JP2004107770A - Metallic plate coated with oxide film and production method therefor - Google Patents

Metallic plate coated with oxide film and production method therefor Download PDF

Info

Publication number
JP2004107770A
JP2004107770A JP2002274833A JP2002274833A JP2004107770A JP 2004107770 A JP2004107770 A JP 2004107770A JP 2002274833 A JP2002274833 A JP 2002274833A JP 2002274833 A JP2002274833 A JP 2002274833A JP 2004107770 A JP2004107770 A JP 2004107770A
Authority
JP
Japan
Prior art keywords
oxide film
metal plate
substrate
surface layer
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002274833A
Other languages
Japanese (ja)
Other versions
JP4275920B2 (en
Inventor
Tadafumi Tomita
冨田 忠文
Yoshinori Hotta
堀田 吉則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002274833A priority Critical patent/JP4275920B2/en
Publication of JP2004107770A publication Critical patent/JP2004107770A/en
Application granted granted Critical
Publication of JP4275920B2 publication Critical patent/JP4275920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost, large area metallic plate which is coated with an oxide film having regularly arranged micropores and which is essential in putting an ultramicrofilter, high density magnetic recording media or the like into practical use. <P>SOLUTION: The metallic plate coated with the oxide film is obtained by forming the oxide film on the metallic plate comprising a substrate and a surface layer which consist of the same kind of valve metal. The valve metal used for the surface layer has a purity higher than that of the valve metal used for the substrate. The micropores of the oxide film are formed extending from the surface of the surface layer beyond the boundary between the surface layer and the substrate. The standard deviation of the intervals between the micropores is ≤20%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、酸化皮膜付き金属板およびその製造方法に関する。
【0002】
【従来の技術】
従来、陽極酸化皮膜の細孔(マイクロポア)を規則的に配列させて、光デバイス、磁気デバイス等の機能性材料に応用しようとする試みがなされてきた(例えば、非特許文献1参照。)。
特許文献1には、あらかじめ基板の表面に規則的に配列した窪みを形成させ、陽極酸化処理において細孔の起点となるようにする技術が記載されている。特許文献2には、集束イオンビーム(FIB:Focused Ion Beam)法により、あらかじめ基板の表面に規則的に配列した窪みを形成させる技術が記載されている。特許文献3には、レジスト干渉露光を用いて規則的ナノ構造パターンを形成させた後に陽極酸化または陽極化成を施す技術が記載されている。特許文献4には、半導体、貴金属、マンガン、コバルト、ニッケル、銅およびカーボンの基板にAl膜を設け、陽極酸化処理により該Al膜に細孔を形成させる技術が記載されている。特許文献5には、Ti、Zr、Nb、TaまたはMoを含有する基板にAl膜を設ける技術が記載されている。
これらの技術は、いずれもあらかじめ基板の表面に規則的に配列した窪みを形成させ、陽極酸化処理において細孔の起点となるようにする技術である。窪みの形成方法としては、FIB法、押し型法(微細な窪みを有する押し型を基板に密着させ加圧して窪みを形成させる方法)、レジスト法(電子線レジストにより基板の表面に凹凸を形成させる方法)等が知られている。
【0003】
【非特許文献1】
益田秀樹,“OPTRONICS”,1998年,No.8,p.211
【特許文献1】
特開平10−121292号公報
【特許文献2】
特開2001−105400号公報
【特許文献3】
特開2000−315785号公報
【特許文献4】
特開2000−31462号公報
【特許文献5】
特開平11−200090号公報
【0004】
【発明が解決しようとする課題】
しかしながら、これらの技術は、いずれも高々30cm角程度の大きさの基板を得ることを目的としており、量産には不適である。
したがって、本発明は、ウルトラミクロフィルター、高密度磁気記録メディア等の実用化において必須となる、大面積で低価格な規則的に配列した細孔を有する酸化皮膜付き金属板およびその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、規則的に配列した細孔を有する酸化皮膜付き金属板の量産化を目的として、鋭意検討した結果、金属基板上にそれより純度の高い表面層を設けた後、陽極酸化処理を施す方法によって、規則的に配列した細孔を表面層と基板との境界を超えて形成させることができること、および、前記方法は、大面積の基板に対して容易に、かつ、低価格で行うことができることを見出した。
具体的には、本発明者は、バルブ金属からなる基板上にそれより純度の高い表面層を設けた後、陽極酸化処理を施すと、陽極酸化皮膜および細孔の形成が、高純度のバルブ金属からなる表面層の表面から開始されるため、規則的に配列した細孔が得られること、および、更に陽極酸化処理を続けると、表面層と基板との境界を超えて基板の上部まで陽極酸化皮膜が形成されるが、その時点では規則的に配列した細孔がそのまま下方に成長するため、基板に存在する不純物の影響を受けずに細孔の規則的な配列が保たれることを見出し、表面層を基板に対して十分薄くすることにより、原材料の価格を低くすることができることができることを見出した。
本発明者は、上記知見に基づき、本発明を完成させた。
【0006】
即ち、本発明は、以下の(1)〜(3)を提供する。
【0007】
(1)基板と表面層とを有し、前記基板と前記表面層とが、同種のバルブ金属からなり、前記表面層に用いられる前記バルブ金属が前記基板に用いられる前記バルブ金属よりも純度が高い金属板に、酸化皮膜を形成させて得られる酸化皮膜付き金属板であって、
前記酸化皮膜における細孔が、前記表面層の表面から前記表面層と前記基板との境界を超えて形成されており、かつ、前記細孔の間隔の標準偏差が20%以下である酸化皮膜付き金属板。
【0008】
(2)基板と表面層とを有し、前記基板と前記表面層とが、同種のバルブ金属からなり、前記表面層に用いられる前記バルブ金属が前記基板に用いられる前記バルブ金属よりも純度が高い金属板に、酸化皮膜を形成させて上記(1)に記載の酸化皮膜付き金属板を得る、酸化皮膜付き金属板の製造方法であって、
前記酸化皮膜を、間接給電方式で陽極酸化処理を施して形成させる酸化皮膜付き金属板の製造方法。
【0009】
(3)前記金属板の表面に窪みを形成させた後、前記酸化皮膜を、間接給電方式で陽極酸化処理を施して形成させる上記(2)に記載の酸化皮膜付き金属板の製造方法。
【0010】
【発明の実施の形態】
以下、本発明の酸化皮膜付き金属板およびその製造方法を添付図面に示す好適実施形態に基づいて詳細に説明する。
図1に、本発明の酸化皮膜付き金属板およびその製造方法の説明図を示す。図1(A)は陽極酸化処理前の金属板の模式的な断面図であり、図1(B)は陽極酸化処理後の金属板の模式的な断面図である。
本発明の酸化皮膜付き金属板の製造に用いられる金属板10は、図1(A)に示されるように、基板2と表面層4とを有する。
基板2と表面層4は、同種のバルブ金属からなっている。バルブ金属としては、例えば、Al、Ti、Ta、HfおよびZrが挙げられる。基板2と表面層4とは同種のバルブ金属からなればよく、例えば、いずれもAlである場合が挙げられる。
【0011】
本発明においては、表面層4に用いられるバルブ金属が、基板2に用いられるバルブ金属よりも純度が高いことが特徴の一つである。以下、その理由を説明する。
陽極酸化処理により生成する陽極酸化皮膜は、マイクロポアと呼ばれる細孔の形成を伴う。この細孔は、本来、規則的に配列する性質を有しているが、実際には規則的な配列を得るのは困難である。その原因の一つとして、不純物の存在が挙げられる。即ち、バルブ金属中に不純物が存在すると、細孔の規則的な配列が得られないのである。
したがって、基板として、例えば、純度99.95質量%以上の高純度のバルブ金属を用いることにより、細孔の配列の規則性を向上させることができるが、高純度のバルブ金属は高価であるという問題がある。
これに対して、本発明においては、表面層4に用いられるバルブ金属を基板2に用いられるバルブ金属よりも純度が高くなるようにすることにより、高純度のバルブ金属を表面層に用いて細孔の規則的な配列を得ることができる一方、表面層と同種で低純度のバルブ金属を基板に用いて原材料の低価格化を実現することができるのである。
【0012】
表面層4に用いられるバルブ金属の純度は、99.0質量%以上であるのが好ましく、99.95質量%以上であるのがより好ましい。上記範囲であると、細孔の配列の規則性が高くなる。
一方、基板2に用いられるバルブ金属の純度は、表面層4に用いられるバルブ金属の純度より低ければ特に限定されない。例えば、比較的低価格で量産されている純度99質量%以下の商用金属基板を、基板2として好適に用いることができる。
【0013】
基板2としては、バルブ金属からなる従来公知の板を用いることができるが、表面層4を設ける側の表面の正反射率が65%以上である板を用いるのが好ましい。
細孔の規則的な配列を得るのが困難であることの原因の一つとして、陽極酸化処理を施される基板の表面の凹凸の存在が挙げられる。即ち、基板の表面に凹凸が存在すると、細孔の配列が不規則的になる傾向がある。
したがって、本発明においては、基板2として、表面の凹凸が少ない板、具体的には、表面の正反射率が65%以上、好ましくは70%以上である板(板の結晶組織に縦横の異方性がある場合は、表面の縦方向および横方向の正反射率がいずれも65%以上、好ましくは70%以上である板)を用いるのが、細孔の配列の規則性を向上させる点で、好ましい。
【0014】
基板2に表面層4を設けて金属板10を得る方法は、特に限定されないが、蒸着法、スパッタリング法および電着法のいずれかの方法を用いるのが好ましい。
これらの方法によれば、基板2の結晶組織の異方性に影響されることなく、結晶組織の異方性のない表面層4を得ることができるため、細孔の配列の規則性が優れたものとなる。また、これらの方法によれば、基板2として表面の凹凸が少ない板を用いた場合に、基板2の表面形状を反映させることができるため、即ち、表面の凹凸が少ない表面層4を得ることができるため、細孔の配列の規則性が優れたものとなる。更に、これらの方法によれば、基板2に比べて極めて薄い表面層4を形成させることができるため、低価格の表面層4を得ることができる。蒸着法、スパッタリング法および電着法としては、いずれも従来公知の方法および条件を用いることができる。
【0015】
表面層4の厚さは、特に限定されないが、規則性向上効果の点で、0.05μm以上であるのが好ましく、0.1μm以上であるのがより好ましく、また、原材料および製造のコストの点で、1μm以下であるのが好ましく、0.5μm以下であるのがより好ましい。
【0016】
本発明においては、上述のようにして得られる金属板10に陽極酸化処理を施すが、陽極酸化処理の前に、金属板10の表面に窪みを形成させることもできる。これにより、陽極酸化処理における細孔の配列の規則性を向上させることができる。
金属板10の表面に窪みを形成させる方法は、特に限定されず、従来公知の方法、例えば、上述したFIB法、押し型法、レジスト法を用いることができる。
【0017】
本発明においては、上述のようにして得られる金属板10に陽極酸化処理を施す。
陽極酸化処理の初期においては、金属板10の表面に存在する表面層4が酸化されて酸化皮膜となるが、表面層4は高純度のバルブ金属からなるため、酸化皮膜に形成される細孔は規則的な配列を有する。
陽極酸化処理を続けると、金属板10の表面から深い部分へと酸化が進行していく。即ち、図1(B)に示されるように、表面層4であった部分(図中、点線より上の部分)を超えて、基板2の上部まで酸化皮膜6となっていく。このとき、図1(B)に示されるように、細孔8も基板2を超えて成長するが、細孔8は表面層4において規則的に配列しているため、基板2に存在する不純物の影響を受けずに細孔8の規則的な配列は保たれる。
このようにして、酸化皮膜6における細孔8が、表面層4の表面から表面層4と基板2との境界を超えて形成されている本発明の酸化皮膜付き金属板20が得られる。
【0018】
本発明の酸化皮膜付き金属板の製造方法においては、陽極酸化処理を間接給電方式で施す。以下、陽極酸化処理について、詳細に説明する。
【0019】
陽極酸化処理の方法としては、従来、間接給電方式と直接給電方式とが知られている。間接給電方式とは、金属板を電極(直流の場合は陽極)が存在する電解液中を通過させ、ついで、前記電極と対をなす電極(直流の場合は陰極)が存在する電解液中を通過させる方式である。また、直接給電方式とは、金属板を電極(直流の場合は陽極)と接触させ、ついで、前記電極と対をなす電極(直流の場合は陰極)が存在する電解液中を通過させる方式である。
間接給電方式は、直接給電方式に比べ、金属板の電圧分布が均一であるため、生成する酸化皮膜の細孔の規則性が平面方向および深さ方向で優れる。また、直接給電方式では、金属板と電極とが接触する部分でスパークが発生し、その部分で酸化皮膜が正常に形成されず、結果的にムラが生じてしまう。これらの理由から、本発明においては、間接給電方式を用いる。
【0020】
本発明に用いられる間接給電方式の陽極酸化処理装置としては、従来公知のものを用いることができる。
中でも、図2に示す装置が好適に用いられる。図2は、アルミニウム板等の金属板の表面を陽極酸化処理する装置の一例を示す概略図である。陽極酸化処理装置410において、金属板416は、図2中矢印で示すように搬送される。電解液418が貯溜された給電槽412にて金属板416は(給電)電極420によって(+)に荷電される。そして、金属板416は、給電槽412においてローラ422によって上方に搬送され、ニップローラ424によって下方に方向変換された後、電解液426が貯溜された電解処理槽414に向けて搬送され、ローラ428によって水平方向に方向転換される。ついで、金属板416は、(電解)電極430によって(−)に荷電されることにより、その表面に陽極酸化皮膜が形成され、電解処理槽414を出た金属板416は後工程に搬送される。前記陽極酸化処理装置410において、ローラ422、ニップローラ424およびローラ428によって方向転換手段が構成され、金属板416は、給電槽412と電解処理槽414との槽間部において、前記ローラ422、424および428により、山型および逆U字型に搬送される。(給電)電極420と(電解)電極430とは、直流電源434に接続されている。
【0021】
図2の陽極酸化処理装置410の特徴は、給電槽412と電解処理槽414とを1枚の槽壁432で仕切り、金属板416を槽間部において山型および逆U字型に搬送したことにある。これによって、槽間部における金属板416の長さを最短にすることができる。よって、陽極酸化処理装置410の全体長を短くできるので、設備費を低減することができる。また、金属板416を山型および逆U字型に搬送することによって、各槽412および414の槽壁に金属板416を通過させるための開口部を形成する必要がなくなる。よって、各槽412および414内の液面高さを必要レベルに維持するのに要する送液量を抑えることができるので、稼働費を低減することができる。
【0022】
このような陽極酸化処理装置を用いて、例えば、硫酸濃度50〜300g/Lで、アルミニウム濃度5質量%以下の溶液中で、金属板を陽極として通電して陽極酸化皮膜を形成させることができる。陽極酸化処理に用いられる溶液としては、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等を単独でまたは2種以上を組み合わせて用いることができる。
【0023】
陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度1〜80質量%、液温5〜70℃、電流密度0.5〜60A/dm2 、電圧1〜100V、電解時間15秒〜50分であるのが適当であり、所望の酸化皮膜量となるように調整される。
【0024】
なお、陽極酸化処理としては、直流電源を用いる直流電解法と、交流電源を用いる交流電解法とが知られている。本発明においては、通常、直流電解法が用いられるが、後述するように細孔8に機能性粒子の埋め込みを行う場合には、交流電解法も好適に用いられる。
【0025】
所望の酸化皮膜量は、用途によって異なるが、生産性および取扱いやすさの点で、1.0g/m2 (厚さ約0.3μm)以上であるのが好ましく、4.0g/m2 以上であるのがより好ましく、5.0g/m2 以上であるのが更に好ましい。
【0026】
陽極酸化処理により得られる酸化皮膜量は金属板に与える電気量に比例する。電気量については、下記式(1)の関係が成り立つ。
【0027】
電気量(C/m2 )=電流(A/m2 )×処理時間(秒)  (1)
【0028】
したがって、定電流法の場合には、処理時間を変えて陽極酸化処理を行い、JIS H8680−7(皮膜重量法)の規定に準じて酸化皮膜量を測定し、検量線を作成することで、所望の酸化皮膜量に対応した処理時間を決定することができる。
しかし、JIS H8680−7(皮膜重量法)に規定されている方法においては、クロム酸水溶液などの劇薬を沸騰させて使用するため、不安全なうえ、手間がかかる。そこで、簡便には蛍光X線分析法で代用することが可能である。即ち、検量線試料の一部をJIS H8680−7(皮膜重量法)の規定に準じて酸化皮膜量を測定し、他の一部を蛍光X線分析法(RhのLα線コンプトン散乱線)で散乱強度を実測することにより、検量線を作成することができる。
【0029】
金属板10に上述したような陽極酸化処理を施すことにより、表面にマイクロポアと呼ばれる微細な細孔8が形成される。
細孔8の細孔径は、用途によって適宜変更することができる。例えば、本発明の酸化皮膜付き金属板20をウルトラミクロフィルター等に用いる場合には、40〜300nmであるのが好ましい。また、後述するようにナノ磁性粒子を埋め込んで、高密度磁気記録用メディアとして用いる場合には、20〜150nmであるのが好ましい。
【0030】
細孔8の細孔径は、電解電圧に比例することが知られている。したがって、細孔径を大きくする場合には電解電圧を大きくすればよく、細孔径を小さくする場合には電解電圧を小さくすればよい。また、電解電圧を陽極酸化処理中において徐々に上昇させていくことにより、底部分に向けて拡がっていく細孔が生成する。
【0031】
また、細孔8の細孔径は、電解液の種類にも依存する。これは、電解液の種類が異なると、電解電圧および電解液のpHが異なるためである。概して、細孔径の小さいものから順に、硫酸、シュウ酸、リン酸となる。したがって、2種以上の酸を混合した電解液を用いることで、所望の細孔径の細孔8を得ることができる。また、電解液を交換して2回処理したり、処理装置を2連以上つなげて、2段以上の処理を施したりすることにより、細孔径の深さ方向における調節が可能である。例えば、リン酸電解液を用いて電解電圧を上げていく方法、1段目に硫酸電解液を用い、2段目にリン酸電解液を用いる方法等によって、底部分に向けて拡がっていく細孔が生成させることができる。
【0032】
また、電解液の温度を高くしたり、電解液のpHを中性域から低くして酸性側にしたり、高くしてアルカリ性側にしたりすると、陽極酸化皮膜が溶解するので、細孔の細孔径が大きくなる傾向があることも知られている。
【0033】
また、陽極酸化処理後に、細孔拡大処理を施すことにより、細孔8の細孔径を大きくすることができる。
細孔拡大処理は、陽極酸化処理により得られた酸化皮膜付き金属板20を、酸水性液またはアルカリ水溶液に浸せきさせることにより、酸化皮膜6を一部溶解させ、細孔径8を拡大させる処理である。具体的には、酸化皮膜6の溶解量が、好ましくは0.01〜20g/m2 、より好ましくは0.1〜5g/m2 、特に好ましくは0.2〜4g/m2 となる範囲で行われる。
【0034】
細孔拡大処理に酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましい。酸水溶液の濃度は10〜1000g/Lであるのが好ましく、20〜500g/Lであるのがより好ましい。酸水溶液の温度は、10〜90℃であるのが好ましく、30〜70℃であるのがより好ましい。酸水溶液への浸せき時間は、1〜300秒であるのが好ましく、2〜100秒であるのがより好ましい。
一方、細孔拡大処理にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液のpHは、10〜13であるのが好ましく、11.5〜13.0であるのがより好ましい。アルカリ水溶液の温度は、10〜90℃であるのが好ましく、30〜50℃であるのがより好ましい。アルカリ水溶液への浸せき時間は、1〜500秒であるのが好ましく、2〜100秒であるのがより好ましい。
【0035】
本発明の酸化皮膜付き金属板20は、細孔8に、ナノ磁性粒子等の機能性粒子が埋め込まれていてもよい。機能性粒子を埋め込むことにより、各種の電磁気的特性等を持たせることができる。
機能性粒子を埋め込む方法としては、例えば、陽極酸化処理後、好ましくは細孔拡大処理後に、機能性粒子を溶媒に分散させた液を、浸せき、噴霧、スプレー、塗布等の方法によって、酸化皮膜付き金属板20の表面に曝露させ、その後、乾燥させて溶媒を除去する方法が挙げられる。
また、上述した陽極酸化処理を、機能性粒子を溶解させた電解液を用いて交流電解法で施すことにより、機能性粒子を細孔8内に析出させる方法も挙げられる。
【0036】
このようにして得られる本発明の酸化皮膜付き金属板20は、細孔8の規則的な配列が実現されている。具体的には、本発明の酸化皮膜付き金属板20においては、細孔8の間隔の標準偏差が20%以下であり、好ましくは10%以下である。
本発明の酸化皮膜付き金属板20は、細孔8の配列が規則的であり、細孔8の間隔の標準偏差が20%以下であるため、ウルトラミクロフィルター、高密度磁気記録メディア、光デバイス、磁気デバイス等の機能性材料に好適に用いられる。
【0037】
本発明の酸化皮膜付き金属板20における酸化皮膜6の観察には、高分解能型透過型電子顕微鏡(高分解能型TEM)、超高分解能型走査型電子顕微鏡(超高分解能型SEM)等を用いることができる。高分解能型TEMを用いる場合、ミクロトームという装置を使用して超薄切片を切り出して観察する必要があり、非常に手間がかかるので、通常は、超高分解能型SEMを用いる。このようにして酸化皮膜を観察することにより、酸化皮膜の厚さ、細孔径、細孔間隔等を測定することができる。
【0038】
本発明の酸化皮膜付き金属板の製造においては、例えば、金属板を連続鋳造する設備、表面層を設ける設備、陽極酸化処理設備、細孔拡大処理設備、機能性粒子を埋め込む設備および逆電解はく離設備をこの順に設けることにより、連続的に酸化皮膜付き金属板を製造することにより、製造コストを極めて低くすることができる。
一般に、金属板を連続鋳造する設備および表面層を設ける設備は、水を使用しないドライ系設備であり、陽極酸化処理設備以降の設備は、水を使用するウエット系設備であるため、ロール状コイルで連続的に製造する場合には、ドライ系設備とウェット系設備との間で不連続にする方が製造効率が向上することもあるが、好ましくは連続にする。
【0039】
金属板を連続鋳造する設備、表面層を設ける設備、陽極酸化処理設備、細孔拡大処理設備、機能性粒子を埋め込む設備および逆電解はく離設備としては、従来公知の設備を用いることができる。
ここで、逆電解はく離設備とは、基本的に陽極酸化処理設備と同じ設備であるが、電解を逆にかけた後、はく離した酸化皮膜を紙等に転写させる設備である。
なお、このような設備は、従来公知の平版印刷版原版を製造するための設備を一部転用して製造することができる。
【0040】
【実施例】
以下に実施例を示して本発明を具体的に説明するが、本発明はこれらに限られるものではない。
1.酸化皮膜付き金属板の製造
第1表に示す組み合わせで、以下の基板に表面層の形成、窪みの形成および陽極酸化処理を行った。各処理については、以下のとおりである。
【0041】
(1)基板
基板として以下のアルミニウム板を用いた。なお、各基板の正反射率は、JIS Z8741−1997の方法3に規定されている「60度鏡面光沢」に準じて測定した。具体的には、変角光沢度計(VG−1D、日本電色工業社製)を用いて、正反射率70%以下の場合には入反射角度60度で、正反射率70%を超える場合には入反射角度20度で、測定した。また、各基板の純度は、発光分析装置(PDA−5500、島津製作所社製)を用いて、検量線法によって測定した。
【0042】
▲1▼XL無処理材
住友軽金属工業社製、縦方向の正反射率85%(標準偏差5%)、横方向の正反射率83%(標準偏差5%)、純度99.3質量%(標準偏差0.1質量%)
▲2▼JIS A1050材
住友軽金属工業社製、縦方向の正反射率40%(標準偏差10%)、横方向の正反射率15%(標準偏差10%)、純度99.5質量%(標準偏差0.1質量%)
【0043】
(2)表面層の形成
上記基板に、以下のような製膜条件で、真空蒸着法またはスパッタリング法により、表面層を形成させた。
▲1▼製膜条件A
真空蒸着法、到達圧力5×10−3Pa、蒸着電流40A、基板未加熱、蒸着材料99.999質量%Al線
▲2▼製膜条件B
真空蒸着法、到達圧力5×10−3Pa、蒸着電流40A、基板未加熱、蒸着材料99.99質量%Al線
▲3▼製膜条件C
真空蒸着法、到達圧力5×10−3Pa、蒸着電流40A、基板未加熱、蒸着材料99.95質量%Al線
▲4▼製膜条件D
スパッタリング法、到達圧力5×10−4Pa、スパッタ圧力6.7×10−1Pa、アルゴン流量20sccm、基板未加熱、基板冷却あり、バイアスなし、スパッタ電源RC、スパッタ電力RF400W、スパッタ材料99.95質量%Al
【0044】
なお、表面層の厚さは、PET基板にマスキングを施し、製膜条件A〜Cでの真空蒸着および製膜条件Dでのスパッタリングを時間を変化させて行い、原子間力顕微鏡(Atomic Force Microscope:AFM)でそれぞれの膜厚を測定することにより得られた時間と膜厚との相関検量線を用いて、時間を調整することにより、所望の値に調整した。結果を第1表に示す。
【0045】
また、表面層の純度は、走査型X線光電子分光分析装置(Quantum 2000、アルバック・ファイ社製)を用いて、エッチング用イオン銃で深さ方向に掘りながら全定量分析を行い、異種金属元素の含有率を検量線法によって定量して求めた。結果を以下に示す。
【0046】
▲1▼製膜条件A:99.995質量%(標準偏差0.005質量%)
▲2▼製膜条件B:99.95質量%(標準偏差0.05質量%)
▲3▼製膜条件C:99.9質量%(標準偏差0.1質量%)
▲4▼製膜条件D:99.9質量%(標準偏差0.1質量%)
【0047】
(3)窪みの形成
集束イオンビーム加工装置を用い、表面層に集束イオンビームを照射し、陽極酸化処理において細孔形成の開始点となる窪みを形成させた。イオン種としてはGaを用い、加速電圧は30kV、イオンビーム径は約30nm、イオン電流は約3pAであった。
この際、集束イオンビーム加工装置の二次電子観察機能を用いて、窪みの位置決めを行い、間隔が約100nmのハニカムパターン(最密充填構造)になるように、照射を繰り返した。各窪みにおける集束イオンビームの滞在時間は、約10msecであった。
【0048】
(4)陽極酸化処理
第1表に示す電解液の種類、電解液の濃度、電解液の温度、電流密度、電圧および給電方式で、陽極酸化処理を行い、第1表に示す厚さの酸化皮膜を形成させ、酸化皮膜付き金属板を得た。ここで、酸化皮膜の厚さを処理時間を変化させて調整した。
なお、電流密度は、定電圧電解処理を行うと、陽極酸化皮膜の形成によって変動するが、概ね、電解液の液抵抗値に依存することが知られている。即ち、電流密度は、電解液の温度、濃度、かくはん条件、電極の配置等によって大きく異なってくる。一般に、液抵抗値は、低い方から順に硫酸、シュウ酸、リン酸となる。第1表においては、電流密度が安定してからの値を示した。
【0049】
間接給電方式の場合は、図2に示す構造の直流電解による陽極酸化装置を用いた。第一および第二電解部には同一の電解液を供給した。
直接給電方式の場合は、図2に示す構造の直流電解による陽極酸化装置において、ニップローラ424を取り外して給電ロール(陽極)として働く純銅製金属ロールに交換し、直流電源434の陽極からの回路を電極420から外して前記純銅製金属ロールに接続して導通させる一方、電極420と電極430とをブスバーによって接続して導通させて、対となる陰極として働かせ、電解液中に電流が流れるようにして用いた。第一および第二電解部には同一の電解液を供給した。
【0050】
2.酸化皮膜の性状
上記で得られた酸化皮膜付き金属板について、以下のようにして酸化皮膜の性状を測定した。結果を第1表に示す。
(1)厚さ
酸化皮膜付き金属板を折り曲げて作成した破断面を超高分解能走査型電子顕微鏡(S−900、日立製作所社製)によって倍率5万倍で観察した。50箇所の破断面を無作為抽出し、酸化皮膜厚さを測定して平均した。標準偏差は0.10以下であった。
【0051】
(2)平均細孔径
酸化皮膜付き金属板の表面を超高分解能走査型電子顕微鏡(S−900、日立製作所社製)を用いて、12Vという比較的低加速電圧で、導電性を付与する蒸着処理等を施さずに、15万倍の倍率で観察した。50個の細孔(マイクロポア)を無作為抽出して平均値を求め、酸化皮膜の平均細孔径とした。標準偏差は0.10以下であった。
【0052】
(3)平均細孔間隔および細孔間隔の標準偏差
酸化皮膜付き金属板の表面を上記と同様に観察した。細孔の中心間距離を連続した100箇所において測定し、その平均値と標準偏差を求めた。
【0053】
第1表から明らかなように、本発明の酸化皮膜付き金属板の製造方法により得られた本発明の酸化皮膜付き金属板(実施例1〜11)は、従来の方法である基板に窪みを形成させて陽極酸化処理を施したもの(比較例2)に比べて、酸化皮膜の細孔が極めて規則的に配列している。中でも、表面層に窪みを形成させてから陽極酸化処理を行った場合(実施例4)は、特に規則的に配列している。
これに対して、基板の表面に表面層を設けない場合(比較例1〜3)は、酸化皮膜の細孔が規則的に配列しない。また、直接給電方式で陽極酸化処理を施した場合(比較例4)も、酸化皮膜の細孔が規則的に配列しない。
【0054】
【表1】

Figure 2004107770
【0055】
【発明の効果】
本発明の酸化皮膜付き金属板は、規則的に配列した細孔を有し、しかも、比較的低価格な原材料を用いている。したがって、ウルトラミクロフィルター、高密度磁気記録メディア、光デバイス、磁気デバイス等の機能性材料に好適に用いられる。
また、本発明の酸化皮膜付き金属板の製造方法によれば、従来必須とされていた細孔形成の起点となる窪みの形成を行う必要がないので、規則的に配列した細孔を有する酸化皮膜付き金属板を大面積で、かつ、低価格で得ることができる。
【図面の簡単な説明】
【図1】本発明の酸化皮膜付き金属板およびその製造方法の説明図である。(A)は陽極酸化処理前の金属板の模式的な断面図であり、(B)は陽極酸化処理後の金属板の模式的な断面図である。
【図2】本発明の酸化皮膜付き金属板の製造における陽極酸化処理に用いられる陽極酸化処理装置の概略図である。
【符号の説明】
2 基板
4 表面層
6 酸化皮膜
8 細孔
10 金属板
20 酸化皮膜付き金属板
410 陽極酸化処理装置
412 給電槽
414 電解処理槽
416 金属板
418、426 電解液
420 電極
422、428 ローラ
424 ニップローラ
430 電極
432 槽壁
434 直流電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal plate with an oxide film and a method for producing the same.
[0002]
[Prior art]
Conventionally, attempts have been made to regularly arrange the pores (micropores) of the anodized film and to apply them to functional materials such as optical devices and magnetic devices (for example, see Non-Patent Document 1). .
Japanese Patent Application Laid-Open No. H10-228667 describes a technique in which depressions regularly arranged on the surface of a substrate are formed in advance so as to be the starting point of pores in anodizing treatment. Japanese Patent Application Laid-Open No. H10-228561 describes a technique for forming depressions regularly arranged on the surface of a substrate in advance by a focused ion beam (FIB) method. Patent Document 3 describes a technique in which anodization or anodization is performed after a regular nanostructure pattern is formed using resist interference exposure. Patent Document 4 describes a technique in which an Al film is provided on a semiconductor, noble metal, manganese, cobalt, nickel, copper, and carbon substrate, and pores are formed in the Al film by anodizing treatment. Patent Document 5 describes a technique of providing an Al film on a substrate containing Ti, Zr, Nb, Ta, or Mo.
Each of these techniques is a technique in which depressions regularly arranged on the surface of the substrate are formed in advance and become the starting point of the pores in the anodizing process. As the method for forming the depression, the FIB method, the pressing method (a method in which a pressing mold having a fine depression is brought into close contact with the substrate and pressed to form the depression), the resist method (unevenness is formed on the surface of the substrate by the electron beam resist). Are known).
[0003]
[Non-Patent Document 1]
Hideki Masuda, “OPTRONICS”, 1998, No. 8, p. 211
[Patent Document 1]
JP-A-10-121292
[Patent Document 2]
JP 2001-105400 A
[Patent Document 3]
JP 2000-315785 A
[Patent Document 4]
JP 2000-31462 A
[Patent Document 5]
Japanese Patent Laid-Open No. 11-200090
[0004]
[Problems to be solved by the invention]
However, all of these techniques aim to obtain a substrate having a size of about 30 cm square at most, and are not suitable for mass production.
Therefore, the present invention provides a metal plate with an oxide film having regularly arranged pores having a large area and low cost, which is essential in the practical application of ultra-micro filters, high-density magnetic recording media, and the like, and a method for producing the same. The purpose is to do.
[0005]
[Means for Solving the Problems]
As a result of intensive studies for the purpose of mass production of metal plates with oxide films having regularly arranged pores, the present inventor has provided a surface layer with higher purity on the metal substrate, and then anodized. That the regularly arranged pores can be formed beyond the boundary between the surface layer and the substrate, and the method is easy and inexpensive for a large-area substrate. Found that can be done.
Specifically, the present inventor formed a surface layer having a higher purity on a substrate made of a valve metal and then anodized to form an anodized film and pores. Starting from the surface of the surface layer made of metal, regularly arranged pores can be obtained, and further anodic oxidation can continue the anode beyond the boundary between the surface layer and the substrate to the top of the substrate. Although an oxide film is formed, the regularly arranged pores grow downward as they are, so that the regular arrangement of the pores is maintained without being affected by impurities present in the substrate. It has been found that the price of raw materials can be reduced by making the surface layer sufficiently thin with respect to the substrate.
The present inventor completed the present invention based on the above findings.
[0006]
That is, the present invention provides the following (1) to (3).
[0007]
(1) It has a substrate and a surface layer, and the substrate and the surface layer are made of the same type of valve metal, and the valve metal used for the surface layer is more pure than the valve metal used for the substrate. A metal plate with an oxide film obtained by forming an oxide film on a high metal plate,
With pores in the oxide film formed from the surface layer surface beyond the boundary between the surface layer and the substrate, and with a standard deviation of the pore spacing of 20% or less Metal plate.
[0008]
(2) It has a substrate and a surface layer, the substrate and the surface layer are made of the same type of valve metal, and the valve metal used for the surface layer is more pure than the valve metal used for the substrate. A method for producing a metal plate with an oxide film, wherein the metal plate with an oxide film according to the above (1) is obtained by forming an oxide film on a high metal plate,
The manufacturing method of the metal plate with an oxide film which forms the said oxide film by anodizing with an indirect electric power feeding system.
[0009]
(3) The method for producing a metal plate with an oxide film according to (2), wherein after forming a depression on the surface of the metal plate, the oxide film is formed by performing an anodizing process by an indirect power feeding method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a metal plate with an oxide film of the present invention and a manufacturing method thereof will be described in detail based on preferred embodiments shown in the accompanying drawings.
FIG. 1 shows an explanatory view of a metal plate with an oxide film of the present invention and a method for producing the same. FIG. 1A is a schematic cross-sectional view of the metal plate before the anodizing treatment, and FIG. 1B is a schematic cross-sectional view of the metal plate after the anodizing treatment.
The metal plate 10 used for manufacture of the metal plate with an oxide film of this invention has the board | substrate 2 and the surface layer 4, as FIG. 1 (A) shows.
The substrate 2 and the surface layer 4 are made of the same type of valve metal. Examples of the valve metal include Al, Ti, Ta, Hf, and Zr. The board | substrate 2 and the surface layer 4 should just consist of the same kind of valve metals, for example, the case where all are Al is mentioned.
[0011]
One feature of the present invention is that the valve metal used for the surface layer 4 is higher in purity than the valve metal used for the substrate 2. The reason will be described below.
An anodized film formed by anodizing treatment involves formation of pores called micropores. Although the pores originally have a property of regularly arranging, it is actually difficult to obtain a regular arrangement. One of the causes is the presence of impurities. That is, if impurities exist in the valve metal, a regular arrangement of pores cannot be obtained.
Therefore, for example, by using a high-purity valve metal having a purity of 99.95% by mass or more as the substrate, the regularity of the arrangement of the pores can be improved, but the high-purity valve metal is expensive. There's a problem.
In contrast, in the present invention, the valve metal used for the surface layer 4 is made to be higher in purity than the valve metal used for the substrate 2, so that a high-purity valve metal is used for the surface layer. While a regular arrangement of the holes can be obtained, a low-priced valve metal of the same type as the surface layer can be used for the substrate to reduce the cost of the raw material.
[0012]
The purity of the valve metal used for the surface layer 4 is preferably 99.0% by mass or more, and more preferably 99.95% by mass or more. Within the above range, the regularity of the arrangement of the pores becomes high.
On the other hand, the purity of the valve metal used for the substrate 2 is not particularly limited as long as it is lower than the purity of the valve metal used for the surface layer 4. For example, a commercial metal substrate having a purity of 99% by mass or less that is mass-produced at a relatively low price can be suitably used as the substrate 2.
[0013]
As the substrate 2, a conventionally known plate made of a valve metal can be used, but a plate having a regular reflectance of 65% or more on the surface on which the surface layer 4 is provided is preferably used.
One of the reasons why it is difficult to obtain a regular arrangement of pores is the presence of irregularities on the surface of the substrate to be anodized. That is, if there are irregularities on the surface of the substrate, the arrangement of the pores tends to be irregular.
Therefore, in the present invention, the substrate 2 is a plate with less surface irregularities, specifically, a plate having a regular reflectance of 65% or more, preferably 70% or more (difference in length and width in the crystal structure of the plate). When there is anisotropy, the use of a plate having a regular reflectance of 65% or more and preferably 70% or more on the surface in the vertical direction and the horizontal direction improves the regularity of the arrangement of the pores. It is preferable.
[0014]
A method for obtaining the metal plate 10 by providing the surface layer 4 on the substrate 2 is not particularly limited, but any one of a vapor deposition method, a sputtering method, and an electrodeposition method is preferably used.
According to these methods, since the surface layer 4 having no crystal structure anisotropy can be obtained without being affected by the crystal structure anisotropy of the substrate 2, the regularity of the pore arrangement is excellent. It will be. In addition, according to these methods, when a plate having less surface irregularities is used as the substrate 2, the surface shape of the substrate 2 can be reflected, that is, the surface layer 4 having less surface irregularities is obtained. Therefore, the regularity of the arrangement of the pores is excellent. Furthermore, according to these methods, the surface layer 4 that is extremely thin as compared with the substrate 2 can be formed, and thus the surface layer 4 can be obtained at a low cost. Conventionally known methods and conditions can be used for the vapor deposition method, sputtering method and electrodeposition method.
[0015]
The thickness of the surface layer 4 is not particularly limited, but it is preferably 0.05 μm or more, more preferably 0.1 μm or more in terms of regularity improvement effect, and the cost of raw materials and production is also reduced. In this respect, it is preferably 1 μm or less, and more preferably 0.5 μm or less.
[0016]
In the present invention, the metal plate 10 obtained as described above is subjected to anodizing treatment. However, a depression can be formed on the surface of the metal plate 10 before the anodizing treatment. Thereby, the regularity of the arrangement | sequence of the pore in an anodizing process can be improved.
The method for forming the depression on the surface of the metal plate 10 is not particularly limited, and a conventionally known method such as the above-described FIB method, pressing method, or resist method can be used.
[0017]
In the present invention, the metal plate 10 obtained as described above is anodized.
In the initial stage of the anodizing treatment, the surface layer 4 existing on the surface of the metal plate 10 is oxidized to form an oxide film. However, since the surface layer 4 is made of a high-purity valve metal, pores formed in the oxide film Has a regular array.
When the anodizing treatment is continued, the oxidation proceeds from the surface of the metal plate 10 to a deep portion. That is, as shown in FIG. 1 (B), the oxide film 6 goes to the upper part of the substrate 2 beyond the portion that was the surface layer 4 (portion above the dotted line in the figure). At this time, as shown in FIG. 1B, the pores 8 also grow beyond the substrate 2. However, since the pores 8 are regularly arranged in the surface layer 4, impurities present in the substrate 2 are present. The regular arrangement of the pores 8 is maintained without being affected by the above.
In this way, the metal plate 20 with an oxide film of the present invention in which the pores 8 in the oxide film 6 are formed from the surface of the surface layer 4 beyond the boundary between the surface layer 4 and the substrate 2 is obtained.
[0018]
In the method for producing a metal plate with an oxide film of the present invention, anodization is performed by an indirect power feeding method. Hereinafter, the anodizing treatment will be described in detail.
[0019]
As an anodizing method, an indirect power feeding method and a direct power feeding method are conventionally known. The indirect power supply method is a method in which a metal plate is passed through an electrolyte solution in which an electrode (anode in the case of direct current) exists, and then in an electrolyte solution in which an electrode (a cathode in the case of direct current) is present. This is a method of passing. The direct power feeding method is a method in which a metal plate is brought into contact with an electrode (in the case of direct current, an anode) and then passed through an electrolyte solution in which an electrode (a cathode in the case of direct current) is present. is there.
Compared with the direct power supply method, the indirect power supply method has a more uniform voltage distribution of the metal plate, so that the regularity of the pores of the generated oxide film is superior in the planar direction and the depth direction. Further, in the direct power feeding method, a spark is generated at a portion where the metal plate and the electrode are in contact with each other, and the oxide film is not normally formed at that portion, resulting in unevenness. For these reasons, an indirect power feeding method is used in the present invention.
[0020]
As the indirect power feeding type anodizing apparatus used in the present invention, a conventionally known apparatus can be used.
Among these, the apparatus shown in FIG. 2 is preferably used. FIG. 2 is a schematic view showing an example of an apparatus for anodizing the surface of a metal plate such as an aluminum plate. In the anodizing apparatus 410, the metal plate 416 is conveyed as shown by the arrows in FIG. In the power supply tank 412 in which the electrolytic solution 418 is stored, the metal plate 416 is charged to (+) by the (power supply) electrode 420. Then, the metal plate 416 is conveyed upward by the roller 422 in the power supply tank 412, changed in direction downward by the nip roller 424, and then conveyed toward the electrolytic treatment tank 414 in which the electrolytic solution 426 is stored. The direction is changed horizontally. Next, the metal plate 416 is charged to (−) by the (electrolysis) electrode 430 to form an anodic oxide film on the surface thereof, and the metal plate 416 exiting the electrolytic treatment tank 414 is conveyed to a subsequent process. . In the anodizing treatment apparatus 410, the roller 422, the nip roller 424, and the roller 428 constitute a direction changing means, and the metal plate 416 is disposed between the power supply tank 412 and the electrolytic treatment tank 414 in the section between the rollers 422, 424 and By 428, it is conveyed into a mountain shape and an inverted U shape. The (power supply) electrode 420 and the (electrolysis) electrode 430 are connected to a DC power supply 434.
[0021]
The feature of the anodizing apparatus 410 in FIG. 2 is that the feeding tank 412 and the electrolytic treatment tank 414 are partitioned by a single tank wall 432, and the metal plate 416 is conveyed in a mountain shape and an inverted U shape between the tanks. It is in. Thereby, the length of the metal plate 416 in the inter-tank part can be minimized. Therefore, the overall length of the anodizing apparatus 410 can be shortened, so that the equipment cost can be reduced. In addition, by conveying the metal plate 416 in a mountain shape and an inverted U shape, it is not necessary to form an opening for allowing the metal plate 416 to pass through the tank walls of the tanks 412 and 414. Therefore, since the liquid feeding amount required to maintain the liquid level height in each tank 412 and 414 at a required level can be suppressed, the operating cost can be reduced.
[0022]
Using such an anodizing apparatus, for example, in a solution having a sulfuric acid concentration of 50 to 300 g / L and an aluminum concentration of 5% by mass or less, a metal plate can be energized to form an anodized film. . As a solution used for the anodizing treatment, sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid and the like can be used alone or in combination of two or more.
[0023]
The conditions for anodizing treatment vary depending on the electrolyte used, and thus cannot be determined unconditionally. In general, however, the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., and the current density is 0.5. ~ 60A / dm 2 It is appropriate that the voltage is 1 to 100 V and the electrolysis time is 15 seconds to 50 minutes, and the amount of the oxide film is adjusted.
[0024]
As anodizing treatment, a DC electrolysis method using a DC power source and an AC electrolysis method using an AC power source are known. In the present invention, a direct current electrolysis method is usually used. However, in the case where functional particles are embedded in the pores 8 as described later, an alternating current electrolysis method is also preferably used.
[0025]
The amount of the desired oxide film varies depending on the application, but is 1.0 g / m in terms of productivity and ease of handling. 2 (Thickness of about 0.3 μm) or more is preferable, 4.0 g / m 2 More preferably, it is 5.0 g / m. 2 The above is more preferable.
[0026]
The amount of oxide film obtained by the anodizing treatment is proportional to the amount of electricity applied to the metal plate. Regarding the amount of electricity, the relationship of the following formula (1) is established.
[0027]
Electricity (C / m 2 ) = Current (A / m 2 ) X Processing time (seconds) (1)
[0028]
Therefore, in the case of the constant current method, the anodic oxidation treatment is performed by changing the treatment time, the amount of the oxide film is measured according to the provisions of JIS H8680-7 (film weight method), and a calibration curve is created. The processing time corresponding to the desired amount of oxide film can be determined.
However, in the method prescribed in JIS H8680-7 (film weight method), since a powerful drug such as an aqueous chromic acid solution is boiled and used, it is unsafe and time-consuming. Therefore, a fluorescent X-ray analysis method can be simply substituted. That is, a part of the calibration curve sample was measured for the amount of oxide film according to JIS H8680-7 (film weight method), and the other part was measured by fluorescent X-ray analysis (Lh Lα ray Compton scattered radiation). A calibration curve can be created by actually measuring the scattering intensity.
[0029]
By subjecting the metal plate 10 to anodic oxidation as described above, fine pores 8 called micropores are formed on the surface.
The pore diameter of the pores 8 can be appropriately changed depending on the application. For example, when using the metal plate 20 with an oxide film of the present invention for an ultra micro filter or the like, the thickness is preferably 40 to 300 nm. As will be described later, when nanomagnetic particles are embedded and used as a medium for high-density magnetic recording, the thickness is preferably 20 to 150 nm.
[0030]
It is known that the pore diameter of the pore 8 is proportional to the electrolysis voltage. Therefore, when the pore diameter is increased, the electrolysis voltage may be increased, and when the pore diameter is decreased, the electrolysis voltage may be decreased. Further, by gradually increasing the electrolysis voltage during the anodizing treatment, pores that expand toward the bottom portion are generated.
[0031]
Further, the pore diameter of the pores 8 also depends on the type of the electrolytic solution. This is because the electrolytic voltage and the pH of the electrolytic solution are different when the type of the electrolytic solution is different. Generally, sulfuric acid, oxalic acid, and phosphoric acid are used in order from the smallest pore size. Therefore, the pore 8 having a desired pore diameter can be obtained by using an electrolytic solution in which two or more acids are mixed. Further, the pore diameter can be adjusted in the depth direction by changing the electrolytic solution twice and performing the treatment twice, or by connecting two or more treatment apparatuses and performing two or more steps of treatment. For example, a method of increasing the electrolysis voltage using a phosphoric acid electrolyte, a method using a sulfuric acid electrolyte in the first stage, a method using a phosphoric acid electrolyte in the second stage, etc. Holes can be generated.
[0032]
Also, if the temperature of the electrolyte is increased, the pH of the electrolyte is lowered from the neutral range to the acidic side, or increased to the alkaline side, the anodized film dissolves, so the pore diameter of the pores It is also known that tends to increase.
[0033]
Moreover, the pore diameter of the pore 8 can be enlarged by performing the pore enlargement treatment after the anodizing treatment.
The pore enlargement process is a process in which the oxide film 6 is partially dissolved and the pore diameter 8 is enlarged by immersing the metal plate 20 with an oxide film obtained by anodizing treatment in an acid aqueous solution or an alkali aqueous solution. is there. Specifically, the dissolution amount of the oxide film 6 is preferably 0.01 to 20 g / m. 2 , More preferably 0.1 to 5 g / m 2 , Particularly preferably 0.2 to 4 g / m 2 It is performed in the range.
[0034]
When an acid aqueous solution is used for the pore enlargement treatment, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, or a mixture thereof. The concentration of the acid aqueous solution is preferably 10 to 1000 g / L, and more preferably 20 to 500 g / L. The temperature of the acid aqueous solution is preferably 10 to 90 ° C, and more preferably 30 to 70 ° C. The immersion time in the acid aqueous solution is preferably 1 to 300 seconds, and more preferably 2 to 100 seconds.
On the other hand, when an alkaline aqueous solution is used for the pore enlargement treatment, it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The pH of the alkaline aqueous solution is preferably 10 to 13, and more preferably 11.5 to 13.0. The temperature of the aqueous alkali solution is preferably 10 to 90 ° C, and more preferably 30 to 50 ° C. The immersion time in the alkaline aqueous solution is preferably 1 to 500 seconds, and more preferably 2 to 100 seconds.
[0035]
In the metal plate 20 with an oxide film of the present invention, functional particles such as nanomagnetic particles may be embedded in the pores 8. By embedding the functional particles, various electromagnetic characteristics can be provided.
As the method of embedding the functional particles, for example, after anodizing treatment, preferably after pore enlargement treatment, a solution in which the functional particles are dispersed in a solvent is dipped, sprayed, sprayed, applied, etc. A method of exposing to the surface of the attached metal plate 20 and then drying to remove the solvent may be mentioned.
Moreover, the method of depositing the functional particles in the pores 8 by applying the above-described anodizing treatment by an alternating current electrolysis method using an electrolytic solution in which the functional particles are dissolved is also included.
[0036]
The metal plate 20 with an oxide film of the present invention thus obtained has a regular arrangement of the pores 8. Specifically, in the metal plate 20 with an oxide film of the present invention, the standard deviation of the interval between the pores 8 is 20% or less, preferably 10% or less.
Since the metal plate 20 with an oxide film of the present invention has a regular arrangement of the pores 8 and a standard deviation of the interval between the pores 8 is 20% or less, the ultra-micro filter, the high-density magnetic recording medium, and the optical device. It is suitably used for functional materials such as magnetic devices.
[0037]
For observation of the oxide film 6 on the metal plate 20 with an oxide film of the present invention, a high resolution transmission electron microscope (high resolution TEM), an ultra high resolution scanning electron microscope (ultra high resolution SEM), or the like is used. be able to. When using a high-resolution TEM, it is necessary to cut out and observe an ultrathin section using an apparatus called a microtome, which is very time-consuming, and therefore an ultrahigh-resolution SEM is usually used. By observing the oxide film in this way, the thickness, pore diameter, pore spacing, etc. of the oxide film can be measured.
[0038]
In the production of the metal plate with an oxide film of the present invention, for example, equipment for continuously casting a metal plate, equipment for providing a surface layer, anodizing equipment, equipment for expanding pores, equipment for embedding functional particles, and reverse electrolysis peeling. By providing the facilities in this order, the manufacturing cost can be extremely reduced by continuously manufacturing the metal plate with an oxide film.
Generally, equipment for continuously casting metal plates and equipment for providing a surface layer are dry equipment that does not use water, and equipment after anodizing equipment is wet equipment that uses water. In the case of continuous production, the discontinuity between the dry equipment and the wet equipment may improve the production efficiency, but it is preferably continuous.
[0039]
Conventionally known equipment can be used as equipment for continuously casting a metal plate, equipment for providing a surface layer, equipment for anodizing treatment, equipment for expanding pores, equipment for embedding functional particles, and reverse electrolysis peeling equipment.
Here, the reverse electrolysis peeling equipment is basically the same equipment as the anodizing equipment, but is equipment for transferring the peeled oxide film onto paper or the like after the electrolysis is reversed.
Such equipment can be produced by diverting part of equipment for producing a conventionally known planographic printing plate precursor.
[0040]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
1. Manufacture of metal plate with oxide film
In the combinations shown in Table 1, the following substrates were subjected to surface layer formation, depression formation and anodizing treatment. Each process is as follows.
[0041]
(1) Substrate
The following aluminum plates were used as substrates. The regular reflectance of each substrate was measured according to “60 degree specular gloss” defined in Method 3 of JIS Z8741-1997. Specifically, by using a variable angle gloss meter (VG-1D, manufactured by Nippon Denshoku Industries Co., Ltd.), when the regular reflectance is 70% or less, the incident reflection angle is 60 degrees and the regular reflectance exceeds 70%. In some cases, the incident / reflection angle was 20 degrees. The purity of each substrate was measured by a calibration curve method using an emission analyzer (PDA-5500, manufactured by Shimadzu Corporation).
[0042]
(1) XL untreated material
Made by Sumitomo Light Metal Industries, Inc. 85% specular reflectance in the vertical direction (standard deviation 5%), 83% specular reflectance in the horizontal direction (standard deviation 5%), purity 99.3% by mass (standard deviation 0.1% by mass) )
(2) JIS A1050 material
Manufactured by Sumitomo Light Metal Industry Co., Ltd., vertical regular reflectance 40% (standard deviation 10%), horizontal regular reflectance 15% (standard deviation 10%), purity 99.5 mass% (standard deviation 0.1 mass%) )
[0043]
(2) Formation of surface layer
A surface layer was formed on the substrate by vacuum deposition or sputtering under the following film forming conditions.
(1) Film forming condition A
Vacuum deposition method, ultimate pressure 5 × 10 -3 Pa, vapor deposition current 40A, substrate unheated, vapor deposition material 99.999 mass% Al wire
(2) Film forming condition B
Vacuum deposition method, ultimate pressure 5 × 10 -3 Pa, vapor deposition current 40A, substrate unheated, vapor deposition material 99.99 mass% Al wire
(3) Film forming condition C
Vacuum deposition method, ultimate pressure 5 × 10 -3 Pa, vapor deposition current 40A, substrate unheated, vapor deposition material 99.95 mass% Al wire
(4) Film formation condition D
Sputtering method, ultimate pressure 5 × 10 -4 Pa, sputtering pressure 6.7 × 10 -1 Pa, argon flow rate 20 sccm, substrate unheated, substrate cooled, no bias, sputtering power supply RC, sputtering power RF 400 W, sputtering material 99.95 mass% Al
[0044]
The thickness of the surface layer is determined by masking the PET substrate, performing vacuum deposition under film forming conditions A to C, and sputtering under film forming condition D while changing the time, and using an atomic force microscope (Atomic Force Microscope). : AFM) was adjusted to a desired value by adjusting the time using a correlation calibration curve between the time and the film thickness obtained by measuring each film thickness by AFM). The results are shown in Table 1.
[0045]
In addition, the purity of the surface layer was determined using a scanning X-ray photoelectron spectrometer (Quantum 2000, manufactured by ULVAC-PHI) to perform a full quantitative analysis while digging in the depth direction with an ion gun for etching. The content of was quantified by a calibration curve method. The results are shown below.
[0046]
(1) Film forming condition A: 99.995% by mass (standard deviation 0.005% by mass)
(2) Film forming condition B: 99.95% by mass (standard deviation 0.05% by mass)
(3) Film forming condition C: 99.9% by mass (standard deviation 0.1% by mass)
(4) Film forming condition D: 99.9% by mass (standard deviation 0.1% by mass)
[0047]
(3) Formation of depression
A focused ion beam processing apparatus was used to irradiate the surface layer with a focused ion beam to form a recess that was the starting point for pore formation in anodizing. Ga was used as the ion species, the acceleration voltage was 30 kV, the ion beam diameter was about 30 nm, and the ion current was about 3 pA.
At this time, using the secondary electron observation function of the focused ion beam processing apparatus, the depressions were positioned, and irradiation was repeated so that a honeycomb pattern (closest packed structure) with an interval of about 100 nm was obtained. The stay time of the focused ion beam in each depression was about 10 msec.
[0048]
(4) Anodizing treatment
Anodizing treatment was performed with the type of electrolytic solution shown in Table 1, the concentration of the electrolytic solution, the temperature of the electrolytic solution, the current density, the voltage, and the power feeding method to form an oxide film with the thickness shown in Table 1, and oxidation A metal plate with a film was obtained. Here, the thickness of the oxide film was adjusted by changing the treatment time.
It is known that the current density varies depending on the formation of the anodized film when the constant voltage electrolytic treatment is performed, but generally depends on the liquid resistance value of the electrolytic solution. That is, the current density varies greatly depending on the temperature, concentration, stirring conditions, electrode arrangement, and the like of the electrolytic solution. In general, the liquid resistance value is sulfuric acid, oxalic acid, and phosphoric acid in order from the lowest. In Table 1, the values after the current density was stabilized are shown.
[0049]
In the case of the indirect power feeding method, an anodizing apparatus using direct current electrolysis having the structure shown in FIG. 2 was used. The same electrolytic solution was supplied to the first and second electrolysis parts.
In the case of the direct power supply method, in the anodizing apparatus using direct current electrolysis having the structure shown in FIG. 2, the nip roller 424 is removed and replaced with a pure copper metal roll serving as a power supply roll (anode), and the circuit from the anode of the DC power supply 434 is replaced. The electrode 420 is removed from the electrode 420 and connected to the pure copper metal roll to conduct, while the electrode 420 and the electrode 430 are connected by a bus bar to conduct and function as a pair of cathodes so that a current flows in the electrolyte. Used. The same electrolytic solution was supplied to the first and second electrolysis parts.
[0050]
2. Properties of oxide film
About the metal plate with an oxide film obtained above, the property of the oxide film was measured as follows. The results are shown in Table 1.
(1) Thickness
A fracture surface created by bending a metal plate with an oxide film was observed with an ultra-high resolution scanning electron microscope (S-900, manufactured by Hitachi, Ltd.) at a magnification of 50,000 times. Fracture surfaces at 50 locations were randomly extracted, and the oxide film thickness was measured and averaged. The standard deviation was 0.10 or less.
[0051]
(2) Average pore diameter
Using a super high resolution scanning electron microscope (S-900, manufactured by Hitachi, Ltd.), the surface of the metal plate with an oxide film is subjected to a relatively low acceleration voltage of 12 V and without performing a vapor deposition process for imparting conductivity. And observed at a magnification of 150,000 times. Fifty pores (micropores) were randomly extracted to obtain an average value, which was defined as the average pore diameter of the oxide film. The standard deviation was 0.10 or less.
[0052]
(3) Average pore spacing and standard deviation of pore spacing
The surface of the metal plate with an oxide film was observed in the same manner as described above. The distance between the centers of the pores was measured at 100 consecutive points, and the average value and standard deviation were obtained.
[0053]
As is apparent from Table 1, the metal plate with an oxide film of the present invention (Examples 1 to 11) obtained by the method for producing a metal plate with an oxide film of the present invention has a depression in the substrate which is a conventional method. The pores of the oxide film are arranged very regularly as compared with the one formed and anodized (Comparative Example 2). In particular, when the anodic oxidation treatment is performed after forming the depressions in the surface layer (Example 4), they are particularly regularly arranged.
On the other hand, when the surface layer is not provided on the surface of the substrate (Comparative Examples 1 to 3), the pores of the oxide film are not regularly arranged. Also, when the anodization is performed by the direct power supply method (Comparative Example 4), the pores of the oxide film are not regularly arranged.
[0054]
[Table 1]
Figure 2004107770
[0055]
【The invention's effect】
The metal plate with an oxide film of the present invention has regularly arranged pores and uses a relatively inexpensive raw material. Therefore, it is suitably used for functional materials such as ultra-micro filters, high-density magnetic recording media, optical devices, and magnetic devices.
In addition, according to the method for producing a metal plate with an oxide film of the present invention, it is not necessary to form a depression that is a starting point for pore formation, which has been essential in the past, and therefore, an oxide having regularly arranged pores. A coated metal plate can be obtained with a large area and at a low price.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view of a metal plate with an oxide film and a method for producing the same according to the present invention. (A) is a schematic cross-sectional view of the metal plate before the anodizing treatment, and (B) is a schematic cross-sectional view of the metal plate after the anodizing treatment.
FIG. 2 is a schematic view of an anodizing apparatus used for anodizing in the production of a metal plate with an oxide film according to the present invention.
[Explanation of symbols]
2 Substrate
4 Surface layer
6 Oxide film
8 pores
10 Metal plate
20 Metal plate with oxide film
410 Anodizing equipment
412 Feeding tank
414 Electrolytic treatment tank
416 metal plate
418, 426 electrolyte
420 electrodes
422, 428 Roller
424 Nip roller
430 electrode
432 tank wall
434 DC power supply

Claims (3)

基板と表面層とを有し、前記基板と前記表面層とが、同種のバルブ金属からなり、前記表面層に用いられる前記バルブ金属が前記基板に用いられる前記バルブ金属よりも純度が高い金属板に、酸化皮膜を形成させて得られる酸化皮膜付き金属板であって、
前記酸化皮膜における細孔が、前記表面層の表面から前記表面層と前記基板との境界を超えて形成されており、かつ、前記細孔の間隔の標準偏差が20%以下である酸化皮膜付き金属板。
A metal plate having a substrate and a surface layer, wherein the substrate and the surface layer are made of the same type of valve metal, and the valve metal used for the surface layer is higher in purity than the valve metal used for the substrate. In addition, a metal plate with an oxide film obtained by forming an oxide film,
With pores in the oxide film formed from the surface layer surface beyond the boundary between the surface layer and the substrate, and with a standard deviation of the pore spacing of 20% or less Metal plate.
基板と表面層とを有し、前記基板と前記表面層とが、同種のバルブ金属からなり、前記表面層に用いられる前記バルブ金属が前記基板に用いられる前記バルブ金属よりも純度が高い金属板に、酸化皮膜を形成させて請求項1に記載の酸化皮膜付き金属板を得る、酸化皮膜付き金属板の製造方法であって、
前記酸化皮膜を、間接給電方式で陽極酸化処理を施して形成させる酸化皮膜付き金属板の製造方法。
A metal plate having a substrate and a surface layer, wherein the substrate and the surface layer are made of the same type of valve metal, and the valve metal used for the surface layer is higher in purity than the valve metal used for the substrate. A method for producing a metal plate with an oxide film, wherein the metal plate with an oxide film according to claim 1 is obtained by forming an oxide film.
The manufacturing method of the metal plate with an oxide film which forms the said oxide film by anodizing with an indirect electric power feeding system.
前記金属板の表面に窪みを形成させた後、前記酸化皮膜を、間接給電方式で陽極酸化処理を施して形成させる請求項2に記載の酸化皮膜付き金属板の製造方法。The method for producing a metal plate with an oxide film according to claim 2, wherein after forming a depression on the surface of the metal plate, the oxide film is formed by performing an anodizing process by an indirect power feeding method.
JP2002274833A 2002-09-20 2002-09-20 Metal plate with oxide film and method for producing the same Expired - Fee Related JP4275920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274833A JP4275920B2 (en) 2002-09-20 2002-09-20 Metal plate with oxide film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274833A JP4275920B2 (en) 2002-09-20 2002-09-20 Metal plate with oxide film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004107770A true JP2004107770A (en) 2004-04-08
JP4275920B2 JP4275920B2 (en) 2009-06-10

Family

ID=32271197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274833A Expired - Fee Related JP4275920B2 (en) 2002-09-20 2002-09-20 Metal plate with oxide film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4275920B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283058A (en) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Fine structure
JP2007030146A (en) * 2005-07-29 2007-02-08 Fujifilm Corp Method for manufacturing nanostructure
JP2011049608A (en) * 2010-12-07 2011-03-10 Hitachi Chem Co Ltd Substrate for mounting light emitting element and manufacturing method of the same
WO2011125486A1 (en) * 2010-03-31 2011-10-13 シャープ株式会社 Die, process for producing die, and process for producing antireflection film
JP2012025145A (en) * 2010-06-22 2012-02-09 Furukawa-Sky Aluminum Corp Composite material of aluminum material/thermoplastic foamed resin layer and method of manufacturing the same
JP2012033853A (en) * 2010-04-28 2012-02-16 Fujifilm Corp Insulation light reflection substrate
WO2015102142A1 (en) * 2014-01-03 2015-07-09 조상무 Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material
JP2016004827A (en) * 2014-06-13 2016-01-12 太陽誘電株式会社 Capacitor, circuit module, and mobile communication equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603402B2 (en) * 2005-03-31 2010-12-22 富士フイルム株式会社 Fine structure and manufacturing method thereof
JP2006283058A (en) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Fine structure
JP2007030146A (en) * 2005-07-29 2007-02-08 Fujifilm Corp Method for manufacturing nanostructure
CN102803577B (en) * 2010-03-31 2015-12-02 夏普株式会社 The manufacture method of mould and mould and the manufacture method of antireflection film
US9556532B2 (en) 2010-03-31 2017-01-31 Sharp Kabushiki Kaisha Die, process for producing die, and process for producing antireflection film
WO2011125486A1 (en) * 2010-03-31 2011-10-13 シャープ株式会社 Die, process for producing die, and process for producing antireflection film
EP2554717A4 (en) * 2010-03-31 2016-08-31 Sharp Kk Die, process for producing die, and process for producing antireflection film
JP5027346B2 (en) * 2010-03-31 2012-09-19 シャープ株式会社 Mold, mold manufacturing method, and antireflection film manufacturing method
CN102803577A (en) * 2010-03-31 2012-11-28 夏普株式会社 Die, process for producing die, and process for producing antireflection film
US20120318772A1 (en) * 2010-03-31 2012-12-20 Sharp Kabushiki Kaisha Die, process for producing die, and process for producing antireflection film
JP2012033853A (en) * 2010-04-28 2012-02-16 Fujifilm Corp Insulation light reflection substrate
JP2012025145A (en) * 2010-06-22 2012-02-09 Furukawa-Sky Aluminum Corp Composite material of aluminum material/thermoplastic foamed resin layer and method of manufacturing the same
JP2011049608A (en) * 2010-12-07 2011-03-10 Hitachi Chem Co Ltd Substrate for mounting light emitting element and manufacturing method of the same
WO2015102142A1 (en) * 2014-01-03 2015-07-09 조상무 Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material
JP2016004827A (en) * 2014-06-13 2016-01-12 太陽誘電株式会社 Capacitor, circuit module, and mobile communication equipment

Also Published As

Publication number Publication date
JP4275920B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4813925B2 (en) Manufacturing method of fine structure and fine structure
US8502970B2 (en) Microstructured body, process for producing the microstructured body, sensor device, and Raman spectrometry device
US7214418B2 (en) Structure having holes and method for producing the same
US7699971B2 (en) Microstructure and method of manufacturing the same
US20110300400A1 (en) Metal member
US20090229989A1 (en) Method for the preparation of nanostructures and nanowires
JP4800860B2 (en) Manufacturing method of fine structure and fine structure
JP4768478B2 (en) Manufacturing method of fine structure and fine structure
JP4275920B2 (en) Metal plate with oxide film and method for producing the same
JP3729449B2 (en) Structure and device having pores
Reddy et al. Optical and mechanical studies on free standing amorphous anodic porous alumina formed in oxalic and sulphuric acid
JP4800799B2 (en) Manufacturing method of fine structure and fine structure
JP2007204802A (en) Method of manufacturing structure
CN1271248C (en) Production process of alumina template with nano holes
JP4884202B2 (en) Manufacturing method of fine structure and fine structure
JP2002004087A (en) Method for manufacturing nanostructure and nanostructure
JP4136730B2 (en) Structure having pores and method for producing the same
KR101487111B1 (en) Method for producing electrically-conducting material with modified surface
JP2001213700A (en) Nano-structure and its manufacturing method
Dadras et al. Simple fabrication of highly ordered anodic aluminum oxide (AAO) films
Upreti et al. Porous anodic alumina template formation: deposition technique dependence
Mikhaylova et al. Fabrication of sequential nanostripes by controlled electrodeposition
Ke Design and Fabrication of the Catalyst Systems for the Control of Sintering of Metal Nanoparticles during the Growth of Carbon Nanotubes and ZnO nanorods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Ref document number: 4275920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees