JP2012223754A - Hydrogen separation membrane and manufacturing method therefor, and hydrogen manufacturing apparatus - Google Patents

Hydrogen separation membrane and manufacturing method therefor, and hydrogen manufacturing apparatus Download PDF

Info

Publication number
JP2012223754A
JP2012223754A JP2012067204A JP2012067204A JP2012223754A JP 2012223754 A JP2012223754 A JP 2012223754A JP 2012067204 A JP2012067204 A JP 2012067204A JP 2012067204 A JP2012067204 A JP 2012067204A JP 2012223754 A JP2012223754 A JP 2012223754A
Authority
JP
Japan
Prior art keywords
hydrogen
separation membrane
metal layer
alloy
hydrogen separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012067204A
Other languages
Japanese (ja)
Other versions
JP5548996B2 (en
Inventor
Hideto Kurokawa
英人 黒川
Masahiko Morinaga
正彦 森永
Hiroshi Yugawa
宏 湯川
Tomonori Nanbu
智憲 南部
Yoshihisa Matsumoto
佳久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokyo Gas Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Nagoya University NUC
Tokyo Gas Co Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokyo Gas Co Ltd, Institute of National Colleges of Technologies Japan filed Critical Nagoya University NUC
Priority to JP2012067204A priority Critical patent/JP5548996B2/en
Publication of JP2012223754A publication Critical patent/JP2012223754A/en
Application granted granted Critical
Publication of JP5548996B2 publication Critical patent/JP5548996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen separation membrane in which a middle layer for preventing the mutual diffusion between a base metallic layer and a coated metallic layer, and the oxidation of alloy components of the base metallic layer is formed at low cost, a manufacturing method therefor, and a hydrogen manufacturing apparatus provided therewith.SOLUTION: The hydrogen separation membrane 11 includes the base metallic layer 12 composed of a group 5A metal or its alloy, the middle layer 13 formed on the surface of the base metallic layer 12 and the coated metallic layer 14 formed on the middle layer 13; and the middle layer 13 is formed by anodic oxidation of the base metallic layer 12. The manufacturing method for the hydrogen separation membrane 11 has a step of forming the middle layer 13 by anodic oxidation of the base metallic layer 12 and a step of forming the coated metallic layer 14 on the middle layer 13, and the hydrogen manufacturing apparatus has the hydrogen separation membrane 11.

Description

本発明は、水素分離膜に係り、特にベース金属層、中間層及び被覆金属層を有した水素分離膜に関する。また、本発明は、この水素分離膜の製造方法と、この水素分離膜を用いた水素製造装置とに関する。   The present invention relates to a hydrogen separation membrane, and more particularly to a hydrogen separation membrane having a base metal layer, an intermediate layer, and a covering metal layer. Moreover, this invention relates to the manufacturing method of this hydrogen separation membrane, and the hydrogen production apparatus using this hydrogen separation membrane.

水素含有ガスから水素を選択的に透過して分離する水素分離膜としてPd系合金がある。しかし、Pd系合金の水素分離膜では、Y、Gdなどの性能向上効果の大きい希土類系元素を添加した場合でも水素分離性能は2〜3倍しか向上せず、またPd自体が貴金属であるためコスト高になるという欠点がある。   There is a Pd-based alloy as a hydrogen separation membrane that selectively permeates and separates hydrogen from a hydrogen-containing gas. However, in the case of a hydrogen separation membrane of a Pd-based alloy, even when rare earth elements having a large performance improvement effect such as Y and Gd are added, the hydrogen separation performance is improved only 2 to 3 times, and Pd itself is a noble metal. There is a disadvantage of high costs.

Pd系合金膜に代わるものとして、Nb、Vや、その合金よりなる膜が知られている。Nb、Vなどの5A族金属は、Pd系水素透過合金と比べて、高い水素透過性能を有していると共に、安価である。このNb、V又はその合金は、その高い水素固溶量のために水素脆化が起こり易いので、高い水素透過速度と耐水素脆性の両立が可能な水素分離膜について種々の研究がなされている。   As a substitute for the Pd-based alloy film, a film made of Nb, V or an alloy thereof is known. Group 5A metals such as Nb and V have high hydrogen permeation performance and are inexpensive compared to Pd-based hydrogen permeation alloys. Since this Nb, V or an alloy thereof is susceptible to hydrogen embrittlement due to its high hydrogen solid solution amount, various studies have been made on hydrogen separation membranes capable of achieving both high hydrogen permeation rate and hydrogen embrittlement resistance. .

5A族金属又はその合金を水素分離膜のベース金属層として使用する場合、5A族金属合金自体には、水素分子の乖離、結合反応に対する触媒活性が無いため、後述の特許文献1〜4の通り、ベース金属層の両面(プロセス側、透過側の両面)にPd又はPd合金よりなる表面触媒層(被覆金属層)を形成する。この被覆金属層は、ベース金属層の水素透過性能を低下させないようにするために、通常は数百nm程度に非常に薄く形成される。   When a group 5A metal or an alloy thereof is used as the base metal layer of the hydrogen separation membrane, the group 5A metal alloy itself has no catalytic activity for hydrogen molecule dissociation and bonding reaction, so Then, a surface catalyst layer (coating metal layer) made of Pd or a Pd alloy is formed on both surfaces (both the process side and the transmission side) of the base metal layer. This covering metal layer is usually formed very thin to about several hundred nm so as not to deteriorate the hydrogen permeation performance of the base metal layer.

このような被覆金属層を有した水素分離膜では、ベース金属層と被覆金属層との間の相互拡散や、被覆金属層を透過してくる酸素によるベース金属層の合金成分(以下、母体合金成分ということがある。)の酸化は、水素分離膜の水素透過性能及び耐久性を低下させる。また、母体合金成分が被覆金属層内を拡散してその表面もしくは表面近傍に到達して酸化され酸化物となり、水素分子の乖離、結合反応を阻害することも考えられる。このようなことから、金属の相互拡散防止、酸素の拡散防止のための中間層をベース金属層と被覆金属層との間に設けることが知られている(特許文献1〜4)。このような中間層としては次のようなものがある。   In the hydrogen separation membrane having such a coated metal layer, mutual diffusion between the base metal layer and the coated metal layer, and alloy components of the base metal layer by oxygen permeating the coated metal layer (hereinafter referred to as a base alloy) Oxidation of the component may lower the hydrogen permeation performance and durability of the hydrogen separation membrane. It is also conceivable that the base alloy component diffuses in the coated metal layer and reaches the surface or near the surface and is oxidized to become an oxide, thereby inhibiting the dissociation of hydrogen molecules and the binding reaction. For this reason, it is known to provide an intermediate layer between the base metal layer and the covering metal layer for preventing mutual diffusion of metals and preventing diffusion of oxygen (Patent Documents 1 to 4). Examples of such intermediate layers are as follows.

SiClなどの金属塩化物の層をベース金属層の表面に浸漬法などにより形成し、大気中の水分で加水分解して形成したSiO中間層(特許文献1)。スパッタリングにより形成されたWO、SiO、ZrO等の酸化物、炭化物又は硼化物層(特許文献2)。V又はV合金よりなるベース金属層に対して液相メッキ、PVD、CVDなどによって形成されたTa、Nb、Ta−V、Ta−Pdなどの5A族金属又は合金の層(特許文献3,4)。 A SiO 2 intermediate layer formed by immersing a metal chloride layer such as SiCl 4 on the surface of a base metal layer by a dipping method or the like and hydrolyzing with moisture in the atmosphere (Patent Document 1). An oxide, carbide, or boride layer of WO 3 , SiO 2 , ZrO 2 or the like formed by sputtering (Patent Document 2). 5A group metal or alloy layer such as Ta, Nb, Ta-V, Ta-Pd, etc. formed by liquid phase plating, PVD, CVD, etc. on a base metal layer made of V or V alloy (Patent Documents 3 and 4) ).

特開平7−185277JP-A-7-185277 特開2006−272167JP 2006-272167 A 特開2006−35063JP 2006-35063 A 特開2007−44593JP2007-44593

上記特許文献1のように金属塩化物層の加水分解により中間層を形成する方法では、所望の厚みを有した且つ緻密な中間層を形成することは容易ではない。また、残留する塩素成分の悪影響も懸念される。   In the method of forming an intermediate layer by hydrolysis of a metal chloride layer as in Patent Document 1, it is not easy to form a dense intermediate layer having a desired thickness. There is also concern about the adverse effects of residual chlorine components.

上記特許文献2のスパッタリングにより中間層を成膜する方法では、装置が大掛りになり、設備コストを含めた処理コストが高くなる。   In the method of forming an intermediate layer by sputtering described in Patent Document 2, the apparatus becomes large and the processing cost including the equipment cost becomes high.

特許文献3,4のように、液相メッキ、PVD、CVDなどにより5A族金属又は合金よりなる中間層を形成する方法では、メッキ液やPVD、CVD装置に5A族金属又は合金材料が必要となり、コストが嵩む。また、PVDやCVDは設備コストも嵩む。   As in Patent Documents 3 and 4, the method of forming an intermediate layer made of a group 5A metal or alloy by liquid phase plating, PVD, CVD, or the like requires a group 5A metal or alloy material for the plating solution, PVD, or CVD apparatus. Cost increases. In addition, PVD and CVD increase the equipment cost.

本発明は、ベース金属層と被覆金属層との間の相互拡散や、ベース金属層の合金成分の酸化を防止するための中間層が低コストにて形成された水素分離膜と、その製造方法と、この水素分離膜を備えた水素製造装置を提供することを目的とする。   The present invention relates to a hydrogen separation membrane in which an intermediate layer for preventing mutual diffusion between a base metal layer and a coated metal layer and oxidation of an alloy component of the base metal layer is formed at low cost, and a method for manufacturing the same. And it aims at providing the hydrogen production apparatus provided with this hydrogen separation membrane.

本発明(請求項1)の水素分離膜は、5A族金属又はその合金よりなるベース金属層と、該ベース金属層の表面に形成された中間層と、該中間層上に形成された被覆金属層とを有する水素分離膜において、該中間層はベース金属層を陽極酸化する(該ベース金属層を陽極として水もしくは溶液中で電圧を印加し通電して表面を酸化させる)ことにより形成されたことを特徴とするものである。   The hydrogen separation membrane of the present invention (Claim 1) includes a base metal layer made of a group 5A metal or an alloy thereof, an intermediate layer formed on the surface of the base metal layer, and a coated metal formed on the intermediate layer In the hydrogen separation membrane having a layer, the intermediate layer is formed by anodizing the base metal layer (the surface is oxidized by applying a voltage in water or a solution with the base metal layer serving as an anode to energize the surface). It is characterized by this.

請求項2の水素分離膜は、請求項1において、ベース金属層がNb、Nb合金、Ta、Ta合金、V又はV合金よりなることを特徴とするものである。   The hydrogen separation membrane according to claim 2 is characterized in that, in claim 1, the base metal layer is made of Nb, Nb alloy, Ta, Ta alloy, V or V alloy.

請求項3の水素分離膜は、請求項1又は2において、被覆金属層がPd又はPd合金よりなることを特徴とするものである。   A hydrogen separation membrane according to a third aspect is characterized in that, in the first or second aspect, the coating metal layer is made of Pd or a Pd alloy.

本発明(請求項4)の水素分離膜の製造方法は、5A族金属又はその合金よりなるベース金属層と、該ベース金属層の表面に形成された中間層と、該中間層上に形成された被覆金属層とを有する水素分離膜の製造方法において、ベース金属層を陽極酸化して前記中間層を形成する工程と、中間層の上に前記被覆金属層を形成する工程とを有することを特徴とするものである。   The method for producing a hydrogen separation membrane of the present invention (Claim 4) includes a base metal layer made of a group 5A metal or an alloy thereof, an intermediate layer formed on the surface of the base metal layer, and an intermediate layer formed on the intermediate layer. The method for producing a hydrogen separation membrane having a coated metal layer includes the steps of anodizing a base metal layer to form the intermediate layer, and forming the coated metal layer on the intermediate layer. It is a feature.

本発明(請求項5)の水素製造装置は、水素分離膜で隔てられた1次室及び2次室を有した水素製造装置において、該水素分離膜が請求項1ないし3のいずれか1項に記載の水素分離膜であることを特徴とするものである。   The hydrogen production apparatus of the present invention (Claim 5) is a hydrogen production apparatus having a primary chamber and a secondary chamber separated by a hydrogen separation membrane, wherein the hydrogen separation membrane is any one of Claims 1 to 3. It is a hydrogen separation membrane as described in above.

本発明では、ベース金属層を陽極酸化するという簡易な方法によって中間層を形成するので、中間層を形成するための設備コストも安価であり、中間層を容易かつ安価に形成することができる。また、陽極酸化で形成された中間層は緻密であり、中間層の厚みが小さくてもベース金属層と被覆金属層との間の相互拡散や、ベース金属層の合金成分の酸化が十分に防止される。従って、この方法で形成された中間層を有する水素分離膜及び水素製造装置は、中間層が無い場合と比較して水素透過性能の低下がほとんど無く、耐久性も良好である。   In the present invention, since the intermediate layer is formed by a simple method of anodizing the base metal layer, the equipment cost for forming the intermediate layer is also low, and the intermediate layer can be formed easily and inexpensively. In addition, the intermediate layer formed by anodization is dense, and even if the thickness of the intermediate layer is small, mutual diffusion between the base metal layer and the coated metal layer and the oxidation of the alloy components of the base metal layer are sufficiently prevented. Is done. Therefore, the hydrogen separation membrane and the hydrogen production apparatus having the intermediate layer formed by this method have almost no deterioration in hydrogen permeation performance and good durability as compared with the case without the intermediate layer.

水素分離膜の模式的な断面図である。It is a typical sectional view of a hydrogen separation membrane. 実施例及び比較例の結果を示すグラフである。It is a graph which shows the result of an Example and a comparative example. 実施例及び比較例の結果を示すグラフである。It is a graph which shows the result of an Example and a comparative example. 実施例及び比較例の結果を示すグラフである。It is a graph which shows the result of an Example and a comparative example. 実施例及び比較例の結果を示すグラフである。It is a graph which shows the result of an Example and a comparative example. 水素分離装置の構成図である。It is a block diagram of a hydrogen separator. 水素透過試験用モジュールの断面図である。It is sectional drawing of the module for hydrogen permeation tests. 水素透過試験用モジュールを電気炉にセットした形態を示す断面図である。It is sectional drawing which shows the form which set the module for hydrogen permeation tests to the electric furnace.

以下、本発明についてさらに詳細に説明する。本発明では、第1図に示すように、水素分離膜11のベース金属層12と被覆金属層14との間の中間層13を、ベース金属層11の陽極酸化により形成する。   Hereinafter, the present invention will be described in more detail. In the present invention, as shown in FIG. 1, the intermediate layer 13 between the base metal layer 12 and the covering metal layer 14 of the hydrogen separation membrane 11 is formed by anodic oxidation of the base metal layer 11.

[ベース金属層]
本発明において、ベース金属層としては5A族金属即ちNb、V、Ta又はその合金が用いられ、具体的には純Nb、Nb合金、純Ta、Ta合金、純V、V合金が好適である。Nb合金としては、W、Mo及びRuの少なくとも1種を15モル%以下含むNb合金が例示される。Ta合金としては、W及びMoの少なくとも1種を15モル%以下含むTa合金が例示される。V合金としては、W及びMoの少なくとも1種を15モル%以下含むV合金が例示される。これらの合金としては、具体的には、Nb−W合金(W含有量0.01〜15モル%)、Nb−W−Mo合金(W含有量0.01〜15モル%、Mo含有量0.01〜15モル%)、Nb−Ru合金(Ru含有量0.01〜15モル%)、Ta−W合金(W含有量0.01〜15モル%)、V−W合金(W含有量0.01〜15モル%)、V−Mo合金(Mo含有量0.01〜15モル%)などが例示されるが、これに限定されない。
[Base metal layer]
In the present invention, a 5A group metal, that is, Nb, V, Ta, or an alloy thereof is used as the base metal layer, and specifically, pure Nb, Nb alloy, pure Ta, Ta alloy, pure V, V alloy is preferable. . An example of the Nb alloy is an Nb alloy containing 15 mol% or less of at least one of W, Mo, and Ru. Examples of the Ta alloy include a Ta alloy containing 15 mol% or less of at least one of W and Mo. Examples of the V alloy include a V alloy containing 15 mol% or less of at least one of W and Mo. Specifically, these alloys include Nb—W alloys (W content 0.01 to 15 mol%), Nb—W—Mo alloys (W content 0.01 to 15 mol%, Mo content 0). .01-15 mol%), Nb-Ru alloy (Ru content 0.01-15 mol%), Ta-W alloy (W content 0.01-15 mol%), VW alloy (W content) 0.01-15 mol%), V-Mo alloys (Mo content 0.01-15 mol%) and the like are exemplified, but not limited thereto.

上記ベース金属層の厚さは1〜500μm特に10〜50μm程度が好適であるが、これに限定されない。   The thickness of the base metal layer is preferably about 1 to 500 μm, particularly about 10 to 50 μm, but is not limited thereto.

[陽極酸化]
陽極酸化もしくは陽極化成とは、対象の金属を陽極として水もしくは溶液中で陰極との間に電圧を印加して通電させ、金属表面に薄い酸化皮膜を形成する手法である。
[anodization]
Anodization or anodization is a technique in which a thin oxide film is formed on a metal surface by applying a voltage to a cathode in water or a solution in the presence of a target metal as an anode.

上記のベース金属層を陽極酸化するには、ベース金属層を水又は電解質溶液中に浸漬してこれを陽極とし、陰極との間に電圧を印加して通電し、ベース金属層の両面を酸化処理するのが好ましい。   To anodize the above base metal layer, immerse the base metal layer in water or an electrolyte solution to make it the anode, apply a voltage between the cathode and energize, and oxidize both sides of the base metal layer It is preferable to process.

電解質としては塩酸や硫酸、フッ酸、硫酸ナトリウムなどの少なくとも1種を含んだ水溶液が例示され、中でも硫酸水溶液が好適である。尚、Nb、Nb合金又はTa、Ta合金については比抵抗の低い(電気伝導度の高い)水(比抵抗:0.25〜100Ω・m程度)でも陽極酸化が可能である。電解質溶液の濃度はNbとTaについては陽極電位であれば全pH域にて酸化膜が形成可能である。また、V、V合金については電位−pH図(腐食図またはPourbaix図とも呼称する)(M.Pourbaix:Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press,(1966))の酸化物または水酸化物の形成による不動態域にて同様の表面処理が実現可能である。   Examples of the electrolyte include aqueous solutions containing at least one of hydrochloric acid, sulfuric acid, hydrofluoric acid, sodium sulfate, and the like. Among these, a sulfuric acid aqueous solution is preferable. Nb, Nb alloy or Ta, Ta alloy can be anodized even with water having a low specific resistance (high electrical conductivity) (specific resistance: about 0.25 to 100 Ω · m). If the concentration of the electrolyte solution is Nb and Ta and the anode potential, an oxide film can be formed in the entire pH range. In addition, as for V and V alloys, potential-pH diagrams (also referred to as corrosion diagrams or Pourbaix diagrams) (M. A similar surface treatment can be realized in the passive region due to formation.

この電解質溶液よりなる陽極酸化浴のpHは5以下特に1以下程度が好適である。浴の温度は、1〜30℃特に15〜25℃程度が好適である。   The pH of the anodizing bath made of this electrolyte solution is preferably 5 or less, particularly 1 or less. The bath temperature is preferably about 1 to 30 ° C, particularly about 15 to 25 ° C.

陰極としては、SUS340やSUS316などのステンレス鋼、白金などを用いることができる。   As the cathode, stainless steel such as SUS340 or SUS316, platinum, or the like can be used.

陽極酸化処理の印加電圧は10〜160Vが好適であり、NbおよびNb合金では30〜50V程度、TaおよびTa合金では60〜80V程度が好適である。電流密度は0.1〜1A/dm特に0.2〜0.6A/dm程度が好適である。陽極酸化処理時間は、ベース金属層表面に一定電圧で電流が0となる飽和状態に到達するまでの時間、すなわちベース金属層上に一様に陽極酸化層が形成されるように選定するのが好ましいが、通常は0.3〜2h程度とされる。 The applied voltage for the anodizing treatment is preferably 10 to 160 V, preferably about 30 to 50 V for Nb and Nb alloys, and about 60 to 80 V for Ta and Ta alloys. The current density is preferably about 0.1 to 1 A / dm 2, particularly about 0.2 to 0.6 A / dm 2 . The anodizing time is selected so as to reach a saturated state where the current becomes zero at a constant voltage on the surface of the base metal layer, that is, so that the anodized layer is uniformly formed on the base metal layer. Although it is preferable, it is usually about 0.3 to 2 hours.

[被覆金属層]
被覆金属層としては、純Pd又はPd−Ag合金が好適であり、特にAg含有量が30モル%以下(とりわけ10〜30モル%)のPd−Ag合金又は純Pdが好適である。被覆金属層の厚さは10〜600nm特に100〜300nm程度が好適である。この被覆金属層は、スパッタリング、真空蒸着法、CVD(化学気相蒸着)法などによって形成することができる。
[Coated metal layer]
As the coating metal layer, pure Pd or Pd—Ag alloy is suitable, and in particular, Pd—Ag alloy or pure Pd having an Ag content of 30 mol% or less (especially 10 to 30 mol%) is suitable. The thickness of the coating metal layer is preferably about 10 to 600 nm, particularly about 100 to 300 nm. This covering metal layer can be formed by sputtering, vacuum deposition, CVD (chemical vapor deposition) or the like.

[水素製造装置]
水素分離膜を備えた水素製造装置としては、水素分離膜がハウジング、ケーシング又はベッセル等と称される容器内に設置され、水素分離膜で隔てられた1次室と2次室とを有し、必要に応じさらに加熱手段を有するものであれば、特にその構成は限定されない。膜の形態としても、平膜型、円筒型などのいずれの形態であってもよい。水素分離膜は、多孔質の支持体や表面に溝を設けた支持板の上に重ね合わされてもよく、多孔質体の表面に成膜されたものであってもよい。多孔質体としては、金属材、セラミック材などのいずれでもよい。
[Hydrogen production equipment]
As a hydrogen production apparatus equipped with a hydrogen separation membrane, the hydrogen separation membrane is installed in a container called a housing, casing, vessel or the like, and has a primary chamber and a secondary chamber separated by a hydrogen separation membrane. The structure is not particularly limited as long as it further has heating means as required. The form of the film may be any form such as a flat film type and a cylindrical type. The hydrogen separation membrane may be superimposed on a porous support or a support plate having a groove on the surface, or may be formed on the surface of the porous body. As a porous body, any of a metal material, a ceramic material, etc. may be sufficient.

この水素製造装置に供給される原料ガスとしては、水素を含むものであればよく、炭化水素の水蒸気改質ガス、燃料電池の燃料オフガス、水素を含むバイオガス、バイオマスガス化炉からの発生ガスなどが例示されるが、これに限定されない。   The raw material gas supplied to this hydrogen production apparatus may be any gas that contains hydrogen, such as a hydrocarbon steam reformed gas, a fuel cell off-gas, a biogas containing hydrogen, and a gas generated from a biomass gasification furnace. However, the present invention is not limited to this.

装置の運転温度(具体的には1次側のガス温度)は、膜の組成にもよるが、通常は300〜600℃特に400〜550℃程度とされる。   The operating temperature of the device (specifically, the gas temperature on the primary side) is usually about 300 to 600 ° C., particularly about 400 to 550 ° C., although it depends on the composition of the film.

本発明において、水素製造装置の構成、構造は特に限定されるものではないが、本発明において採用することができる水素製造装置の構成の一例を第6図(a),(b),(c)に示す。   In the present invention, the configuration and structure of the hydrogen production apparatus are not particularly limited, but examples of the configuration of the hydrogen production apparatus that can be employed in the present invention are shown in FIGS. 6 (a), 6 (b), and 6 (c). ).

第6図(a)では、炭化水素等の原料ガスを圧縮機21で圧縮して水素分離型改質器22に供給する。この水素分離型改質器22は、水素改質触媒と水素分離膜とを備えている。この水素分離型改質器22には、ボイラ24からスチームが供給されると共に、燃焼器23によって熱が与えられ、改質と水素分離とが行われる。水素分離型改質器22からの水素は熱交換器25を介して取り出される。オフガスは、熱交換器26で熱回収された後、圧力調整弁29を介して燃焼器23へ供給される。燃焼器23及びボイラ24の燃焼排ガスからもそれぞれ熱が熱交換器27,28で回収される。熱交換器25〜28で回収された熱により、ボイラ24への給水や燃焼用空気、燃料などの加熱が行われる。   In FIG. 6A, a raw material gas such as hydrocarbon is compressed by the compressor 21 and supplied to the hydrogen separation reformer 22. The hydrogen separation type reformer 22 includes a hydrogen reforming catalyst and a hydrogen separation membrane. The hydrogen separation type reformer 22 is supplied with steam from the boiler 24 and is given heat by the combustor 23 to perform reforming and hydrogen separation. Hydrogen from the hydrogen separation reformer 22 is taken out via the heat exchanger 25. The off gas is recovered by the heat exchanger 26 and then supplied to the combustor 23 via the pressure regulating valve 29. Heat is also recovered by the heat exchangers 27 and 28 from the combustion exhaust gas of the combustor 23 and the boiler 24, respectively. Heat supplied to the boiler 24, combustion air, fuel, and the like is performed by the heat recovered by the heat exchangers 25 to 28.

第6図(b)では、水素ガスを含んだ水素含有ガスが水素分離器31に供給され、この水素分離器31が燃焼器32によって加熱される。分離された水素は熱交換器33を介して取り出される。オフガスは熱交換器34を介して取り出され、必要に応じ、その一部又は全量が圧力調整弁36を介して燃焼器32に供給される。燃焼排ガスの熱は熱交換器35で回収される。回収された熱により、燃焼器32への燃料ガスや空気が加熱される。   In FIG. 6B, a hydrogen-containing gas containing hydrogen gas is supplied to the hydrogen separator 31, and the hydrogen separator 31 is heated by the combustor 32. The separated hydrogen is taken out through the heat exchanger 33. The off-gas is taken out through the heat exchanger 34, and a part or all of the off-gas is supplied to the combustor 32 through the pressure regulating valve 36 as necessary. The heat of the combustion exhaust gas is recovered by the heat exchanger 35. The fuel gas and air to the combustor 32 are heated by the recovered heat.

第6図(b)では燃焼器32を用いているが、高温廃熱を発生させる熱源が存在する場合には、第6図(c)のように、この高温廃熱を加熱器37に導き、水素分離器31を加熱するようにしてもよい。   In FIG. 6 (b), the combustor 32 is used. However, when there is a heat source that generates high-temperature waste heat, the high-temperature waste heat is guided to the heater 37 as shown in FIG. 6 (c). The hydrogen separator 31 may be heated.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

〔実施例1〕
厚さ500μmの純Nb膜(直径10mm)を、表面をエメリー研磨及び0.3μmのAl粒子を用いたバフ研磨により鏡面状態にし、0.1モル/Lを含むpH0.7の硫酸とイオン交換水を混合した酸性の電解質溶液中に浸漬して陽極酸化処理した。陰極としては電極面積0.03dmのSUS304板を用いた。浴温度20℃、印加電圧40Vにて1時間通電し、Nbとは異なる非晶質状態の陽極酸化層を純Nb膜の両面に形成した。
[Example 1]
A pure Nb film (diameter 10 mm) having a thickness of 500 μm is mirror-finished by emery polishing and buffing using 0.3 μm Al 2 O 3 particles, and sulfuric acid having a pH of 0.7 containing 0.1 mol / L. And anodized by dipping in an acidic electrolyte solution mixed with ion-exchanged water. As the cathode, an SUS304 plate having an electrode area of 0.03 dm 2 was used. An energization was performed for 1 hour at a bath temperature of 20 ° C. and an applied voltage of 40 V, and an anodized layer in an amorphous state different from Nb 2 O 5 was formed on both surfaces of the pure Nb film.

この陽極酸化層付き純Nb膜を浴から取り出し、純水にて洗浄した後、乾燥させ、次いでスパッタリングにより純Pdよりなる厚さ約200nmの被覆金属層を膜の両面に形成して水素分離膜とした。この水素分離膜を第7図に示す試験用モジュール1にセットして水素透過速度を測定した。   The pure Nb film with the anodized layer is taken out of the bath, washed with pure water, dried, and then a coated metal layer made of pure Pd and having a thickness of about 200 nm is formed on both sides of the film by sputtering to form a hydrogen separation membrane. It was. This hydrogen separation membrane was set in the test module 1 shown in FIG. 7, and the hydrogen permeation rate was measured.

この水素透過試験用モジュール1は、ガス導入管2の後端面とガス取出管6の前端面との間にガスケット3,5を介して水素分離膜4を配置したものである。導入管2にはナット7が外嵌しており、取出管6の先端のフランジ部6aにはキャップナット8が係合している。   In this hydrogen permeation test module 1, a hydrogen separation membrane 4 is disposed between a rear end face of a gas introduction pipe 2 and a front end face of a gas extraction pipe 6 via gaskets 3 and 5. A nut 7 is fitted on the introduction pipe 2, and a cap nut 8 is engaged with a flange portion 6 a at the tip of the extraction pipe 6.

該キャップナット8を導入管2側に延出させ、その内周面の雌ねじに対しナット7の外周面の雄ねじを螺合させる。ナット7の先端が導入管2の後端のフランジ部2aに当接することにより、キャップナット8を介して取出管6が導入管2側に引き付けられ、導入管2の後端面と取出管6の前端面との間でガスケット3,5を介して水素分離膜4が挟圧される。   The cap nut 8 is extended to the introduction tube 2 side, and a male screw on the outer peripheral surface of the nut 7 is screwed into a female screw on the inner peripheral surface. The leading end of the nut 7 comes into contact with the flange portion 2 a at the rear end of the introduction pipe 2, whereby the extraction pipe 6 is attracted to the introduction pipe 2 side through the cap nut 8, and the rear end surface of the introduction pipe 2 and the extraction pipe 6 are The hydrogen separation membrane 4 is sandwiched between the front end face via the gaskets 3 and 5.

キャップナット8には、ガスのリークテスト用の小孔8aが設けられている。   The cap nut 8 is provided with a small hole 8a for a gas leak test.

ガスケット3,5は、同一大きさの円環状である。ガスケットの内孔は5.6mmであるが、VCRで締め付けられた場合のガスケットと膜試料との接触部の直径は7.1mmであり、有効膜透過面積Aは39.6mm(3.96×10−5)である。 The gaskets 3 and 5 have an annular shape with the same size. Although the inner hole of the gasket is 5.6 mm, the diameter of the contact portion between the gasket and the membrane sample when tightened with a VCR is 7.1 mm, and the effective membrane permeation area A is 39.6 mm 2 (3.96). × 10 −5 m 2 ).

この水素透過試験用モジュール1を第6図の通り電気炉10内に設置し、導入管2に原料ガスを供給し、取出管6から水素ガスが取り出す。   The hydrogen permeation test module 1 is installed in the electric furnace 10 as shown in FIG. 6, the raw material gas is supplied to the introduction pipe 2, and the hydrogen gas is taken out from the extraction pipe 6.

導入管2のガス圧を60kPaとし、取出管6内のガス圧を10kPaとした。   The gas pressure in the introduction pipe 2 was 60 kPa, and the gas pressure in the extraction pipe 6 was 10 kPa.

原料ガスとしては、純度99.99999%以上の高純度水素を用いた。膜4を透過した水素ガスは回収容器(図示略)に回収した。   As the source gas, high purity hydrogen having a purity of 99.99999% or more was used. The hydrogen gas that permeated the membrane 4 was recovered in a recovery container (not shown).

電気炉10の温度を400℃として運転を行ったところ、導入管2のガス圧を60kPaとし、取出管6内のガス圧を10kPa(第2図では(0.06/0.01)のように記載)とすれば、水素透過速度Jと厚さdとの積J・dは、陽極酸化を施した純Nbについては、第2図の通り全運転期間中ほぼ安定して約25×10−6molH・m−1・s−1であった。 When the operation was performed with the temperature of the electric furnace 10 being 400 ° C., the gas pressure in the introduction pipe 2 was set to 60 kPa, and the gas pressure in the take-out pipe 6 was set to 10 kPa (in FIG. 2, (0.06 / 0.01) 2), the product J · d of the hydrogen permeation rate J and the thickness d is about 25 × 10 for the pure Nb subjected to anodic oxidation as shown in FIG. It was −6 molH · m −1 · s −1 .

〔実施例2〕
実施例1と同一条件にて陽極酸化を施して中間層を形成した同一膜厚のNb−5W合金(Wを5モル%含んだNb合金)について、実施例1と同様に純Pd被覆金属層を形成し、同様の評価を、導入管2のガス圧を8kPaとし、取出管6内のガス圧を3kPa(第2図では(0.008/0.003)のように記載)として水素透過試験を行った。結果を第2図に示す。図示の通り、J・dは全運転期間中ほぼ安定して約5×10−6molH・m−1・s−1であった。一方で、陽極酸化無しのNb−5W合金(後述の比較例1)の同温度での運転期間中のJ・dは1h(60min)程度でほぼ半減する時間変化の傾きを示し、水素透過速度の急激な低下が見られた。
[Example 2]
A pure Pd-coated metal layer of Nb-5W alloy (Nb alloy containing 5 mol% of W) having the same thickness formed by anodizing under the same conditions as in Example 1 as in Example 1 In the same evaluation, the gas pressure in the introduction pipe 2 is 8 kPa, and the gas pressure in the take-out pipe 6 is 3 kPa (described as (0.008 / 0.003) in FIG. 2). A test was conducted. The results are shown in FIG. As shown in the figure, J · d was approximately 5 × 10 −6 molH · m −1 · s −1 almost stably during the entire operation period. On the other hand, during the operation period of the Nb-5W alloy without anodization (Comparative Example 1 to be described later) at the same temperature, J · d shows a gradient of change with time that is almost halved at about 1 h (60 min), and the hydrogen permeation rate A sharp decline was observed.

〔比較例1〕
中間層を形成しなかったこと以外は実施例2と同様にして、即ち上記Nb−5W合金について、膜上に直接に上記被覆金属層を同様に形成して水素分離膜を製造した。この水素分離膜について同様の評価を行い、結果を第2図に示した。また、この水素分離膜の水素透過係数を規格化したφ/φmaxを求めて、最大流束を示した後の水素透過時間に対する水素透過性能の変化を表したものを第3図に示す。第3図には実施例1,2の結果も示してある。
[Comparative Example 1]
A hydrogen separation membrane was produced in the same manner as in Example 2 except that the intermediate layer was not formed, that is, for the Nb-5W alloy, the coated metal layer was formed in the same manner directly on the membrane. The same evaluation was performed on this hydrogen separation membrane, and the results are shown in FIG. FIG. 3 shows the change in hydrogen permeation performance with respect to the hydrogen permeation time after obtaining φ / φmax with normalized hydrogen permeation coefficient of this hydrogen separation membrane and showing the maximum flux. FIG. 3 also shows the results of Examples 1 and 2.

第3図に示す通り、比較例1では運転開始後わずか1h(60min)程度で水素透過速度が半減することが予測されるのに対し、実施例1,2によると長期にわたって安定して水素を膜分離することができる。この図からも陽極酸化膜が水素透過性能の低下の抑制に寄与しており、耐久性が向上したことが分かる。   As shown in FIG. 3, in Comparative Example 1, it is predicted that the hydrogen permeation rate will be halved in only about 1 h (60 min) after the start of operation. Membrane separation can be performed. From this figure, it can be seen that the anodic oxide film contributes to the suppression of the decrease in hydrogen permeation performance, and the durability is improved.

〔実施例3〕
実施例1と同一条件にて陽極酸化を施して中間層を形成した同一膜厚のNb−5W−5Mo合金(Wを5モル%、Moを5モル%含んだNb合金)について、実施例1と同様に純Pd被覆金属層を形成し、同様の評価を、導入管2のガス圧を16kPaとし、取出管6内のガス圧を4kPa(第4図では(0.016/0.004)のように記載)として水素透過試験を行い、結果を第4図に示した。図示の通り、J・dは初期の7×10−6molH・m−1・s−1から多少低下するものの、その後長時間安定して約5×10−6molH・m−1・s−1であった。
Example 3
Example 1 Nb-5W-5Mo alloy (Nb alloy containing 5 mol% of W and 5 mol% of Mo) having the same film thickness on which an intermediate layer was formed by anodizing under the same conditions as in Example 1 A pure Pd-coated metal layer is formed in the same manner as described above, and the same evaluation is performed. The gas pressure in the introduction pipe 2 is 16 kPa, and the gas pressure in the extraction pipe 6 is 4 kPa ((0.016 / 0.004 in FIG. 4). The hydrogen permeation test was conducted and the results are shown in FIG. As shown in the figure, J · d slightly decreases from the initial 7 × 10 −6 molH · m −1 · s −1 , but then stable for about 5 × 10 −6 molH · m −1 · s − after that. 1

〔比較例2〕
中間層を形成しなかったこと以外は実施例3と同様にして、即ち上記Nb−5W−5Mo合金について、膜上に直接に上記被覆金属層を同様に形成して水素分離膜を製造した。この水素分離膜について実施例3と同一条件にて水素透過試験を行い、結果を第4図に示した。図示の通り、J・dは試験開始時は11×10−6molH・m−1・s−1であったが、その後、実施例2および比較例1と同様に短時間のうちに急激に低下する時間変化の傾向を示した。
[Comparative Example 2]
A hydrogen separation membrane was produced in the same manner as in Example 3 except that the intermediate layer was not formed, that is, for the Nb-5W-5Mo alloy, the coated metal layer was similarly formed directly on the membrane. This hydrogen separation membrane was subjected to a hydrogen permeation test under the same conditions as in Example 3, and the results are shown in FIG. As shown in the figure, J · d was 11 × 10 −6 molH · m −1 · s −1 at the start of the test, but then suddenly in a short time as in Example 2 and Comparative Example 1. It showed a trend of decreasing time.

〔実施例4〕
Nb膜の代りに厚さ500μmのTa−5W合金(Wを5モル%含んだTa合金)膜を用いたことおよび陽極酸化時の印加電圧を40V又は80Vとしたこと以外は実施例1と同様にして中間層及び被覆金属層を形成して水素分離膜を製造した。この水素分離膜を水素透過試験温度を500℃としたこと以外は実施例1と同一条件の膜厚で規格化した水素透過速度J・dを測定し、最大流束時のφmaxを示した後の水素透過時間に対する水素透過性能の変化を調べた。第5図中の△と□印はそれぞれ印加電圧を40V又は80Vとして陽極酸化した後、各分離膜について、比較例1と同様に水素透過係数を規格化したφ/φmaxを求め、水素透過時間による変化を表したものである。
Example 4
Similar to Example 1 except that a Ta-5W alloy film (Ta alloy containing 5 mol% of W) having a thickness of 500 μm was used instead of the Nb film, and that the applied voltage at the time of anodization was 40 V or 80 V Thus, a hydrogen separation membrane was manufactured by forming an intermediate layer and a coated metal layer. After measuring the hydrogen permeation rate J · d normalized with the film thickness under the same conditions as in Example 1 except that the hydrogen permeation test temperature was 500 ° C., and showing φmax at the maximum flux The change of hydrogen permeation performance with respect to hydrogen permeation time was investigated. In FIG. 5, Δ and □ marks are obtained by anodizing with an applied voltage of 40 V or 80 V, respectively, and obtaining φ / φmax with normalized hydrogen permeation coefficient for each separation membrane in the same manner as in Comparative Example 1, and hydrogen permeation time It shows the change by.

〔比較例3〕
中間層を形成しなかったこと以外は実施例4と同様にして、即ち上記Ta−5W合金膜上に直接に上記被覆金属層を同様に形成して水素分離膜を製造した。この水素分離膜について実施例4と同様にして水素透過係数を規格化したφ/φmaxの時間変化を求めたところ、この比は第5図の○印の通り水素透過時間に伴って、急速に減少した。
[Comparative Example 3]
A hydrogen separation membrane was produced in the same manner as in Example 4 except that the intermediate layer was not formed, that is, the coated metal layer was formed in the same manner directly on the Ta-5W alloy membrane. For this hydrogen separation membrane, the time change of φ / φmax with normalized hydrogen permeation coefficient was determined in the same manner as in Example 4, and this ratio rapidly increased with the hydrogen permeation time as indicated by the circles in FIG. Diminished.

一方、実施例4の各合金では実施例1,2の場合よりも水素透過試験温度が高温(500℃)であっても、陽極酸化膜が中間層として働き、水素透過性能の低下が抑制され、φ/φmaxの変化が緩慢となった(第5図の△および□印参照)。また、実施例4では、水素透過係数が半減するまでの時間が比較例3の約2倍となっており、Pd触媒膜とTa合金との相互拡散が抑制されたことが認められた。   On the other hand, in each alloy of Example 4, even when the hydrogen permeation test temperature was higher (500 ° C.) than in Examples 1 and 2, the anodic oxide film served as an intermediate layer, and the decrease in hydrogen permeation performance was suppressed. , Φ / φmax changes slowly (see Δ and □ in FIG. 5). In Example 4, the time until the hydrogen permeation coefficient was halved was about twice that of Comparative Example 3, and it was confirmed that the mutual diffusion between the Pd catalyst film and the Ta alloy was suppressed.

1 水素透過試験用モジュール
2 ガス導入管
3,5 ガスケット
4 水素分離膜
6 ガス取出管
7 ナット
8 キャップナット
10 電気炉
11 水素分離膜
12 ベース金属層
13 中間層
14 被覆金属層
21 圧縮機
22 水素分離型改質器
25〜28,33〜35 熱交換器
31 水素分離器
DESCRIPTION OF SYMBOLS 1 Hydrogen permeation test module 2 Gas introduction pipe 3, 5 Gasket 4 Hydrogen separation membrane 6 Gas extraction pipe 7 Nut 8 Cap nut 10 Electric furnace 11 Hydrogen separation membrane 12 Base metal layer 13 Intermediate layer 14 Covered metal layer 21 Compressor 22 Hydrogen Separable reformer 25-28, 33-35 Heat exchanger 31 Hydrogen separator

Claims (5)

5A族金属又はその合金よりなるベース金属層と、該ベース金属層の表面に形成された中間層と、該中間層上に形成された被覆金属層とを有する水素分離膜において、
該中間層はベース金属層を陽極酸化する(該ベース金属層を陽極として水もしくは溶液中で電圧を印加し通電して表面を酸化させる)ことにより形成されたものであることを特徴とする水素分離膜。
In a hydrogen separation membrane having a base metal layer made of a group 5A metal or an alloy thereof, an intermediate layer formed on the surface of the base metal layer, and a coated metal layer formed on the intermediate layer,
The intermediate layer is formed by anodizing a base metal layer (the surface is oxidized by applying a voltage in water or a solution with the base metal layer serving as an anode to oxidize the surface). Separation membrane.
請求項1において、ベース金属層がNb、Nb合金、Ta、Ta合金、V又はV合金よりなることを特徴とする水素分離膜。   2. The hydrogen separation membrane according to claim 1, wherein the base metal layer is made of Nb, Nb alloy, Ta, Ta alloy, V or V alloy. 請求項1又は2において、被覆金属層がPd又はPd合金よりなることを特徴とする水素分離膜。   3. The hydrogen separation membrane according to claim 1, wherein the coating metal layer is made of Pd or a Pd alloy. 5A族金属又はその合金よりなるベース金属層と、該ベース金属層の表面に形成された中間層と、該中間層上に形成された被覆金属層とを有する水素分離膜の製造方法において、
ベース金属層を陽極酸化して前記中間層を形成する工程と、
中間層の上に前記被覆金属層を形成する工程と
を有することを特徴とする水素分離膜の製造方法。
In a method for producing a hydrogen separation membrane comprising a base metal layer made of a group 5A metal or an alloy thereof, an intermediate layer formed on the surface of the base metal layer, and a coated metal layer formed on the intermediate layer,
Forming an intermediate layer by anodizing a base metal layer;
And a step of forming the coated metal layer on the intermediate layer.
水素分離膜で隔てられた1次室及び2次室を有した水素製造装置において、
該水素分離膜が請求項1ないし3のいずれか1項に記載の水素分離膜であることを特徴とする水素製造装置。
In a hydrogen production apparatus having a primary chamber and a secondary chamber separated by a hydrogen separation membrane,
The hydrogen separation membrane according to any one of claims 1 to 3, wherein the hydrogen separation membrane is a hydrogen separation membrane.
JP2012067204A 2011-04-06 2012-03-23 Method for producing hydrogen separation membrane Expired - Fee Related JP5548996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067204A JP5548996B2 (en) 2011-04-06 2012-03-23 Method for producing hydrogen separation membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011084665 2011-04-06
JP2011084665 2011-04-06
JP2012067204A JP5548996B2 (en) 2011-04-06 2012-03-23 Method for producing hydrogen separation membrane

Publications (2)

Publication Number Publication Date
JP2012223754A true JP2012223754A (en) 2012-11-15
JP5548996B2 JP5548996B2 (en) 2014-07-16

Family

ID=47274547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067204A Expired - Fee Related JP5548996B2 (en) 2011-04-06 2012-03-23 Method for producing hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JP5548996B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102142A1 (en) * 2014-01-03 2015-07-09 조상무 Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material
JP2016172229A (en) * 2015-03-17 2016-09-29 京セラ株式会社 Hydrogen separation membrane, hydrogen separation module, hydrogen separation device and hydrogen production device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185277A (en) * 1993-11-08 1995-07-25 Bend Res Inc Combined metal film for hydrogen separation
JP2005126286A (en) * 2003-10-24 2005-05-19 Dainippon Printing Co Ltd Membrane reactor for hydrogen production
JP2006035063A (en) * 2004-07-26 2006-02-09 Toyota Motor Corp Hydrogen permeable membrane
JP2006314925A (en) * 2005-05-12 2006-11-24 Toyota Motor Corp Hydrogen permeable membrane and fuel cell equipped with it
JP2007044622A (en) * 2005-08-10 2007-02-22 Toyota Motor Corp Hydrogen permeable membrane and production method for hydrogen permeable membrane
JP2007117810A (en) * 2005-10-25 2007-05-17 Sumitomo Electric Ind Ltd Hydrogen permeable membrane and fuel cell using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185277A (en) * 1993-11-08 1995-07-25 Bend Res Inc Combined metal film for hydrogen separation
JP2005126286A (en) * 2003-10-24 2005-05-19 Dainippon Printing Co Ltd Membrane reactor for hydrogen production
JP2006035063A (en) * 2004-07-26 2006-02-09 Toyota Motor Corp Hydrogen permeable membrane
JP2006314925A (en) * 2005-05-12 2006-11-24 Toyota Motor Corp Hydrogen permeable membrane and fuel cell equipped with it
JP2007044622A (en) * 2005-08-10 2007-02-22 Toyota Motor Corp Hydrogen permeable membrane and production method for hydrogen permeable membrane
JP2007117810A (en) * 2005-10-25 2007-05-17 Sumitomo Electric Ind Ltd Hydrogen permeable membrane and fuel cell using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102142A1 (en) * 2014-01-03 2015-07-09 조상무 Method for surface treating metal interior/exterior material and surface-treated metal interior/exterior material
JP2016172229A (en) * 2015-03-17 2016-09-29 京セラ株式会社 Hydrogen separation membrane, hydrogen separation module, hydrogen separation device and hydrogen production device

Also Published As

Publication number Publication date
JP5548996B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP7273024B2 (en) Electrode for electrolysis and method for manufacturing the same
KR101242986B1 (en) Metal separator for fuel cell and method of manufacturing the same
JP6160877B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
Wei et al. Fabrication of H2-permeable palladium membranes based on pencil-coated porous stainless steel substrate
JPWO2002045832A1 (en) Hydrogen permeable structure and manufacturing method thereof
JP6446373B2 (en) Electrochemical devices
JP5634604B2 (en) Separator for fuel cell and method for producing the same
JP2009138229A (en) Method for forming protective film
JP5548996B2 (en) Method for producing hydrogen separation membrane
JP2007245010A (en) Hydrogen refining filter and its manufacturing method
TW201012973A (en) Cathode member and bipolar plate for hypochlorite cells
Zhao et al. Palladium membrane on TiO2 nanotube arrays-covered titanium surface by combination of photocatalytic deposition and modified electroless plating processes and its hydrogen permeability
JP6384831B2 (en) Hydrogen separator and hydrogen separation method
JP2006314877A (en) Hydrogen separator
WO2005101555A1 (en) Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
JPH11267477A (en) Hydrogen permeable membrane and its production
JP5180485B2 (en) Method for manufacturing fuel cell separator, fuel cell separator and fuel cell
JP4353657B2 (en) Method for separating hydrogen from hydrocarbon reformed gases using high temperature proton conductors
JP2005166531A (en) Fuel cell
JP2009166005A (en) Manufacturing method of hydrogen permeable membrane
JP5867502B2 (en) Hydrogen separation membrane and hydrogen separator
JP2014172012A (en) Hydrogen separation method
JP5987197B2 (en) Hydrogen separation membrane and hydrogen separation method
JP2007245092A (en) Hydrogen-permeable membrane and production method therefor
JP4007405B2 (en) Hydrogen separator and hydrogen production apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R150 Certificate of patent or registration of utility model

Ref document number: 5548996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees