divalent linking group; m is an integer of 1 to 3; and n is 4-m.)
前記化学式2において、RおよびRはそれぞれ独立して、水素またはハロゲン元素であることを特徴とする請求項4に記載の電磁鋼板用絶縁被膜組成物。 5. The insulating coating composition for electrical steel sheets according to claim 4, wherein in Chemical Formula 2, R2 and R3 are each independently hydrogen or a halogen element. 前記シラン化合物は、Triethyl(trifluoromethyl)silane(トリエチル(トリフルオロメチル)シラン)、Trimethoxy(trifluoropropyl)silane(トリメトキシ(トリフルオロプロピル)シラン)、Dimethoxy-methyl(trifluoropropyl)silane(ジメトキシ-メチル(トリフルオロプロピル)シラン)およびPerfluorooctyl-triethoxysilane(パーフルオロオクチル-トリエトキシシラン)のうちの1種以上を含むことを特徴とする請求項1乃至請求項5のいずれか一項に記載の電磁鋼板用絶縁被膜組成物。 The insulating coating composition for electrical steel sheets according to any one of claims 1 to 5, characterized in that the silane compound contains one or more of triethyl(trifluoromethyl)silane, trimethoxy(trifluoropropyl)silane, dimethoxy-methyl(trifluoropropyl)silane, and perfluorooctyl-triethoxysilane. 前記シラン化合物および前記クロム酸化合物の合量100重量部に対して、セラミック粉末を0.5~65重量部さらに含むことを特徴とする請求項1乃至請求項6のいずれか一項に記載の電磁鋼板用絶縁被膜組成物。 The insulating coating composition for electrical steel sheets according to any one of claims 1 to 6, further comprising 0.5 to 65 parts by weight of ceramic powder per 100 parts by weight of the combined amount of the silane compound and the chromate compound. 前記セラミック粉末は、MgO、MnO、Al、SiO、TiO、ZrO、AlSi13、Al・TiO、Y、9Al・B、BN、CrN、BaTiO、SiCおよびTiCのうちの1種以上を含むことを特徴とする請求項7に記載の電磁鋼板用絶縁被膜組成物。 8. The insulating coating composition for electrical steel sheet according to claim 7 , characterized in that the ceramic powder contains one or more of MgO, MnO , Al2O3 , SiO2 , TiO2 , ZrO2 , Al6Si2O13, Al2O3.TiO2 , Y2O3 , 9Al2O3.B2O3 , BN, CrN, BaTiO3 , SiC and TiC. 前記セラミック粉末の平均粒径は0.05~20μmであることを特徴とする請求項7または請求項8に記載の電磁鋼板用絶縁被膜組成物。 The insulating coating composition for electrical steel sheets according to claim 7 or 8, characterized in that the average particle size of the ceramic powder is 0.05 to 20 μm. 前記シラン化合物および前記クロム酸化合物の合量100重量部に対して、アクリル樹脂、スチレン樹脂、酢酸ビニル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、フェノール樹脂、アルキド樹脂およびエポキシ樹脂のうちの1種以上の高分子樹脂を0.5~30重量部さらに含むことを特徴とする請求項7乃至請求項9のいずれか一項に記載の電磁鋼板用絶縁被膜組成物。 The insulating coating composition for electrical steel sheets according to any one of claims 7 to 9, further comprising 0.5 to 30 parts by weight of one or more polymeric resins selected from acrylic resin, styrene resin, vinyl acetate resin, polyester resin, urethane resin, polyethylene resin, polypropylene resin, polyamide resin, polycarbonate resin, phenolic resin, alkyd resin and epoxy resin, per 100 parts by weight of the total amount of the silane compound and the chromate compound. 前記シラン化合物および前記クロム酸化合物の合量100重量部に対して、エチレングリコール(Ethylene golycol)、プロピレングリコール(Propylene glycol)、グリセリン(Glycerine)、ブチルカルビトール(Butyl carbitol)のうちの1種以上を1~15重量部さらに含むことを特徴とする請求項1乃至請求項10のいずれか一項に記載の電磁鋼板用絶縁被膜組成物。 The insulating coating composition for electrical steel sheets according to any one of claims 1 to 10, further comprising 1 to 15 parts by weight of one or more of ethylene glycol, propylene glycol, glycerine, and butyl carbitol per 100 parts by weight of the combined total of the silane compound and the chromate compound. 電磁鋼板基材および
電磁鋼板基材の一面または両面に位置した絶縁被膜を含み、
前記絶縁被膜は下記化学式1で表されるシラン化合物;および無水クロム酸、クロム酸塩および重クロム酸塩のうちの1種以上のクロム酸化合物、を含み、
前記シラン化合物および前記クロム酸化合物の合量100重量部に対して、前記シラン化合物10~80重量部および前記クロム酸化合物20~90重量部を含むことを特徴とする電磁鋼板。
[化学式1]
Figure 0007465380000022
(化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。)
The magnetic steel sheet includes an insulating coating disposed on one or both sides of the magnetic steel sheet.
The insulating coating includes a silane compound represented by the following chemical formula 1; and one or more chromate compounds selected from chromic anhydride, chromate, and dichromate,
The electrical steel sheet comprises 10 to 80 parts by weight of the silane compound and 20 to 90 parts by weight of the chromate compound relative to 100 parts by weight in total of the silane compound and the chromate compound.
[Chemical Formula 1]
Figure 0007465380000022
(In Chemical Formula 1, R1 is hydrogen, a halogen element, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group, L is a direct bond or a divalent linking group, m is an integer of 1 to 3, and n is 4-m.)
前記絶縁被膜はSiを0.1~50重量%およびFを0.01~25重量%含むことを特徴とする請求項12に記載の電磁鋼板。 The electrical steel sheet according to claim 12, characterized in that the insulating coating contains 0.1 to 50% by weight of Si and 0.01 to 25% by weight of F. 前記絶縁被膜の厚さは0.1~10μmであることを特徴とする請求項12または請求項13に記載の電磁鋼板。 The electrical steel sheet according to claim 12 or 13, characterized in that the thickness of the insulating coating is 0.1 to 10 μm. 電磁鋼板基材を製造する段階、および
前記電磁鋼板基材の一面または両面に絶縁被膜組成物を塗布して絶縁被膜を形成する段階を含み、
前記絶縁被膜組成物は下記化学式1で表されるシラン化合物、および無水クロム酸、クロム酸塩および重クロム酸塩のうちの1種以上のクロム酸化合物、を含み、
前記シラン化合物および前記クロム酸化合物の合量100重量部に対して、前記シラン化合物10~80重量部および前記クロム酸化合物20~90重量部含むことを特徴とする電磁鋼板の製造方法。
[化学式1]
Figure 0007465380000023
(化学式1において、Rは水素、ハロゲン元素、直鎖状または分枝状アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基またはアミノアルキル基であり、Lは直接結合または2価の連結基である。mは1~3の整数であり、nは4-mである。)
The method includes the steps of: preparing an electrical steel sheet substrate; and applying an insulating coating composition to one or both sides of the electrical steel sheet substrate to form an insulating coating,
The insulating coating composition includes a silane compound represented by the following chemical formula 1, and one or more chromate compounds selected from chromic anhydride, chromate, and dichromate,
A method for producing an electrical steel sheet, comprising the steps of: mixing the silane compound with the chromate compound in an amount of 10 to 80 parts by weight; and mixing the chromate compound in an amount of 20 to 90 parts by weight, based on a total of 100 parts by weight of the silane compound and the chromate compound.
[Chemical Formula 1]
Figure 0007465380000023
(In Chemical Formula 1, R1 is hydrogen, a halogen element, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, or an aminoalkyl group, L is a direct bond or a divalent linking group, m is an integer of 1 to 3, and n is 4-m.)
前記電磁鋼板基材を製造する段階は、
スラブを熱間圧延して熱延板を製造する段階、
前記熱延板を冷間圧延して冷延板を製造する段階および
前記冷延板を最終焼鈍する段階を含むことを特徴とする請求項15に記載の電磁鋼板の製造方法。
The step of manufacturing the electrical steel sheet substrate comprises:
hot rolling the slab to produce a hot rolled sheet;
The method for producing an electrical steel sheet according to claim 15, comprising: cold rolling the hot-rolled sheet to produce a cold-rolled sheet; and final annealing the cold-rolled sheet.
前記絶縁被膜を形成する段階は、100~680℃の温度で前記絶縁被膜組成物が塗布された鋼板を熱処理する段階を含むことを特徴とする請求項15または請求項16に記載の電磁鋼板の製造方法。 The method for manufacturing an electrical steel sheet according to claim 15 or 16, characterized in that the step of forming the insulating coating includes a step of heat treating the steel sheet coated with the insulating coating composition at a temperature of 100 to 680°C. 前記絶縁被膜を形成する段階の後、
700~1000℃の温度で応力除去焼鈍を行う段階をさらに含むことを特徴とする請求項15乃至請求項17のいずれか一項に記載の電磁鋼板の製造方法。
After the step of forming the insulating coating,
The method for producing an electrical steel sheet according to any one of claims 15 to 17, further comprising the step of performing stress relief annealing at a temperature of 700 to 1000°C.
JP2023021994A 2018-07-30 2023-02-15 Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet Active JP7465380B2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20180088696 2018-07-30
KR10-2018-0088696 2018-07-30
KR1020180088697A KR102177040B1 (en) 2018-07-30 2018-07-30 Insulating coating composition for electrical steel sheet and electrical steel sheet comprising insulating coating
KR10-2018-0088697 2018-07-30
KR10-2018-0165656 2018-12-19
KR1020180165656A KR102176355B1 (en) 2018-07-30 2018-12-19 Insulating coating composition for electrical steel sheet and electrical steel sheet comprising insulating coating
PCT/KR2019/009482 WO2020027545A1 (en) 2018-07-30 2019-07-30 Insulating coating composition for electrical steel sheet, and electrical steel sheet comprising insulating coating
JP2021505751A JP7291203B2 (en) 2018-07-30 2019-07-30 Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021505751A Division JP7291203B2 (en) 2018-07-30 2019-07-30 Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2023075104A JP2023075104A (en) 2023-05-30
JP7465380B2 true JP7465380B2 (en) 2024-04-10

Family

ID=69232599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023021994A Active JP7465380B2 (en) 2018-07-30 2023-02-15 Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet

Country Status (3)

Country Link
JP (1) JP7465380B2 (en)
CN (2) CN114453217B (en)
WO (1) WO2020027545A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180134A (en) 2000-12-11 2002-06-26 Kawasaki Steel Corp Method for depositing insulation film on grain oriented silicon steel sheet
JP2003303711A (en) 2001-03-27 2003-10-24 Jfe Steel Kk Iron base powder and dust core using the same, and method of manufacturing iron base powder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2298619C (en) * 1998-05-29 2008-01-29 Sumitomo Electric Industries, Ltd. Flame-retardant resin composition, and insulating electric wire, tube, heat-shrinkable tube, flat cable, and dc high-tension electric wire all made of the composition
JP4479047B2 (en) * 2000-03-30 2010-06-09 Jfeスチール株式会社 Method for producing unidirectional electrical steel sheet with extremely low iron loss
EP1599616B1 (en) * 2003-02-25 2012-04-11 Chemetall GmbH Method for coating metallic surfaces with a mixture containing at least two silanes
KR100733367B1 (en) * 2005-12-21 2007-06-29 주식회사 포스코 Thick-film coating solution for a non-oriented electrical steel sheet with excellent solution stability and method for manufacturing non-oriented electrical steel sheet having resistance against corrosion and insulation property using the same
JP5125117B2 (en) * 2007-01-29 2013-01-23 Jfeスチール株式会社 Electrical steel sheet with insulating coating
DE102008039326A1 (en) * 2008-08-22 2010-02-25 IWT Stiftung Institut für Werkstofftechnik Preparing electrically insulated electric sheet, to prepare laminated magnetic core, comprises coating one side of sheet using liquid mixture comprising hydrolyzed and condensed metal organic monomer, and heat treating coated sheet
EP2752503B1 (en) * 2011-08-31 2017-03-22 JFE Steel Corporation Electromagnetic steel sheet having insulating coating
JPWO2014068688A1 (en) * 2012-10-31 2016-09-08 株式会社日立製作所 Surface-modified metal member using fluorine-containing silane coupling agent
KR101605795B1 (en) * 2013-12-24 2016-03-23 주식회사 포스코 Oriented electrical steel steet and method for the same
JP6304208B2 (en) * 2015-03-19 2018-04-04 Jfeスチール株式会社 Electrical steel sheet with insulating coating, laminated electrical steel sheet, and manufacturing method thereof
JP6834155B2 (en) * 2016-03-16 2021-02-24 味の素株式会社 Resin composition
CN107190252B (en) * 2017-06-13 2018-04-03 武汉圆融科技有限责任公司 A kind of chrome-free insulating coating composition and preparation method thereof and directional silicon steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180134A (en) 2000-12-11 2002-06-26 Kawasaki Steel Corp Method for depositing insulation film on grain oriented silicon steel sheet
JP2003303711A (en) 2001-03-27 2003-10-24 Jfe Steel Kk Iron base powder and dust core using the same, and method of manufacturing iron base powder

Also Published As

Publication number Publication date
CN112739782B (en) 2022-04-26
JP2023075104A (en) 2023-05-30
CN114453217B (en) 2024-08-23
CN112739782A (en) 2021-04-30
CN114453217A (en) 2022-05-10
WO2020027545A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
CN110634592B (en) Insulating film composition for oriented electrical steel sheet, method for forming insulating film on oriented electrical steel sheet, and oriented electrical steel sheet
JP6383495B2 (en) Insulating coating composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet having an insulating coating formed on the surface using the same, and method for producing the same
KR100966819B1 (en) Cr -free coating solution, manufacturing method and steel sheet, manufacturing method
JP6463458B2 (en) Preliminary coating composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet containing the same, and method for producing the same
EP3561086B1 (en) Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
CN110114488A (en) The excellent non orientation electromagnetic steel plate of recycling property
JP7291203B2 (en) Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
JP7465380B2 (en) Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
EP1570094A1 (en) Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property
JP2006503189A (en) Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
CN114106593B (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
KR102176355B1 (en) Insulating coating composition for electrical steel sheet and electrical steel sheet comprising insulating coating
KR102177040B1 (en) Insulating coating composition for electrical steel sheet and electrical steel sheet comprising insulating coating
JP2014156633A (en) Manufacturing method for directional electromagnetic steel plate, directional electromagnetic steel plate, surface glass coating for directional electromagnetic steel plate
JP4569281B2 (en) Annealing separator for grain-oriented electrical steel sheet, method for annealing grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JP7453379B2 (en) Annealing separator composition for grain-oriented electrical steel sheets, grain-oriented electrical steel sheets, and manufacturing method thereof
KR20190077773A (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing the same
KR20120074393A (en) Coating solution for forming an insulation film with excellent surface characteristic and method for forming an insulation film on electrical steel sheet by using it
KR20230095527A (en) Insulation coating composition for electrical steel sheet, electrical steel sheet, and method for manufacturing the same
KR20230095270A (en) Insulation coating composition for electrical steel sheet, electrical steel sheet, and method for manufacturing the same
KR20240098506A (en) Silicon diffusing composition, non-oriented electrical steel sheet and method for manufacturing the same
KR20240098541A (en) Silicon diffusing composition, non-oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240329

R150 Certificate of patent or registration of utility model

Ref document number: 7465380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150