WO2015102142A1 - Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material - Google Patents

Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material Download PDF

Info

Publication number
WO2015102142A1
WO2015102142A1 PCT/KR2014/000297 KR2014000297W WO2015102142A1 WO 2015102142 A1 WO2015102142 A1 WO 2015102142A1 KR 2014000297 W KR2014000297 W KR 2014000297W WO 2015102142 A1 WO2015102142 A1 WO 2015102142A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
exterior material
aluminum
interior
metal interior
Prior art date
Application number
PCT/KR2014/000297
Other languages
French (fr)
Korean (ko)
Inventor
조상무
Original Assignee
조상무
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조상무 filed Critical 조상무
Publication of WO2015102142A1 publication Critical patent/WO2015102142A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0015Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/243Chemical after-treatment using organic dyestuffs
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon

Definitions

  • the present invention relates to a method for surface treatment of metal interior and exterior materials and to a surface-treated metal interior and exterior material, and more particularly to forming a barrier layer made of a valve metal and a surface layer made of an aluminum-based metal on various metal interior and exterior materials.
  • the present invention relates to a surface treatment technology for metal interior and exterior materials that realizes an elegant and uniform surface color by applying anodization technology.
  • Anodizing is one of the electrochemical film forming methods, which uses an aqueous solution of sulfuric acid, hydroxyl, chromic acid, etc. as an electrolyte to form an anodized film on a metal surface, such as aluminum, to provide mechanical, electrical, and chemical properties.
  • the film formed by the anodic oxidation film treatment method is very hard, has high corrosion resistance, and can be dyed in various colors. Accordingly, the film is used in various industrial fields, and has been in the spotlight in product related industries such as mobile phone cases, which are recently in demand. It is a skill.
  • the machining method is applicable only to the simple form in consideration of the productivity, the complex form is difficult to apply by the economics according to the manufacturing price, and also a method that consumes a lot of effort and cost in the subsequent assembly process. Accordingly, a method of vacuum depositing aluminum and anodizing the deposited aluminum on aluminum die-casting products, which are easy to mass-produce complex shapes, has been recently developed, but there are problems such as thin film adhesion of vacuum deposition.
  • Korean Patent Laid-Open Publication No. 10-2012-0116558 high speed film forming apparatus and film forming method using the same, published on October 23, 2012
  • the method of solving the adhesion problem of the vacuum deposition method by combining the vacuum deposition method and the arc method has been proposed, the oxide below the stoichiometry in the Republic of Korea Patent Publication No. 10-2012-0116557 (Method of surface treatment of die-cast alloy and die-casting alloy material having a surface structure produced, published on October 23, 2012), Methods using nitrides or oxynitrides have also been suggested.
  • the surface of the metal interior and exterior materials other than the aluminum material can be stably anodized, and accordingly, there is a need for a technology for implementing various exterior colors on the surfaces of the metal interior and exterior materials.
  • the present invention was devised to solve the above problems, and an object of the present invention is to form a barrier layer made of a valve metal and a surface layer made of an aluminum-based metal on the surface of various metal interior and exterior materials, followed by anodizing. It is to provide a surface treatment technology of the metal interior and exterior materials that apply the technology to realize a beautiful and uniform surface color.
  • a valve metal Valve Metal
  • the valve metal is titanium (Ta), niobium (Nb), tantalum (Ta), zirconium (Zr), vanadium (V), tungsten (W), hafnium (Hf), aluminum (Al) and yttrium (Y). It may be one single metal or two or more alloys selected from the group consisting of, preferably the valve metal is an alloy of titanium (Ta), aluminum (Al) and vanadium (V) or titanium (Ta), aluminum (Al) And an alloy of niobium (Nb), more preferably the valve metal may be Ti6Al4V or Ti6Al7Nb.
  • the surface layer 20 is preferably a single layer formed of one selected from the group consisting of aluminum, an aluminum alloy, and an aluminum oxide, nitride, and oxynitride of less than the stoichiometric composition ratio, or a composite layer in which two or more are laminated.
  • step b) and step c) further comprising the step of sanding (sanding) the surface of the product, or at least one selected from the group consisting of chemical polishing, electropolishing and mechanical polishing It may further comprise a polishing step for performing the above.
  • the barrier layer 10 may have a thickness of 0.03 to 5 ⁇ m
  • the surface layer 20 may have a thickness of 5 to 100 ⁇ m
  • the barrier layer 10 and the surface layer 20 may have PVD (Physical Vapor Deposition). More preferably, at least one selected from the group consisting of evaporation, sputtering, and cathodic vacuum arc.
  • the method may further include a step of pretreating the surface of the metal interior and exterior materials (1) through ultrasonic cleaning or ion bombardment, and in the step d), the group consisting of organic material coloring, inorganic coloring and electrolytic coloring. It is preferable to color the dye to the anodized surface in at least one manner selected from among, and to seal the colored surface in at least one manner selected from the group consisting of hydration, metallic, organic and low temperature. .
  • a barrier layer 10 made of a valve metal is formed on the surface of the metal interior and exterior material 1, and made of aluminum (Al) -based metal.
  • a surface anodized surface layer 20 provides a surface treated metal interior and exterior material formed on the barrier layer 10.
  • the surface of the anodized surface layer 20 is preferably sealed after the dye is colored.
  • valve metal is titanium (Ta), niobium (Nb), tantalum (Ta), zirconium (Zr), vanadium (V), tungsten (W), hafnium (Hf), aluminum (Al) and yttrium (Y) It may be one single metal or two or more alloys selected from the group consisting of: Preferably the valve metal is an alloy of titanium (Ta), aluminum (Al) and vanadium (V) or titanium (Ta), aluminum (Al) ) And an alloy of niobium (Nb), and more preferably the valve metal may be Ti6Al4V or Ti6Al7Nb.
  • the surface layer 20 is preferably a single layer formed of one selected from the group consisting of aluminum, aluminum alloys, aluminum oxides, nitrides, and oxynitrides having a lower than stoichiometric composition ratio, or two or more laminated layers.
  • the barrier layer 10 may have a thickness of 0.03 to 5 ⁇ m
  • the surface layer 20 may have a thickness of 5 to 100 ⁇ m
  • the barrier layer 10 and the surface layer 20 may have PVD (Physical Vapor Deposition). It is formed in a) method, more preferably at least one selected from the group consisting of evaporation, sputtering and cathodic vacuum arc (Cathodic Vacuum Arc).
  • the surface treatment method of the metal interior and exterior materials and the surface-treated metal interior and exterior materials of the present invention apply anodic oxidation, coloring, and sealing treatment technology to the surfaces of various metal interior and exterior materials commonly used, such as zinc, stainless steel, and magnesium. There is an effect that can realize a variety of beautiful and uniform surface color of the metal interior and exterior materials.
  • FIG. 1 is a flowchart illustrating a method for treating a surface of a metal interior and exterior material according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a laminated structure of the surface-treated metal interior and exterior material according to another embodiment of the present invention.
  • the present invention provides a method for surface treatment of metal interior and exterior materials including a barrier layer forming step, a surface layer forming step, an anodizing step, and a dye coloring / sealing step according to a preferred embodiment.
  • a flow chart for this is shown in FIG. 1. Each time series step will be described in detail below.
  • Metal interior and exterior materials 1 to be processed are prepared.
  • Metal interior and exterior materials (1) means a metal that can be used as interior and exterior materials of the product, zinc, stainless steel, magnesium, aluminum alloy, die-casting alloy (silicon (Sa), iron (Fe), copper (Cu), manganese (Mn depending on the type) ), Metal (zn), nickel (Na), titanium (Ta), lead (Pb), tin (Sn), or chromium (Cr) components can be added).
  • the invention can be applied.
  • the metal interior and exterior materials 1 in the present invention may be a metal that does not contain an aluminum component, and it is possible to stably perform the anodizing process by the process according to the present invention without including aluminum.
  • the barrier layer 10 is formed of a valve metal on the surface of the metal interior and exterior material 1 described above.
  • the valve metal refers to a metal that exhibits a valve effect.
  • the valve effect refers to a phenomenon in which a current flows in a solution-to-metal direction but almost does not flow in a metal-to-solution direction. .
  • valve metals titanium and niobium are used to produce various colors through the anodizing process in the decorative industry dealing with jewelry. More specifically, when anodizing these valve metals, interference colors such as blue, yellow, pink, or green appear depending on the applied voltage, and the anodizing depth is adjusted according to the magnitude of the applied voltage so that at most 1 ⁇ m or less. You will see various colors.
  • the barrier layer 10 may be formed of a single metal such as titanium, niobium, tantalum, vanadium, zirconium, tungsten, hafnium, yttrium, or an alloy of two or more of these metals.
  • it may be formed of an alloy in which aluminum is added to the single metal or the mutual alloy, and it is more preferable to form the barrier layer 10 from Ti 6 Al 4 V or Ti 6 Al 7 Nb, which is a titanium aluminum alloy currently supplied in various compositions.
  • Ti6Al4V refers to a titanium-aluminum-vanadium alloy containing 6 wt% of aluminum (Al) and 4 wt% of vanadium (V) based on the total weight, and in the case of "Ti6Al7Nb".
  • Ti6Al4V refers to a titanium-aluminum-vanadium alloy containing 6 wt% of aluminum (Al) and 4 wt% of vanadium (V) based on the total weight, and in the case of "Ti6Al7Nb”.
  • a titanium-aluminum-niobium alloy containing 6 wt% of aluminum (Al) and 7 wt% of niobium (Nb) by weight.
  • the barrier layer 10 When the barrier layer 10 is first formed on the surface of the metal interior and exterior material 1 using the valve metal, the surface rupture phenomenon is prevented as described above when the anodic oxidation process and the coloring / sealing process are performed on the metal interior and exterior material 1. can do.
  • the thick portion remains unoxidized while the thin portion is all anodized so that the barrier layer 10 is anodized.
  • the barrier layer 10 is composed of valve metals, such an effect can be obtained because the barrier layer 10 is oxidized only at a maximum of 1 ⁇ m or less. If the barrier layer 10 is not present, excessive current flows in the portion, causing the surface to burst.
  • the method of forming the barrier layer 10 is not appropriate because the process temperature is typically higher than 500 ° C. in the case of CVD (chemical vapor deposition) method, which may cause problems such as deformation of a material, and thus is not appropriate. It is preferable to adopt the Deposition method. More specifically, the barrier layer 10 may be formed on the surface by adopting at least one method selected from the group consisting of evaporation, sputtering, and cathodic vacuum arc. It is most preferable to use the sputtering or the cathode vacuum arc method in view of the adhesion of the formation and the like.
  • an ultrasonic cleaning process for removing oil components or foreign substances remaining on the surface of the metal interior and exterior materials 1 to be processed is performed, or argon gas ion collision or metal ions in a vacuum chamber. It is preferable to perform a process of removing surface impurities or oxides by the collision method.
  • the thickness of the barrier layer 10 may vary depending on the process conditions at the time of anodization and the thickness of the surface layer 20 to be described later, if the thickness of the surface layer 20 is sufficiently thick may be 0.03 ⁇ m or more.
  • forming all parts of the metal interior and exterior materials 1 with PVD coating uniformly and thickly takes a lot of time and cost and is not easy to process. Therefore, a problem may occur such that a certain portion is formed thinner than other portions, or is formed thinly in contact with a jig or the like, a rear portion, a hidden portion, or the like.
  • the portion is anodized not only to the outermost surface layer 20 but also to the barrier layer 10 in the anodic oxidation step. If there is no barrier layer 10 made of a valve metal under the surface layer 20 made of an aluminum-based metal, a problem occurs because the metal interior and exterior materials 1 directly react with the anodizing solution, but the barrier layer 10 ),
  • the barrier layer 10 is anodized to act as a barrier having a predetermined thickness. That is, when a known color of titanium or niobium is developed, a phenomenon occurs that the surface is colored according to an applied voltage. On the other hand, the lack of oxidative pore depth in this part does not show a uniform coloring effect, but this part does not detract from the value of the product because it is a problem-free part.
  • the anodization depth is about 30 to 300 nm and similar in the case of other metal layers. Therefore, the thickness of the barrier layer 10 may be 0.03 ⁇ m or more, preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m. If it is above, the surface of the metal interior / exterior material 1 can be fully protected.
  • tantalum is about 1.6 nm per 1V, and 100V anodization oxidizes about 160 nm, and niobium is anodic oxidation up to 300-400 nm, so that the barrier layer 10 may be subjected to anodization depending on the conditions of anodizing the surface layer 20.
  • the minimum thickness should be changed accordingly.
  • the upper limit of the thickness of the barrier layer 10 is not particularly limited, but 5 ⁇ m or less is preferable in consideration of the speed of formation of the barrier layer 10 and economical efficiency depending on the price.
  • the surface layer 20 forming step (b) is a step of forming the surface layer 20 of aluminum-based metal on the barrier layer 10 formed on the surface of the metal interior and exterior material 1 as described above.
  • the formation method it is most preferable to use the sputtering method or the cathode vacuum arc method similarly to the barrier layer 10 described above. Not appropriate
  • the surface layer 20 may be formed of various materials including aluminum components such as pure aluminum, aluminum alloy, and the like.
  • the surface layer 20 may be formed of an aluminum oxide, nitride, or oxynitride layer having a stoichiometric composition ratio.
  • the aluminum compound layer having less than the stoichiometric composition ratio is excellent in hardness and excellent adhesion and strong bonding strength compared to materials such as pure aluminum or aluminum alloy, so that the barrier layer (10) on the metal interior and exterior materials (1) and later It is because strong adhesive force and adhesive force can be provided between the anodic oxide film layers formed.
  • the anodic oxidation step of step c) is a process of oxidizing a part of the above-described surface layer 20 to an anodized film layer by anodizing treatment, in a range of 5 to 100 ⁇ m depending on the required thickness of the anodized film layer.
  • the surface layer 20 must be formed.
  • the thickness range is limited when the surface layer 20 is formed to be less than 5 ⁇ m. Since the depth of aging is too thin, there is a problem in that it is not possible to make a variety of colors in the subsequent coloration process, and if the surface layer 20 is formed in excess of 100 ⁇ m, the process time is excessively long, productivity not only decreases but also high process temperature This is because the workpiece is deformed or thickened, causing problems with assembly with other assemblies.
  • Anodizing treatment that is, anodizing treatment, is a process of forming a film such as aluminum oxide (Al 2 O 3 ) by polarizing a metal product such as aluminum as an anode in a predetermined electrolyte solution under appropriate conditions. Since this film is very hard and has a high corrosion resistance and a porous layer can be formed and dyed in various colors, it is a process that can enhance the commercial value by giving the surface a beautiful and profound color along with practicality such as corrosion resistance and abrasion resistance. to be.
  • the anodic oxidation may be any of sulfuric acid, hydroxyl, chromic acid, and the like, or a mixed acid thereof. Since the thickness of the film is adjusted according to the required color, the surface layer 20 is preferably prepared in advance as described above. It can be formed to ⁇ 100 ⁇ m.
  • the method may further include sanding the surface of the surface or performing a hair line treatment before c) anodizing the surface in order to improve the properties or the hall of the required product.
  • Sanding is an operation for polishing the surface of the undercoat with a prescribed sand paper in order to achieve the desired surface treatment purpose, and is for removing surface defects and improving smoothness and adhesion.
  • Hairline is a work used for the purpose of improving product quality by giving hair-like lines to the surface.
  • the final product is matte, it may be anodized as it is, but in the case of manufacturing a glossy product, as the thickness of the thin film increases, the glossiness of the thin film decreases, so that the surface of the product is not immediately anodized c).
  • a polishing step more specifically, chemical polishing, electropolishing or mechanical polishing, before the step.
  • Chemical polishing refers to a process of chemically smoothing the surface of a metal by a polishing process without using an external current.
  • the main raw material of chemical polishing is phosphoric acid, which performs a process of forming a phosphate film.
  • Electropolishing refers to a polishing method that overcomes the limitations of the surface gloss formation generated by chemical polishing and requires more high gloss, to produce a smooth surface by electrolysis under predetermined conditions.
  • the dye coloring and sealing treatment step (d) when the porous coating layer is formed through anodization, the dye is colored on the anodized surface by dye coloring such as organic coloring, inorganic coloring or electrolytic coloring. And finally, performing a sealing process for blocking the pores of the anodized film by a method such as hydration sealing, metallic sealing, organic sealing, and low temperature sealing.
  • the dye coloring process can enhance the product value by adding aesthetics to the surface of the product, and can improve the weatherability and durability of the coloring and the corrosion resistance of the coating through the sealing process.
  • the surface of the material is washed through an organic solvent and an ultrasonic cleaning device. After the material is mounted in a vacuum furnace, argon gas ion collision or metal ion collision is performed.
  • the barrier layer 10 is formed using a Ti 6 Al 4 V alloy so as to have a minimum thin film thickness of 1 ⁇ m by sputtering. After that, the surface layer 20 was formed in the form of an aluminum thin film of 30 ⁇ m. After that, anodization was carried out by sulfuric acid method, and after sealing, sealing was performed.
  • the metal interior and exterior materials (1) to be treated by the above-described method were in good condition in the top, bottom, left and right front surface anodization.
  • the stepped portion of the rear part was somewhat dark in color due to the thickness variation of the aluminum film, but there was no problem in use because it was not visible after assembly.
  • Various colors such as black, red, gold, green, blue and pink are beautifully implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention relates to a method for surface treating a metal interior/exterior material and a surface-treated metal interior/exterior material and, more specifically, to a method for surface treating a metal interior/exterior material, comprising: forming, from a valve metal, a barrier layer on a surface of the metal interior/exterior material; forming, from an aluminum-based metal, a surface layer on the barrier layer; and anodizing the surface, and dye coloring and sealing the anodized surface. According to the present invention, anodizing, dye coloring and sealing techniques are applied to surfaces of various metal interior/exterior materials such as zinc, stainless steel, magnesium, and the like, thereby having an effect of enabling the surface color of the metal interior/exterior materials to implement variety, elegance and uniformity.

Description

금속 내외장재의 표면처리 방법 및 표면 처리된 금속 내외장재Surface treatment method of metal interior and exterior materials and surface treated metal interior and exterior materials
본 발명은 금속 내외장재의 표면처리 방법 및 표면 처리된 금속 내외장재에 관한 것으로, 더욱 상세하게는 다양한 금속 내외장재에 표면에 밸브 금속(Valve Metal)으로 이루어진 장벽층 및 알루미늄계 금속으로 이루어진 표면층을 형성한 뒤 양극 산화 피막처리 기술을 적용하여 미려하면서도 균일한 표면 색상을 구현하는 금속 내외장재의 표면 처리 기술에 관한 것이다.The present invention relates to a method for surface treatment of metal interior and exterior materials and to a surface-treated metal interior and exterior material, and more particularly to forming a barrier layer made of a valve metal and a surface layer made of an aluminum-based metal on various metal interior and exterior materials. The present invention relates to a surface treatment technology for metal interior and exterior materials that realizes an elegant and uniform surface color by applying anodization technology.
양극 산화 피막처리법(Anodizing)이란, 전기화학적인 피막 형성방법 중 하나로서 황산, 수산, 크롬산 등의 용액을 전해액으로 사용하여 알루미늄 등의 금속 표면에 양극 산화 피막을 형성시켜, 기계적·전기적·화학적 특성이 우수한 피막을 형성하는 기술을 의미한다. 이러한 양극 산화 피막처리법에 의해 형성된 피막은 대단히 단단하고 내식성이 크며 다양한 색으로 염색될 수 있는데, 이에 따라 다양한 산업 분야에 사용되고 있으며, 특히 최근 수요가 급증 되고 있는 휴대폰 케이스 등의 제품 관련 산업에서 각광받고 있는 기술이다.Anodizing is one of the electrochemical film forming methods, which uses an aqueous solution of sulfuric acid, hydroxyl, chromic acid, etc. as an electrolyte to form an anodized film on a metal surface, such as aluminum, to provide mechanical, electrical, and chemical properties. This means a technique for forming an excellent film. The film formed by the anodic oxidation film treatment method is very hard, has high corrosion resistance, and can be dyed in various colors. Accordingly, the film is used in various industrial fields, and has been in the spotlight in product related industries such as mobile phone cases, which are recently in demand. It is a skill.
하지만, 알루미늄 재질의 경우 알루미늄 합금 판재를 기계 가공한 후 양극 산화시키는 방법만이 실제로 적용되고 있는 실정이며, 이는 순 알루미늄의 경우 강도가 부족하고, 반면 강도가 우수한 알루미늄 합금은 첨가물인 실리콘 등이 표면에 불균일하게 석출되어 균일한 양극 산화 피막을 형성할 수 없기 때문이다.However, in the case of aluminum material, only the method of machining an aluminum alloy sheet and then anodizing is actually applied, which is insufficient in the case of pure aluminum, whereas the aluminum alloy having high strength has an additive surface such as silicon. This is because it is impossible to form a uniform anodic oxide film due to deposition unevenly.
한편, 기계 가공 방법은 생산성을 고려할 때 단순한 형태의 경우에만 적용 가능하고 복잡한 형태에는 제조 가격에 따른 경제성에 의해 적용하기 어려우며, 또한 이후 조립 공정에도 많은 노력과 비용이 소모되는 방법이다. 이에 복잡한 형상을 대량 생산하기 용이한 알루미늄 다이캐스팅 제품에 알루미늄을 진공 증착시키고 증착된 알루미늄을 양극 산화시키는 방법도 최근 개발되어 왔지만, 진공 증착법의 박막 밀착력 등에 문제가 있었다.On the other hand, the machining method is applicable only to the simple form in consideration of the productivity, the complex form is difficult to apply by the economics according to the manufacturing price, and also a method that consumes a lot of effort and cost in the subsequent assembly process. Accordingly, a method of vacuum depositing aluminum and anodizing the deposited aluminum on aluminum die-casting products, which are easy to mass-produce complex shapes, has been recently developed, but there are problems such as thin film adhesion of vacuum deposition.
이를 해결하기 위해 대한민국 공개특허공보 제10-2012-0116558호(고속성막장치 및 이를 이용한 성막방법, 2012.10.23. 공개)에서 진공 증착법과 아크법을 조합한 방법으로 진공 증착법의 밀착력 문제를 해결하는 방법이 제시된바 있고, 대한민국 공개특허공보 제10-2012-0116557호(다이캐스팅 합금의 표면처리 방법 및 이에 의하여 제조된 표면구조를 가지는 다이캐스팅 합금재, 2012.10.23. 공개)에서 화학 양론 이하의 산화물, 질화물 또는 산질화물을 이용한 방법 또한 제시된바 있다.In order to solve this problem, in Korean Patent Laid-Open Publication No. 10-2012-0116558 (high speed film forming apparatus and film forming method using the same, published on October 23, 2012), the method of solving the adhesion problem of the vacuum deposition method by combining the vacuum deposition method and the arc method. The method has been proposed, the oxide below the stoichiometry in the Republic of Korea Patent Publication No. 10-2012-0116557 (Method of surface treatment of die-cast alloy and die-casting alloy material having a surface structure produced, published on October 23, 2012), Methods using nitrides or oxynitrides have also been suggested.
또한 대한민국 공개특허공보 제10-2013-0115475호(금속 내외장재의 표면처리 방법 및 이에 의하여 제조된 표면구조를 가지는 금속 내외장재, 2013.10.22. 공개)에서는 알루미늄 증착시 증착막의 두께가 얇은 지그와의 접촉 부위에 콜드 스프레이법으로 두께를 보강하는 방법을 적용하여 알루미늄 재질이 아닌 마그네슘 합금 재질 등에도 적용가능한 방법이 제시된바 있지만, 연속 공정이 아닌 별도의 공정이 필요하다는 문제가 있었다.In addition, the Republic of Korea Patent Publication No. 10-2013-0115475 (Method of surface treatment of the metal interior and exterior materials and the metal interior and exterior materials having a surface structure manufactured by it, published on October 22, 2013) contact with a jig having a thin film thickness during deposition of aluminum Applicable to the method of reinforcing the thickness by cold spray method on the site has been proposed a method that can be applied to magnesium alloy material, but not aluminum, there was a problem that a separate process rather than a continuous process is required.
알루미늄 재질의 내외장재의 경우 눈에 보이는 부위의 알루미늄 증착 두께가 충분한 경우에는 눈에 보이지 않는 숨은 부위가 이후 착색 봉공 처리 과정에서 색상이 균일하게 형성되지 않더라도 사용상에 문제가 없어 증착을 이용한 방법을 적용시키는데 큰 어려움이 없지만, 마그네슘 합금이나 스테인리스, 아연 합금 등의 금속 내외장재의 경우 알루미늄이 얇은 부위가 있으면 그 부분이 양극 산화 공정에서 터지는 문제가 생겼다.In the case of the interior and exterior materials of aluminum material, if the thickness of aluminum deposition of the visible part is sufficient, even if the hidden invisible part is not formed uniformly in the subsequent color sealing process, there is no problem in use. Although there is no great difficulty, in the case of metal interior and exterior materials such as magnesium alloy, stainless steel, and zinc alloy, when aluminum has a thin portion, a problem arises that the portion bursts in the anodic oxidation process.
또, 알루미늄 형성 과정 중에 알루미늄층이 너무 얇게 형성된 부위가 생기거나, 이후에 전해연마, 화학연마 혹은 기계연마에 의한 연마 공정이나 헤어라인 형성 공정 등에 의해 일부 알루미늄층이 너무 얇아지게 되면, 이 부분 또한 양극 산화 공정에서 동일한 문제점이 발생 되었다.In addition, if a part where the aluminum layer is formed too thin during the aluminum formation process, or some aluminum layer becomes too thin by electropolishing, chemical polishing or mechanical polishing or hairline forming process, this part also becomes The same problem occurred in the anodic oxidation process.
따라서, 알루미늄 재질 이외의 금속 내외장재들의 표면도 안정적으로 양극 산화처리할 수 있고, 이에 따라 이러한 금속 내외장재들의 표면에 다양한 외관 색상을 구현할 수 있도록 하는 기술이 요구되는 실정이다.Accordingly, the surface of the metal interior and exterior materials other than the aluminum material can be stably anodized, and accordingly, there is a need for a technology for implementing various exterior colors on the surfaces of the metal interior and exterior materials.
본 발명은 상술한 문제점을 해결하기 위하여 창안된 것으로, 본 발명의 목적은 다양한 금속 내외장재에 표면에 밸브 금속(Valve Metal)으로 이루어진 장벽층 및 알루미늄계 금속으로 이루어진 표면층을 형성한 뒤 양극 산화 피막처리 기술을 적용하여 미려하면서도 균일한 표면 색상을 구현하는 금속 내외장재의 표면 처리 기술을 제공하는데 있다.The present invention was devised to solve the above problems, and an object of the present invention is to form a barrier layer made of a valve metal and a surface layer made of an aluminum-based metal on the surface of various metal interior and exterior materials, followed by anodizing. It is to provide a surface treatment technology of the metal interior and exterior materials that apply the technology to realize a beautiful and uniform surface color.
상술한 바와 같은 목적을 달성하기 위하여 본 발명의 일 실시예에 따라 a) 금속 내외장재(1) 표면에 밸브 금속(Valve Metal)으로 장벽층(10)을 형성하는 단계; b) 상기 장벽층(10) 위에 알루미늄(Al)계 금속으로 표면층(20)을 형성하는 단계; c) 상기 표면층(20)이 형성된 표면을 양극 산화시키는 단계; 및 d) 양극 산화된 표면에 염료를 착색하고 봉공 처리하는 단계;를 포함하는 금속 내외장재의 표면처리 방법을 제공한다.According to an embodiment of the present invention to achieve the object as described above a) forming a barrier layer (10) with a valve metal (Valve Metal) on the surface of the metal interior and exterior (1); b) forming a surface layer 20 of aluminum (Al) -based metal on the barrier layer (10); c) anodizing the surface on which the surface layer 20 is formed; And d) coloring and sealing the dye on the anodized surface.
이때 상기 밸브 금속은 티타늄(Ta), 니오븀(Nb), 탄탈륨(Ta), 지르코늄(Zr), 바나듐(V), 텅스텐(W), 하프늄(Hf), 알루미늄(Al) 및 이트륨(Y)으로 이루어진 군 중에서 선택되는 하나의 단일 금속 또는 둘 이상의 합금일 수 있으며, 바람직하게는 상기 밸브 금속은 티타늄(Ta), 알루미늄(Al) 및 바나듐(V)의 합금이거나 티타늄(Ta), 알루미늄(Al) 및 니오븀(Nb)의 합금일 수 있고, 더욱 바람직하게는 상기 밸브 금속은 Ti6Al4V 또는 Ti6Al7Nb일 수 있다.The valve metal is titanium (Ta), niobium (Nb), tantalum (Ta), zirconium (Zr), vanadium (V), tungsten (W), hafnium (Hf), aluminum (Al) and yttrium (Y). It may be one single metal or two or more alloys selected from the group consisting of, preferably the valve metal is an alloy of titanium (Ta), aluminum (Al) and vanadium (V) or titanium (Ta), aluminum (Al) And an alloy of niobium (Nb), more preferably the valve metal may be Ti6Al4V or Ti6Al7Nb.
또한, 상기 표면층(20)은, 알루미늄, 알루미늄 합금, 화학 양론 조성비 미만의 알루미늄 산화물·질화물·산질화물로 이루어진 군 중에서 선택되는 하나로 형성된 단일층이거나, 둘 이상이 적층된 복합층인 것이 바람직하다.In addition, the surface layer 20 is preferably a single layer formed of one selected from the group consisting of aluminum, an aluminum alloy, and an aluminum oxide, nitride, and oxynitride of less than the stoichiometric composition ratio, or a composite layer in which two or more are laminated.
상기 b) 단계와 c) 단계 사이에, 제품 표면을 샌딩(sanding) 처리하거나 헤어라인(hair line) 처리하는 단계를 더 포함하거나, 화학연마, 전해연마 및 기계연마로 이루어진 군 중에서 선택되는 적어도 하나 이상을 수행하는 연마 단계를 더 포함할 수 있다.Between step b) and step c), further comprising the step of sanding (sanding) the surface of the product, or at least one selected from the group consisting of chemical polishing, electropolishing and mechanical polishing It may further comprise a polishing step for performing the above.
한편, 상기 장벽층(10)의 두께가 0.03~5 ㎛, 상기 표면층(20)의 두께가 5~100 ㎛인 것이 바람직하며, 상기 장벽층(10) 및 표면층(20)이 PVD(Physical Vapor Deposition) 방식으로, 더욱 바람직하게는 진공증발(Evaporation), 스퍼터링(Sputtering) 및 음극 진공 아크법(Cathodic Vacuum Arc)로 이루어진 군 중에서 선택되는 적어도 하나 이상인 방식으로 형성될 수 있다.Meanwhile, the barrier layer 10 may have a thickness of 0.03 to 5 μm, and the surface layer 20 may have a thickness of 5 to 100 μm, and the barrier layer 10 and the surface layer 20 may have PVD (Physical Vapor Deposition). More preferably, at least one selected from the group consisting of evaporation, sputtering, and cathodic vacuum arc.
또, 상기 a) 단계 이전에, 초음파 세척 또는 이온 충돌을 통해 금속 내외장재(1) 표면을 전처리하는 단계를 더 포함할 수 있으며, 상기 d) 단계에서, 유기물 착색, 무기물 착색 및 전해 착색으로 이루어진 군 중에서 선택되는 적어도 하나 이상의 방식으로 염료를 양극 산화된 표면에 착색하고, 수화 봉공, 금속성 봉공, 유기물 봉공 및 저온 봉공으로 이루어진 군 중에서 선택되는 적어도 하나 이상의 방식으로 착색된 표면을 봉공 처리하는 것이 바람직하다.Further, before the step a), the method may further include a step of pretreating the surface of the metal interior and exterior materials (1) through ultrasonic cleaning or ion bombardment, and in the step d), the group consisting of organic material coloring, inorganic coloring and electrolytic coloring. It is preferable to color the dye to the anodized surface in at least one manner selected from among, and to seal the colored surface in at least one manner selected from the group consisting of hydration, metallic, organic and low temperature. .
상술한 바와 같은 목적을 달성하기 위하여 본 발명의 다른 실시예에 따라 금속 내외장재(1) 표면에 밸브 금속(Valve Metal)로 이루어진 장벽층(10)이 형성되고, 알루미늄(Al)계 금속으로 이루어지고 표면이 양극 산화 처리된 표면층(20)이 상기 장벽층(10) 위에 형성된 표면 처리된 금속 내외장재를 제공한다.In order to achieve the above object, according to another embodiment of the present invention, a barrier layer 10 made of a valve metal is formed on the surface of the metal interior and exterior material 1, and made of aluminum (Al) -based metal. A surface anodized surface layer 20 provides a surface treated metal interior and exterior material formed on the barrier layer 10.
이때 상기 양극 산화 처리된 표면층(20) 표면은 염료가 착색된 후 봉공 처리된 것이 바람직하다.In this case, the surface of the anodized surface layer 20 is preferably sealed after the dye is colored.
또한, 상기 밸브 금속은 티타늄(Ta), 니오븀(Nb), 탄탈륨(Ta), 지르코늄(Zr), 바나듐(V), 텅스텐(W), 하프늄(Hf), 알루미늄(Al) 및 이트륨(Y)으로 이루어진 군 중에서 선택되는 하나의 단일 금속 또는 둘 이상의 합금일 수 있으며, 바람직하게는 상기 밸브 금속은 티타늄(Ta), 알루미늄(Al) 및 바나듐(V)의 합금이거나 티타늄(Ta), 알루미늄(Al) 및 니오븀(Nb)의 합금일 수 있고, 더욱 바람직하게는 상기 밸브 금속은 Ti6Al4V 또는 Ti6Al7Nb일 수 있다.In addition, the valve metal is titanium (Ta), niobium (Nb), tantalum (Ta), zirconium (Zr), vanadium (V), tungsten (W), hafnium (Hf), aluminum (Al) and yttrium (Y) It may be one single metal or two or more alloys selected from the group consisting of: Preferably the valve metal is an alloy of titanium (Ta), aluminum (Al) and vanadium (V) or titanium (Ta), aluminum (Al) ) And an alloy of niobium (Nb), and more preferably the valve metal may be Ti6Al4V or Ti6Al7Nb.
또, 상기 표면층(20)은, 알루미늄, 알루미늄 합금, 화학 양론 조성비 미만의 알루미늄 산화물·질화물·산질화물로 이루어진 군 중에서 선택되는 하나로 형성된 단일층이거나, 둘 이상이 적층된 복합층인 것이 바람직하다.The surface layer 20 is preferably a single layer formed of one selected from the group consisting of aluminum, aluminum alloys, aluminum oxides, nitrides, and oxynitrides having a lower than stoichiometric composition ratio, or two or more laminated layers.
한편, 상기 장벽층(10)의 두께가 0.03~5 ㎛, 상기 표면층(20)의 두께가 5~100 ㎛인 것이 바람직하며, 상기 장벽층(10) 및 표면층(20)이 PVD(Physical Vapor Deposition) 방식으로 형성되되, 더욱 바람직하게는 진공증발(Evaporation), 스퍼터링(Sputtering) 및 음극 진공 아크법(Cathodic Vacuum Arc)로 이루어진 군 중에서 선택되는 적어도 하나 이상인 방식으로 형성될 수 있다.Meanwhile, the barrier layer 10 may have a thickness of 0.03 to 5 μm, and the surface layer 20 may have a thickness of 5 to 100 μm, and the barrier layer 10 and the surface layer 20 may have PVD (Physical Vapor Deposition). It is formed in a) method, more preferably at least one selected from the group consisting of evaporation, sputtering and cathodic vacuum arc (Cathodic Vacuum Arc).
상술한 바와 같은 본 발명의 금속 내외장재의 표면처리 방법 및 표면 처리된 금속 내외장재는, 아연, 스테인리스, 마그네슘 등의 일반적으로 널리 쓰이는 다양한 금속 내외장재의 표면에 양극 산화 및 착색, 봉공 처리 기술을 적용하여, 다양하고 미려하면서도 균일한 금속 내외장재의 표면 색상을 구현할 수 있는 효과가 있다.As described above, the surface treatment method of the metal interior and exterior materials and the surface-treated metal interior and exterior materials of the present invention apply anodic oxidation, coloring, and sealing treatment technology to the surfaces of various metal interior and exterior materials commonly used, such as zinc, stainless steel, and magnesium. There is an effect that can realize a variety of beautiful and uniform surface color of the metal interior and exterior materials.
도 1은 본 발명의 일 실시예에 따른 금속 내외장재의 표면처리 방법에 대한 흐름도(flow chart)를 도시한 도면이다.1 is a flowchart illustrating a method for treating a surface of a metal interior and exterior material according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 표면 처리된 금속 내외장재의 적층 구조를 나타낸 모식도이다.Figure 2 is a schematic diagram showing a laminated structure of the surface-treated metal interior and exterior material according to another embodiment of the present invention.
[부호의 설명][Description of the code]
1 : 금속 내외장재1: Metal interior and exterior materials
10 : 장벽층10: barrier layer
20 : 표면층20: surface layer
이하 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms or words used in the present specification and claims should not be construed as being limited to ordinary or dictionary meanings, but should be construed as meanings and concepts consistent with the technical spirit of the present invention.
먼저 본 발명은 바람직한 일 실시예에 따라 장벽층 형성단계, 표면층 형성단계, 양극 산화 단계 및 염료착색 / 봉공처리 단계를 포함하는 금속 내외장재 표면처리 방법을 제공한다. 이에 대한 흐름도(flow chart)가 도 1에 도시되어 있다. 이하 시계열적 각 단계에 대하여 상세히 설명한다.First, the present invention provides a method for surface treatment of metal interior and exterior materials including a barrier layer forming step, a surface layer forming step, an anodizing step, and a dye coloring / sealing step according to a preferred embodiment. A flow chart for this is shown in FIG. 1. Each time series step will be described in detail below.
먼저 장벽층 형성단계에서 피 가공물인 금속 내외장재(1)를 준비한다. 금속 내외장재(1)는 제품의 내외장재로 사용될 수 있는 금속을 의미하며 아연, 스테인리스, 마그네슘, 알루미늄 합금, 다이캐스팅 함금(종류에 따라서 규소(Sa), 철(Fe), 구리(Cu), 망간(Mn), 아연(Zn), 니켈(Na), 티타늄(Ta), 납(Pb), 주석(Sn) 또는 크롬(Cr) 성분이 첨가될 수 있음) 등 다양한 소재로 된 금속 내외장재(1)에 본 발명이 적용될 수 있다.First, in the barrier layer forming step, the metal interior and exterior materials 1 to be processed are prepared. Metal interior and exterior materials (1) means a metal that can be used as interior and exterior materials of the product, zinc, stainless steel, magnesium, aluminum alloy, die-casting alloy (silicon (Sa), iron (Fe), copper (Cu), manganese (Mn depending on the type) ), Metal (zn), nickel (Na), titanium (Ta), lead (Pb), tin (Sn), or chromium (Cr) components can be added). The invention can be applied.
특히 본 발명에서 금속 내외장재(1)는 알루미늄 성분을 포함하지 않는 금속일 수 있는데, 알루미늄을 포함하지 않아도 본 발명에 따른 공정에 의해 양극 산화 피막처리(Anodizing) 공정을 안정적으로 진행할 수 있다.In particular, the metal interior and exterior materials 1 in the present invention may be a metal that does not contain an aluminum component, and it is possible to stably perform the anodizing process by the process according to the present invention without including aluminum.
장벽층 형성단계에서, 상술한 금속 내외장재(1)의 표면에 밸브 금속으로 장벽층(10)을 형성하게 된다. 밸브 금속(Valve Metal)이란, 밸브 효과(Valve Effect)를 보이는 금속을 의미하며, 밸브 효과란 용액 속에서 전류가 용액에서 금속 방향으로는 흐르지만 반대로 금속에서 용액 방향으로는 거의 흐르지 않는 현상을 말한다.In the barrier layer forming step, the barrier layer 10 is formed of a valve metal on the surface of the metal interior and exterior material 1 described above. The valve metal refers to a metal that exhibits a valve effect. The valve effect refers to a phenomenon in which a current flows in a solution-to-metal direction but almost does not flow in a metal-to-solution direction. .
밸브 금속 중 티타늄과 니오븀 등은 보석류 등을 다루는 장식 산업에서 어노다이징 공정을 통해 다양한 색상을 연출하는데 쓰이고 있다. 더욱 상세하게는 이들 밸브 금속을 어노다이징 할 때 인가 전압에 따라서 청색, 노란색, 핑크색 또는 녹색 등의 간섭 색상이 발현되며, 인가 전압의 크기에 따라 어노다이징 깊이가 조절되어 최대 1㎛ 이하에서 다양한 색을 보이게 된다.Among the valve metals, titanium and niobium are used to produce various colors through the anodizing process in the decorative industry dealing with jewelry. More specifically, when anodizing these valve metals, interference colors such as blue, yellow, pink, or green appear depending on the applied voltage, and the anodizing depth is adjusted according to the magnitude of the applied voltage so that at most 1 μm or less. You will see various colors.
한편, 본 발명에서 장벽층(10)은 티타늄, 니오븀, 탄탈륨, 바나듐, 지르코늄, 텅스텐, 하프늄, 이트륨 등의 단일 금속, 또는 이들 금속 2종 이상 상호간 합금으로 형성할 수 있다. 또한, 상기 단일 금속 또는 상호간 합금에 알루미늄을 첨가시킨 합금으로도 형성할 수 있는데, 근래 다양한 조성으로 공급되고 있는 티타늄 알루미늄 합금인 Ti6Al4V 또는 Ti6Al7Nb으로 장벽층(10)을 형성하는 것이 더욱 바람직하다.Meanwhile, in the present invention, the barrier layer 10 may be formed of a single metal such as titanium, niobium, tantalum, vanadium, zirconium, tungsten, hafnium, yttrium, or an alloy of two or more of these metals. In addition, it may be formed of an alloy in which aluminum is added to the single metal or the mutual alloy, and it is more preferable to form the barrier layer 10 from Ti 6 Al 4 V or Ti 6 Al 7 Nb, which is a titanium aluminum alloy currently supplied in various compositions.
본 명세서에서 사용되는 "Ti6Al4V" 또는 "Ti6Al7Nb"라는 용어에서 각 숫자는 화합물의 화학 양론비를 의미하는 것이 아니라 합금에서의 중량비를 의미한다. 더욱 상세하게는, "Ti6Al4V"의 경우 전체 중량을 기준으로 알루미늄(Al)이 6 wt%, 바나듐(V)이 4 wt% 함유된 티타늄-알루미늄-바나듐 합금을 의미하며, "Ti6Al7Nb"의 경우 전체 중량을 기준으로 알루미늄(Al)이 6 wt%, 니오븀(Nb)이 7 wt% 함유된 티타늄-알루미늄-니오븀 합금을 의미한다.As used herein, each number in the terms "Ti6Al4V" or "Ti6Al7Nb" does not mean a stoichiometric ratio of the compound but rather a weight ratio in the alloy. More specifically, "Ti6Al4V" refers to a titanium-aluminum-vanadium alloy containing 6 wt% of aluminum (Al) and 4 wt% of vanadium (V) based on the total weight, and in the case of "Ti6Al7Nb". A titanium-aluminum-niobium alloy containing 6 wt% of aluminum (Al) and 7 wt% of niobium (Nb) by weight.
이러한 밸브 금속으로 장벽층(10)을 금속 내외장재(1) 표면에 먼저 형성하게 되면, 금속 내외장재(1)에 양극 산화 공정 및 착색/봉공 공정을 수행할 때 상술한 바와 같이 표면이 터지는 현상을 방지할 수 있다.When the barrier layer 10 is first formed on the surface of the metal interior and exterior material 1 using the valve metal, the surface rupture phenomenon is prevented as described above when the anodic oxidation process and the coloring / sealing process are performed on the metal interior and exterior material 1. can do.
더욱 상세하게는, 장벽층(10) 상부의 알루미늄계 물질이 양극 산화될 때, 두께가 두꺼운 부분은 아직 산화되지 않은 상태로 남아 있는 반면 얇은 부분은 전부 양극 산화되어 장벽층(10)이 어노다이징 용액과 접촉하게 된다. 이때 장벽층(10)을 벨브 금속류로 구성하게 되면 최대 1㎛ 이하에서만 산화되어 장벽층으로 작용하기 때문에 이러한 효과를 얻을 수 있다. 장벽층(10)이 존재하지 않는다면 그 부분에서 전류가 과다하게 흐르면서 표면이 터지는 현상이 발생하게 된다.More specifically, when the aluminum-based material on the barrier layer 10 is anodized, the thick portion remains unoxidized while the thin portion is all anodized so that the barrier layer 10 is anodized. Contact with the easing solution. At this time, when the barrier layer 10 is composed of valve metals, such an effect can be obtained because the barrier layer 10 is oxidized only at a maximum of 1 μm or less. If the barrier layer 10 is not present, excessive current flows in the portion, causing the surface to burst.
장벽층(10)을 형성하는 방법은, CVD(Chemical Vapor Deposition) 방식의 경우 공정 온도가 통상적으로 500℃ 이상의 고온이어서 소재의 변형 등의 문제가 발생될 수 있어 적절하지 못하므로, PVD(Physical Vapor Deposition) 방식을 채택하는 것이 바람직하다. 더욱 상세하게는 진공증발(Evaporation), 스퍼터링(Sputtering) 및 음극 진공 아크법(Cathodic Vacuum Arc)로 이루어진 군 중에서 선택되는 적어도 하나 이상의 방식을 채택하여 장벽층(10)을 표면에 형성할 수 있으나, 형성물의 밀착력 등을 감안하였을 때 스퍼터링 또는 음극진공아크법을 사용하는 것이 가장 바람직하다.The method of forming the barrier layer 10 is not appropriate because the process temperature is typically higher than 500 ° C. in the case of CVD (chemical vapor deposition) method, which may cause problems such as deformation of a material, and thus is not appropriate. It is preferable to adopt the Deposition method. More specifically, the barrier layer 10 may be formed on the surface by adopting at least one method selected from the group consisting of evaporation, sputtering, and cathodic vacuum arc. It is most preferable to use the sputtering or the cathode vacuum arc method in view of the adhesion of the formation and the like.
장벽층(10)을 형성하기 이전에 피 가공물인 금속 내외장재(1)의 표면에 잔존하는 기름성분이나 이물질 등을 제거하기 위한 초음파 세척 과정을 수행하거나, 진공조 내부에서 아르곤 가스 이온충돌 또는 금속 이온충돌의 방법으로 표면 불순물 혹은 산화물 등을 제거하는 과정을 수행하는 것이 바람직하다.Before forming the barrier layer 10, an ultrasonic cleaning process for removing oil components or foreign substances remaining on the surface of the metal interior and exterior materials 1 to be processed is performed, or argon gas ion collision or metal ions in a vacuum chamber. It is preferable to perform a process of removing surface impurities or oxides by the collision method.
한편, 장벽층(10)의 두께는 양극 산화 시 공정 조건 및 후술할 표면층(20)의 두께에 따라 달라질 수 있지만, 표면층(20)의 두께가 충분히 두꺼운 경우에는 0.03㎛ 이상으로도 가능하다. 하지만 PVD 코팅으로 금속 내외장재(1)의 모든 부분을 균일하면서도 두껍게 형성하는 것은 많은 시간과 비용이 소요되며 공정도 용이하지 않다. 따라서 일정 부위가 다른 부위에 비해 얇게 형성되거나, 치구 등과 접촉하는 부위나 후면부, 숨겨진 부위 등에 얇게 형성되는 등의 문제가 발생될 수 있다.On the other hand, the thickness of the barrier layer 10 may vary depending on the process conditions at the time of anodization and the thickness of the surface layer 20 to be described later, if the thickness of the surface layer 20 is sufficiently thick may be 0.03㎛ or more. However, forming all parts of the metal interior and exterior materials 1 with PVD coating uniformly and thickly takes a lot of time and cost and is not easy to process. Therefore, a problem may occur such that a certain portion is formed thinner than other portions, or is formed thinly in contact with a jig or the like, a rear portion, a hidden portion, or the like.
이러한 부위는 가장 두꺼운 부위에 비해 장벽층(10)과 표면층(20)이 얇게 형성되어 있으므로, 양극 산화 단계에서 가장 최외곽의 표면층(20) 뿐만 아니라 장벽층(10)까지 양극 산화된다. 알루미늄계 금속으로 이루어지는 표면층(20) 하부에 밸브 금속으로 이루어지는 장벽층(10)이 없는 경우에는 이 부분에서 금속 내외장재(1)가 직접 어노다이징 용액과 반응하게 되므로 문제가 발생되지만 장벽층(10)이 존재하는 경우 장벽층(10)이 양극 산화되면서 일정 두께의 장벽으로 작용하게 된다. 즉 일반적으로 알려진 티타늄이나 니오븀의 발색 시 표면이 인가 전압에 따라 발색되는 현상이 일어나게 된다. 한편 이 부분의 산화 기공 깊이가 부족하여 균일한 착색 효과를 보일 수는 없지만 이러한 부위는 외관상 문제가 없는 부위이므로 제품의 가치를 훼손시키지는 않는다.Since the barrier layer 10 and the surface layer 20 are thinner than those of the thickest portion, the portion is anodized not only to the outermost surface layer 20 but also to the barrier layer 10 in the anodic oxidation step. If there is no barrier layer 10 made of a valve metal under the surface layer 20 made of an aluminum-based metal, a problem occurs because the metal interior and exterior materials 1 directly react with the anodizing solution, but the barrier layer 10 ), The barrier layer 10 is anodized to act as a barrier having a predetermined thickness. That is, when a known color of titanium or niobium is developed, a phenomenon occurs that the surface is colored according to an applied voltage. On the other hand, the lack of oxidative pore depth in this part does not show a uniform coloring effect, but this part does not detract from the value of the product because it is a problem-free part.
티타늄의 경우 양극 산화 깊이가 30~300 ㎚정도이며 다른 금속 층의 경우에도 비슷하므로, 장벽층(10)의 두께는 0.03 ㎛ 이상이면 되고, 바람직하게는 0.1 ㎛ 이상이며, 더욱 바람직하게는 0.3 ㎛ 이상이면 금속 내외장재(1)의 표면을 충분히 보호할 수 있다.In the case of titanium, the anodization depth is about 30 to 300 nm and similar in the case of other metal layers. Therefore, the thickness of the barrier layer 10 may be 0.03 μm or more, preferably 0.1 μm or more, and more preferably 0.3 μm. If it is above, the surface of the metal interior / exterior material 1 can be fully protected.
한편 탄탈륨의 경우 1V당 약 1.6 ㎚로, 100V 양극 산화시키면 160 ㎚ 가량 산화되며 니오븀의 경우 300~400 ㎚까지 양극 산화되므로 표면층(20)을 양극 산화시킬 때의 조건에 따라 장벽층(10)의 최소 두께가 적절하게 변경되어야 한다.On the other hand, tantalum is about 1.6 nm per 1V, and 100V anodization oxidizes about 160 nm, and niobium is anodic oxidation up to 300-400 nm, so that the barrier layer 10 may be subjected to anodization depending on the conditions of anodizing the surface layer 20. The minimum thickness should be changed accordingly.
장벽층(10) 두께의 상한값에는 특별히 제한을 두지 않지만, 장벽층(10)의 형성속도 및 가격에 따른 경제성 등을 고려하면 5 ㎛ 이하가 바람직하다.The upper limit of the thickness of the barrier layer 10 is not particularly limited, but 5 μm or less is preferable in consideration of the speed of formation of the barrier layer 10 and economical efficiency depending on the price.
다음으로 b) 단계인 표면층(20) 형성단계는, 상술한 바와 같이 금속 내외장재(1) 표면에 형성된 장벽층(10) 상부에 알루미늄계 금속으로 표면층(20)을 형성하는 단계이다. 형성 방법은 상술한 장벽층(10)과 마찬가지로 스퍼터링법이나 음극 진공 아크법을 사용하는 것이 가장 바람직하며, CVD 방식의 경우 공정 온도가 통상적으로 500℃ 이상의 고온이기 때문에 소재의 변형 등의 문제가 있어 적절하지 못하다.Next, the surface layer 20 forming step (b) is a step of forming the surface layer 20 of aluminum-based metal on the barrier layer 10 formed on the surface of the metal interior and exterior material 1 as described above. As for the formation method, it is most preferable to use the sputtering method or the cathode vacuum arc method similarly to the barrier layer 10 described above. Not appropriate
표면층(20)은 순수 알루미늄, 알루미늄 합금 등 알루미늄 성분을 포함하는 다양한 재질로 형성될 수 있는데, 바람직하게는 화학 양론 조성비 미만의 알루미늄 산화물, 질화물 또는 산질화물 층으로 형성될 수 있다. 이러한 화학 양론 조성비 미만의 알루미늄 화합물층의 경우 순수 알루미늄이나 알루미늄 합금 등의 재질들에 비해 경도가 우수하고 우수한 밀착력과 강한 결합력을 지니고 있어, 이에 따라 금속 내외장재(1) 상부의 장벽층(10)과 추후 형성되는 양극 산화 피막층 사이에 강한 접착력과 밀착력을 부여할 수 있기 때문이다.The surface layer 20 may be formed of various materials including aluminum components such as pure aluminum, aluminum alloy, and the like. Preferably, the surface layer 20 may be formed of an aluminum oxide, nitride, or oxynitride layer having a stoichiometric composition ratio. The aluminum compound layer having less than the stoichiometric composition ratio is excellent in hardness and excellent adhesion and strong bonding strength compared to materials such as pure aluminum or aluminum alloy, so that the barrier layer (10) on the metal interior and exterior materials (1) and later It is because strong adhesive force and adhesive force can be provided between the anodic oxide film layers formed.
다음으로 c) 단계인 양극 산화 단계는, 양극 산화처리에 의해 상술한 표면층(20)의 일부를 양극 산화 피막층으로 산화시키는 과정으로, 요구되는 양극 산화피막층의 두께에 따라 5~100 ㎛의 범위로 표면층(20)을 형성해야 한다.Next, the anodic oxidation step of step c) is a process of oxidizing a part of the above-described surface layer 20 to an anodized film layer by anodizing treatment, in a range of 5 to 100 μm depending on the required thickness of the anodized film layer. The surface layer 20 must be formed.
제품 요구에 따라 필요한 피막층 두께를 얻기 위하여 적정한 두께 범위의 표면층(20)을 다양하게 형성할 수 있으나, 상술한 바와 같이 두께 범위를 제한한 것은 5 ㎛미만으로 표면층(20)을 형성하게 되면 어노다이징 깊이가 너무 얇기 때문에 후속 공정인 착색공정에서 다양한 색상을 만들지 못하는 문제가 있으며, 100 ㎛를 초과하여 표면층(20)을 형성하게 되면 공정 시간이 과도하게 길어져 생산성이 저하될 뿐만 아니라 공정 온도가 높아지면서 피처리물이 변형되거나 두께가 두꺼워져 다른 조립품과의 조립에 문제가 생기기 때문이다.In order to obtain the required thickness of the coating layer according to the product requirements, it is possible to variously form the surface layer 20 having an appropriate thickness range. However, as described above, the thickness range is limited when the surface layer 20 is formed to be less than 5 μm. Since the depth of aging is too thin, there is a problem in that it is not possible to make a variety of colors in the subsequent coloration process, and if the surface layer 20 is formed in excess of 100 ㎛, the process time is excessively long, productivity not only decreases but also high process temperature This is because the workpiece is deformed or thickened, causing problems with assembly with other assemblies.
양극 산화처리 즉, 어노다이징(Anodizing) 처리란 알루미늄 등의 금속 제품을 양극으로 하여 일정한 전해액에서 적정 조건으로 분극시켜 산화 알루미늄(Al2O3) 등의 피막을 형성하는 공정이다. 이 피막은 대단히 경하여 내식성이 크고, 다공층이 형성되어 여러가지 색으로 염색할 수 있기 때문에, 내식, 내마모성 등의 실용성과 더불어 표면에 미려하고 중후한 색상을 부여하여 상품적 가치를 높일 수 있는 공정이다.Anodizing treatment, that is, anodizing treatment, is a process of forming a film such as aluminum oxide (Al 2 O 3 ) by polarizing a metal product such as aluminum as an anode in a predetermined electrolyte solution under appropriate conditions. Since this film is very hard and has a high corrosion resistance and a porous layer can be formed and dyed in various colors, it is a process that can enhance the commercial value by giving the surface a beautiful and profound color along with practicality such as corrosion resistance and abrasion resistance. to be.
여기서 양극 산화는 통상의 황산, 수산, 크롬산 등 또는 이들의 혼합산 중 어느 것이나 사용할 수 있으며, 요구되는 색상에 따라 피막의 두께를 조절하게 되므로 바람직하게는 상술한 바와 같이 표면층(20)을 미리 5~100 ㎛로 형성할 수 있다.Here, the anodic oxidation may be any of sulfuric acid, hydroxyl, chromic acid, and the like, or a mixed acid thereof. Since the thickness of the film is adjusted according to the required color, the surface layer 20 is preferably prepared in advance as described above. It can be formed to ˜100 μm.
한편 요구되는 제품의 물성이나 회관을 향상시키기 위하여 표면을 양극 산화시키는 c) 단계 이전에 표면을 샌딩(sanding) 처리하거나 헤어라인(hair line) 처리하는 단계를 더 포함할 수 있다. 샌딩이란, 요구하는 표면 처리 목적을 달성하기 위하여 하도 표면을 규정된 연마지(sand paper)로 연마하는 작업으로서, 표면 결함을 제거하고 평활성 및 부착력을 향상시키기 위한 작업이다. 헤어라인이란, 표면에 머릿결 같은 라인을 줌으로서 제품의 품위 향상을 제고할 목적으로 사용하는 작업이다.Meanwhile, the method may further include sanding the surface of the surface or performing a hair line treatment before c) anodizing the surface in order to improve the properties or the hall of the required product. Sanding is an operation for polishing the surface of the undercoat with a prescribed sand paper in order to achieve the desired surface treatment purpose, and is for removing surface defects and improving smoothness and adhesion. Hairline is a work used for the purpose of improving product quality by giving hair-like lines to the surface.
또한, 최종 제품이 무광일 경우에는 그대로 양극 산화시켜도 무방하지만, 유광의 제품을 제작하는 경우에는 박막의 두께가 증가하게 되면 박막의 광택도가 감소하게 되므로, 제품 표면을 바로 양극 산화시키지 않고 c) 단계 이전에 연마 단계, 더욱 상세하게는 화학연마, 전해연마 또는 기계연마를 수행하는 단계를 더 추가하는 것이 바람직하다. 화학연마란, 외부의 전류를 사용하지 않고 광택연마를 행하는 방법으로, 금속의 표면을 화학적으로 평활화시키는 과정을 말한다. 통상적으로 화학연마의 주원료는 인산으로, 인산염 피막을 형성하는 과정을 수행하게 된다. 전해연마란 화학연마에서 발생되는 표면 광택 형성의 한계를 극복하여 그 이상의 고광택이 요구되는 경우, 소정의 조건 하에서 전해하여 평활한 면을 만드는 연마 방식을 말한다.In addition, if the final product is matte, it may be anodized as it is, but in the case of manufacturing a glossy product, as the thickness of the thin film increases, the glossiness of the thin film decreases, so that the surface of the product is not immediately anodized c). It is preferred to further add a polishing step, more specifically, chemical polishing, electropolishing or mechanical polishing, before the step. Chemical polishing refers to a process of chemically smoothing the surface of a metal by a polishing process without using an external current. Typically, the main raw material of chemical polishing is phosphoric acid, which performs a process of forming a phosphate film. Electropolishing refers to a polishing method that overcomes the limitations of the surface gloss formation generated by chemical polishing and requires more high gloss, to produce a smooth surface by electrolysis under predetermined conditions.
다음으로, d) 단계인 염료 착색 및 봉공 처리 단계에서는, 양극 산화를 통해 다공질의 피막층이 형성되면 이에 유기물 착색, 무기물 착색 또는 전해 착색 등의 염료 착색법을 통해 양극 산화된 표면에 염료를 착색 처리하고, 최종적으로 수화 봉공, 금속성 봉공, 유기물 봉공, 저온 봉공 등의 방법으로 양극 산화피막의 기공을 막는 봉공 처리를 수행하는 단계이다. 염료 착색 과정을 통해 제품 표면에 심미감을 더하여 상품 가치를 향상시킬 수 있고, 봉공 처리 과정을 통해 착색의 내후성과 내구성 및 피막의 내식성 등을 제고할 수 있다.Next, in the dye coloring and sealing treatment step (d), when the porous coating layer is formed through anodization, the dye is colored on the anodized surface by dye coloring such as organic coloring, inorganic coloring or electrolytic coloring. And finally, performing a sealing process for blocking the pores of the anodized film by a method such as hydration sealing, metallic sealing, organic sealing, and low temperature sealing. The dye coloring process can enhance the product value by adding aesthetics to the surface of the product, and can improve the weatherability and durability of the coloring and the corrosion resistance of the coating through the sealing process.
이하 본 발명의 금속 내외장재의 표면처리 방법 및 표면 처리된 금속 내외장재에 대한 실시예를 살펴본다. 그러나 이는 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명의 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, an embodiment of a surface treatment method and a surface-treated metal interior and exterior material of the metal interior and exterior materials of the present invention will be described. However, this is only one of the most preferred embodiment of the present invention and does not represent all of the technical idea of the present invention, it is understood that there may be various equivalents and modifications that can replace them at the time of filing the present invention. shall.
[실시예]EXAMPLE
마그네슘 함금 등의 금속 내외장재(1)의 표면을 버핑에 의해 연마한 후, 유기 용제와 초음파 세척장치를 통해 소재 표면을 세척한다. 이후 진공로에 소재를 장착한 후 아르곤 가스 이온 충돌 또는 금속 이온 충돌을 실시한다.After polishing the surface of the metal interior and exterior materials 1, such as magnesium alloy, by buffing, the surface of the material is washed through an organic solvent and an ultrasonic cleaning device. After the material is mounted in a vacuum furnace, argon gas ion collision or metal ion collision is performed.
소재에 음의 DC 전압, Pulsed DC 전압을 수 내지 수백 V로, 수 내지 수십분 인가하면서 아르곤 가스를 투입하거나 캐소딕 아크방전을 유지하면서 표면을 세정하여 소재의 표면 불순물 및 산화막을 제거함으로써 이후에 형성되는 층과의 밀착력을 제고한다.Formed later by applying argon gas while applying negative DC voltage and pulsed DC voltage to the material from several to several hundreds V to several tens of minutes or cleaning the surface while maintaining a cathodic arc discharge to remove surface impurities and oxide film of the material. Enhance adhesion with the layers
장벽층(10)을 Ti6Al4V 합금을 사용하여 스퍼터링으로 최소 박막 두께가 1 ㎛가 되도록 형성한다. 이 후 표면층(20)을 알루미늄 박막 형태로 30 ㎛ 형성하였다. 이 후 황산법으로 양극 산화를 실시하고 착색 후 봉공처리 하였다.The barrier layer 10 is formed using a Ti 6 Al 4 V alloy so as to have a minimum thin film thickness of 1 μm by sputtering. After that, the surface layer 20 was formed in the form of an aluminum thin film of 30 μm. After that, anodization was carried out by sulfuric acid method, and after sealing, sealing was performed.
상술한 방법으로 표면 처리된 금속 내외장재(1) 피처리물은 상하, 좌우 그리고 전면부 양극 산화 상태가 양호하였다. 후면부의 단차가 있는 부분은 알루미늄 막의 두께 편차 때문에 색상이 다소 어둡게 보였으나, 이는 조립 후 보이지 않는 부위이기 때문에 사용상의 문제점은 없었다. 흑색, 적색, 골드, 녹색, 청색, 핑크색 등의 다양한 색상이 미려하게 구현되었다.The metal interior and exterior materials (1) to be treated by the above-described method were in good condition in the top, bottom, left and right front surface anodization. The stepped portion of the rear part was somewhat dark in color due to the thickness variation of the aluminum film, but there was no problem in use because it was not visible after assembly. Various colors such as black, red, gold, green, blue and pink are beautifully implemented.
상술한 실시예에 대한 비교예로써 장벽층(10)을 형성하지 않고 동일한 작업을 수행한 결과, 어노다이징 공정에서 박막이 얇은 부분이 녹아 터지는 현상이 발견되었다.As a comparative example with respect to the above-described embodiment, as a result of performing the same operation without forming the barrier layer 10, a phenomenon in which a thin portion of the thin film melts in the anodizing process has been found.
본 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변형은 본 발명의 보호 범위 내에 있게 된다.The present invention is not limited to the above-described specific embodiments and descriptions, and various modifications can be made by those skilled in the art without departing from the gist of the present invention claimed in the claims. Such variations are within the protection scope of the present invention.

Claims (23)

  1. a) 금속 내외장재(1) 표면에 밸브 금속(Valve Metal)으로 장벽층(10)을 형성하는 단계;a) forming a barrier layer (10) with a valve metal on the surface of the metal interior and exterior material (1);
    b) 상기 장벽층(10) 위에 알루미늄(Al)계 금속으로 표면층(20)을 형성하는 단계;b) forming a surface layer 20 of aluminum (Al) -based metal on the barrier layer (10);
    c) 상기 표면층(20)이 형성된 표면을 양극 산화시키는 단계; 및c) anodizing the surface on which the surface layer 20 is formed; And
    d) 양극 산화된 표면에 염료를 착색하고 봉공 처리하는 단계;d) coloring and sealing the dye on the anodized surface;
    를 포함하는 금속 내외장재의 표면처리 방법.Surface treatment method of the metal interior and exterior materials comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 밸브 금속은 티타늄(Ta), 니오븀(Nb), 탄탈륨(Ta), 지르코늄(Zr), 바나듐(V), 텅스텐(W), 하프늄(Hf), 알루미늄(Al) 및 이트륨(Y)으로 이루어진 군 중에서 선택되는 하나의 단일 금속 또는 둘 이상의 합금인 것을 특징으로 하는 금속 내외장재의 표면처리 방법.The valve metal is made of titanium (Ta), niobium (Nb), tantalum (Ta), zirconium (Zr), vanadium (V), tungsten (W), hafnium (Hf), aluminum (Al) and yttrium (Y). Method of surface treatment of the metal interior and exterior material, characterized in that the single metal or two or more alloys selected from the group.
  3. 제2항에 있어서,The method of claim 2,
    상기 밸브 금속은 티타늄(Ta), 알루미늄(Al) 및 바나듐(V)의 합금이거나 티타늄(Ta), 알루미늄(Al) 및 니오븀(Nb)의 합금인 것을 특징으로 하는 금속 내외장재의 표면처리 방법.The valve metal is an alloy of titanium (Ta), aluminum (Al) and vanadium (V) or an alloy of titanium (Ta), aluminum (Al) and niobium (Nb).
  4. 제3항에 있어서,The method of claim 3,
    상기 밸브 금속은 Ti6Al4V 또는 Ti6Al7Nb인 것을 특징으로 하는 금속 내외장재의 표면처리 방법.The valve metal is Ti6Al4V or Ti6Al7Nb surface treatment method of the metal interior and exterior material, characterized in that.
  5. 제1항에 있어서,The method of claim 1,
    상기 표면층(20)은,The surface layer 20,
    알루미늄, 알루미늄 합금, 화학 양론 조성비 미만의 알루미늄 산화물·질화물·산질화물로 이루어진 군 중에서 선택되는 하나로 형성된 단일층이거나, 둘 이상이 적층된 복합층인 것을 특징으로 하는 금속 내외장재의 표면처리 방법.A surface treatment method for a metal interior and exterior material, characterized in that it is a single layer formed of one selected from the group consisting of aluminum, aluminum alloys, aluminum oxides, nitrides, and oxynitrides having a stoichiometric composition ratio of less than two, or a composite layer in which two or more are laminated.
  6. 제1항에 있어서,The method of claim 1,
    상기 b) 단계와 c) 단계 사이에, 제품 표면을 샌딩(sanding) 처리하거나 헤어라인(hair line) 처리하는 단계를 더 포함하는 금속 내외장재의 표면처리 방법.Between the steps b) and c), further comprising the step of sanding (sanding) the surface of the product (hair line).
  7. 제1항에 있어서,The method of claim 1,
    상기 b) 단계와 c) 단계 사이에, 화학연마, 전해연마 및 기계연마로 이루어진 군 중에서 선택되는 적어도 하나 이상을 수행하는 연마 단계를 더 포함하는 금속 내외장재의 표면처리 방법.Between the steps b) and c), further comprising a polishing step for performing at least one selected from the group consisting of chemical polishing, electropolishing and mechanical polishing.
  8. 제1항에 있어서,The method of claim 1,
    상기 장벽층(10)의 두께가 0.03~5 ㎛인 것을 특징으로 하는 금속 내외장재의 표면처리 방법.The thickness of the barrier layer (10) is 0.03 ~ 5 ㎛ the surface treatment method of the interior and exterior materials of metal.
  9. 제1항에 있어서,The method of claim 1,
    상기 표면층(20)의 두께가 5~100 ㎛인 것을 특징으로 하는 금속 내외장재의 표면처리 방법.The thickness of the surface layer 20 is a surface treatment method of the metal interior and exterior material, characterized in that 5 ~ 100 ㎛.
  10. 제1항에 있어서,The method of claim 1,
    상기 장벽층(10) 및 표면층(20)이 PVD(Physical Vapor Deposition) 방식으로 형성되는 것을 특징으로 하는 금속 내외장재의 표면처리 방법.The barrier layer (10) and the surface layer (20) is a surface treatment method of the metal interior and exterior material, characterized in that formed by the PVD (Physical Vapor Deposition) method.
  11. 제10항에 있어서,The method of claim 10,
    상기 PVD 방식은 진공증발(Evaporation), 스퍼터링(Sputtering) 및 음극 진공 아크법(Cathodic Vacuum Arc)로 이루어진 군 중에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 금속 내외장재의 표면처리 방법.The PVD method is at least one selected from the group consisting of vacuum evaporation, sputtering, and cathodic vacuum arc method, the surface treatment method of the metal interior and exterior material.
  12. 제1항에 있어서,The method of claim 1,
    상기 a) 단계 이전에, 초음파 세척 또는 이온 충돌을 통해 금속 내외장재(1) 표면을 전처리하는 단계를 더 포함하는 금속 내외장재 표면처리 방법.Before the step a), further comprising the step of pre-treating the surface of the metal interior and exterior material (1) by ultrasonic cleaning or ion bombardment.
  13. 제1항에 있어서,The method of claim 1,
    상기 d) 단계에서,In step d),
    유기물 착색, 무기물 착색 및 전해 착색으로 이루어진 군 중에서 선택되는 적어도 하나 이상의 방식으로 염료를 양극 산화된 표면에 착색하고,Dyeing the dye on the anodized surface in at least one manner selected from the group consisting of organic coloring, inorganic coloring and electrolytic coloring,
    수화 봉공, 금속성 봉공, 유기물 봉공 및 저온 봉공으로 이루어진 군 중에서 선택되는 적어도 하나 이상의 방식으로 착색된 표면을 봉공 처리하는 것을 특징으로 하는 금속 내외장재 표면처리 방법. A method for surface treatment of metal interior and exterior materials, characterized by sealing the colored surface in at least one manner selected from the group consisting of hydration sealing, metallic sealing, organic sealing and cold sealing.
  14. 금속 내외장재(1) 표면에 밸브 금속(Valve Metal)로 이루어진 장벽층(10)이 형성되고,A barrier layer 10 made of a valve metal is formed on the surface of the metal interior and exterior material 1,
    알루미늄(Al)계 금속으로 이루어지고 표면이 양극 산화 처리된 표면층(20)이 상기 장벽층(10) 위에 형성된 표면 처리된 금속 내외장재.A surface-treated metal interior and exterior material made of an aluminum (Al) -based metal and having a surface anodized on the barrier layer (10).
  15. 제14항에 있어서,The method of claim 14,
    상기 양극 산화 처리된 표면층(20) 표면은 염료가 착색된 후 봉공 처리된 것을 특징으로 하는 표면 처리된 금속 내외장재.The surface of the anodized surface layer 20 is a surface-treated metal interior and exterior material, characterized in that the sealing after the dye is colored.
  16. 제14항에 있어서,The method of claim 14,
    상기 밸브 금속은 티타늄(Ta), 니오븀(Nb), 탄탈륨(Ta), 지르코늄(Zr), 바나듐(V), 텅스텐(W), 하프늄(Hf), 알루미늄(Al) 및 이트륨(Y)으로 이루어진 군 중에서 선택되는 하나의 단일 금속 또는 둘 이상의 합금인 것을 특징으로 하는 표면 처리된 금속 내외장재.The valve metal is made of titanium (Ta), niobium (Nb), tantalum (Ta), zirconium (Zr), vanadium (V), tungsten (W), hafnium (Hf), aluminum (Al) and yttrium (Y). Surface-treated metal interior and exterior material, characterized in that it is one single metal or two or more alloys selected from the group.
  17. 제16항에 있어서,The method of claim 16,
    상기 밸브 금속은 티타늄(Ta), 알루미늄(Al) 및 바나듐(V)의 합금이거나 티타늄(Ta), 알루미늄(Al) 및 니오븀(Nb)의 합금인 것을 특징으로 하는 표면 처리된 금속 내외장재.The valve metal is an alloy of titanium (Ta), aluminum (Al) and vanadium (V) or an alloy of titanium (Ta), aluminum (Al) and niobium (Nb).
  18. 제17항에 있어서,The method of claim 17,
    상기 밸브 금속은 Ti6Al4V 또는 Ti6Al7Nb인 것을 특징으로 하는 표면 처리된 금속 내외장재.And the valve metal is Ti6Al4V or Ti6Al7Nb.
  19. 제14항에 있어서,The method of claim 14,
    상기 표면층(20)은,The surface layer 20,
    알루미늄, 알루미늄 합금, 화학 양론 조성비 미만의 알루미늄 산화물·질화물·산질화물로 이루어진 군 중에서 선택되는 하나로 형성된 단일층이거나, 둘 이상이 적층된 복합층인 것을 특징으로 하는 표면 처리된 금속 내외장재.A surface-treated metal interior and exterior material, characterized in that it is a single layer formed of one selected from the group consisting of aluminum, aluminum alloys, aluminum oxides, nitrides, and oxynitrides having a less than stoichiometric composition ratio, or a composite layer in which two or more are laminated.
  20. 제14항에 있어서,The method of claim 14,
    상기 장벽층(10)의 두께가 0.03~5 ㎛인 것을 특징으로 하는 표면 처리된 금속 내외장재.Surface-treated metal interior and exterior material, characterized in that the thickness of the barrier layer (10) is 0.03 ~ 5 ㎛.
  21. 제14항에 있어서,The method of claim 14,
    상기 표면층(20)의 두께가 5~100 ㎛인 것을 특징으로 하는 표면 처리된 금속 내외장재.Surface-treated metal interior and exterior material, characterized in that the thickness of the surface layer 20 is 5 ~ 100 ㎛.
  22. 제14항에 있어서,The method of claim 14,
    상기 장벽층(10) 및 표면층(20)이 PVD(Physical Vapor Deposition) 방식으로 형성되는 것을 특징으로 하는 표면 처리된 금속 내외장재.Surface-treated metal interior and exterior material, characterized in that the barrier layer (10) and the surface layer (20) is formed by a physical vapor deposition (PVD) method.
  23. 제22항에 있어서,The method of claim 22,
    상기 PVD 방식은 진공증발(Evaporation), 스퍼터링(Sputtering) 및 음극 진공 아크법(Cathodic Vacuum Arc)로 이루어진 군 중에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 표면 처리된 금속 내외장재.The PVD method is a surface-treated metal interior and exterior material, characterized in that at least one selected from the group consisting of evaporation (Evaporation), sputtering and cathodic vacuum arc (Cathodic Vacuum Arc).
PCT/KR2014/000297 2014-01-03 2014-01-10 Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material WO2015102142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140000554A KR101545127B1 (en) 2014-01-03 2014-01-03 Surface treating method for internal/external metal material, and internal/external metal material treated by the same
KR10-2014-0000554 2014-01-03

Publications (1)

Publication Number Publication Date
WO2015102142A1 true WO2015102142A1 (en) 2015-07-09

Family

ID=53493480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000297 WO2015102142A1 (en) 2014-01-03 2014-01-10 Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material

Country Status (2)

Country Link
KR (1) KR101545127B1 (en)
WO (1) WO2015102142A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403587A (en) * 2021-06-21 2021-09-17 北京理工大学 Movable temperature-controlled sand bath beam source furnace and installation and film coating method thereof
US11591708B2 (en) * 2019-04-23 2023-02-28 City University Of Hong Kong Entropy-stabilized ceramic thin film coating, method for preparing the same, and component coated with the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191960A (en) * 2016-07-24 2016-12-07 李水金 A kind of aluminium material surface hole sealing agent
KR101951449B1 (en) 2017-06-09 2019-04-29 조정수 Surface treating Method of internal/external plastic material and internal/external plastic material comprising surface structure manufactured using the same
KR102382082B1 (en) 2021-11-12 2022-04-04 (주)코미코 Method for manufacturing Anodized Coating Layer on Aluminium Member and Aluminium Member for Semiconductor Manufaturing Device by the Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371381A (en) * 2001-06-18 2002-12-26 Mitsubishi Alum Co Ltd Surface treated aluminum material, manufacturing method therefor, and aluminum compact
JP2004107770A (en) * 2002-09-20 2004-04-08 Fuji Photo Film Co Ltd Metallic plate coated with oxide film and production method therefor
JP2012223754A (en) * 2011-04-06 2012-11-15 Tokyo Gas Co Ltd Hydrogen separation membrane and manufacturing method therefor, and hydrogen manufacturing apparatus
JP2013241665A (en) * 2012-04-25 2013-12-05 Nisshin Steel Co Ltd Black-plated steel sheet
KR101346014B1 (en) * 2012-04-12 2013-12-31 바코스 주식회사 Surface treating method of internal/external metal material, and internal/external metal material comprising surface structure manufactured using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210782B2 (en) 2008-09-30 2013-06-12 株式会社日立製作所 Anodized substrate and catalyst body using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371381A (en) * 2001-06-18 2002-12-26 Mitsubishi Alum Co Ltd Surface treated aluminum material, manufacturing method therefor, and aluminum compact
JP2004107770A (en) * 2002-09-20 2004-04-08 Fuji Photo Film Co Ltd Metallic plate coated with oxide film and production method therefor
JP2012223754A (en) * 2011-04-06 2012-11-15 Tokyo Gas Co Ltd Hydrogen separation membrane and manufacturing method therefor, and hydrogen manufacturing apparatus
KR101346014B1 (en) * 2012-04-12 2013-12-31 바코스 주식회사 Surface treating method of internal/external metal material, and internal/external metal material comprising surface structure manufactured using the same
JP2013241665A (en) * 2012-04-25 2013-12-05 Nisshin Steel Co Ltd Black-plated steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11591708B2 (en) * 2019-04-23 2023-02-28 City University Of Hong Kong Entropy-stabilized ceramic thin film coating, method for preparing the same, and component coated with the same
CN113403587A (en) * 2021-06-21 2021-09-17 北京理工大学 Movable temperature-controlled sand bath beam source furnace and installation and film coating method thereof

Also Published As

Publication number Publication date
KR20150081013A (en) 2015-07-13
KR101545127B1 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
WO2015102142A1 (en) Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material
KR101346014B1 (en) Surface treating method of internal/external metal material, and internal/external metal material comprising surface structure manufactured using the same
CN101492782B (en) Novel aluminum alloy and heat tinting process for the aluminum alloy product
US20040004003A1 (en) Methods for treating the surfaces of aluminium alloys by means of formulations containing alkane sulfonic acid
WO1999042641A1 (en) Corrosion-resistant, magnesium-based product exhibiting luster of base metal and method for producing the same
CN102051653A (en) Anodic oxidation solution for titanium and titanium alloy and surface oxidation and coloring method
WO2016003089A1 (en) Method for treating surface of metal interior and exterior material, which forms aluminum equiaxed grain structure, through cvd process, and metal interior and exterior material surface-treated using same
JPH0359149B2 (en)
CN101376989A (en) On micro-arc oxidation metallic surface pattern preparing method
CN107217231A (en) The decorative coating prepared on aluminum substrates based on the common sputtering technology of magnetic control
US4455201A (en) Bath and method for anodizing aluminized parts
KR20210151612A (en) Surface treating method for internal/external metal material, and internal/external metal material treated by the same
CN102061472A (en) Surface oxidizing and film coating method for mirror finish aluminum
JP2015232155A (en) Alumite member, manufacturing method of alumite member and treatment agent
JP2014172399A (en) Particles coated in dark color
KR101334323B1 (en) Surface Treating Method Of Die Casting Alloy, And Die Casting Alloy Comprising Surface Structure Manufactured Using The Same
CN1221373A (en) Articles having colored metallic coating and process for their manufacture
CN1920112B (en) Dyeing dip-coating composite processing method of aluminium section bar surface
KR101558286B1 (en) Surface treating method for internal/external material by anodizing multilayer metal film, and internal/external material treated by the same
KR100266454B1 (en) A method for coloring nonferrous metal using ti-plating
EP3571335A1 (en) Method for producing corrosion-stable and optionally colour/metallically coated and decorative plastic components
CN102582339A (en) Method for carrying out two-color wire drawing and film coating on surface of aluminum alloy
GB2242201A (en) Colouring anodized aluminium
KR20090115034A (en) Method for surface treating available colour performance and luster of magnesium metal
CN101210334B (en) Technique for treating plastic surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/11/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14876753

Country of ref document: EP

Kind code of ref document: A1