JP2007245010A - Hydrogen refining filter and its manufacturing method - Google Patents

Hydrogen refining filter and its manufacturing method Download PDF

Info

Publication number
JP2007245010A
JP2007245010A JP2006072233A JP2006072233A JP2007245010A JP 2007245010 A JP2007245010 A JP 2007245010A JP 2006072233 A JP2006072233 A JP 2006072233A JP 2006072233 A JP2006072233 A JP 2006072233A JP 2007245010 A JP2007245010 A JP 2007245010A
Authority
JP
Japan
Prior art keywords
alloy film
outer frame
frame member
purification filter
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006072233A
Other languages
Japanese (ja)
Other versions
JP4714052B2 (en
Inventor
Tsunaichi Suzuki
綱一 鈴木
Yutaka Yagi
裕 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006072233A priority Critical patent/JP4714052B2/en
Publication of JP2007245010A publication Critical patent/JP2007245010A/en
Application granted granted Critical
Publication of JP4714052B2 publication Critical patent/JP4714052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen refining filter having superior hydrogen permeation efficiency in hydrogen refining, and a manufacturing method for easily manufacturing such a filter. <P>SOLUTION: The structure of the hydrogen refining filter comprises a diffusion preventive layer disposed on one face of a porous support body; a Pd alloy film disposed on the porous support body to cover a lot of pores of the porous support body via the diffusion preventive layer; and an annular outer frame member positioned in the region of the outside of the Pd alloy film and at least one face of the porous support body. A thickness of the outer frame member is set thicker than that of the Pd alloy film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素精製用フィルタとその製造方法に係り、特に各種の炭化水素系燃料を水蒸気改質して水素リッチガスを生成するための改質器等に使用する水素精製フィルタと、これを簡便に製造することができる製造方法に関する。   The present invention relates to a hydrogen purification filter and a method for producing the same, and more particularly to a hydrogen purification filter used in a reformer or the like for steam reforming various hydrocarbon fuels to produce a hydrogen rich gas, The present invention relates to a manufacturing method that can be manufactured.

近年、地球規模の環境やエネルギー・資源の問題が顕在化し、これらと産業との調和を図るエネルギー供給システムの一つとして燃料電池が注目されている。燃料電池は、予め用意した水素ガスや、天然ガス、ガソリン、ブタンガス、メタノール等の炭化水素系燃料を改質して得られる水素リッチガスを、空気中の酸素と電気化学的に反応させて直接電気を取り出す発電装置である。上記の水素リッチガスを用いる燃料電池は炭化水素系燃料を水蒸気改質して水素リッチガスを生成する改質器と、電気を発生させる燃料電池本体と、発生した直流電気を交流に変換する変換器等で構成されている。
このような燃料電池は、燃料電池本体に使用する電解質、反応形態等により、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体電解質型燃料電池(SOFC)、アルカリ型燃料電池(AFC)、固体高分子型燃料電池(PEFC)の5種類がある。このうち、固体高分子型燃料電池(PEFC)は、リン酸型燃料電池(PAFC)、アルカリ型燃料電池(AFC)等の他の燃料電池と比較して、電解質が固体である点において有利な条件を備えている。
In recent years, global environmental and energy / resource problems have become apparent, and fuel cells have been attracting attention as one of energy supply systems that harmonize these with industry. A fuel cell directly produces hydrogen gas or hydrogen-rich gas obtained by reforming a hydrocarbon-based fuel such as natural gas, gasoline, butane gas, or methanol by electrochemical reaction with oxygen in the air. It is the electric power generating apparatus which takes out. The fuel cell using the hydrogen-rich gas includes a reformer that generates hydrogen-rich gas by steam reforming a hydrocarbon-based fuel, a fuel cell body that generates electricity, a converter that converts the generated DC electricity into AC, and the like It consists of
Such a fuel cell may be a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid electrolyte fuel cell (SOFC), an alkaline type, depending on the electrolyte used in the fuel cell body, the reaction mode, and the like. There are five types of fuel cells (AFC) and polymer electrolyte fuel cells (PEFC). Among these, the polymer electrolyte fuel cell (PEFC) is advantageous in that the electrolyte is solid compared to other fuel cells such as a phosphoric acid fuel cell (PAFC) and an alkaline fuel cell (AFC). Have the requirements.

しかし、固体高分子型燃料電池(PEFC)は触媒に白金を使用し、かつ、作動温度が低いため、電極触媒が少量のCOによって被毒し、特に高電流密度領域において性能劣化が著しいという欠点がある。このため、改質器で生成された改質ガス(水素リッチガス)に含有されるCO濃度を10ppm程度まで低減する必要がある。
改質ガスからCOを除去して水素を精製する手段の一つとして、Pd合金膜を備えた水素精製フィルタが開発されており、Pd合金膜は、膜にピンホールやクラック等がなければ原理的には水素のみが透過可能であり、改質ガス側を高温高圧(例えば、500℃、3〜10kg/cm2(0.29〜0.98MPa))とすることにより、低水素分圧側に水素を透過する。
However, the polymer electrolyte fuel cell (PEFC) uses platinum as the catalyst and has a low operating temperature, so that the electrode catalyst is poisoned by a small amount of CO, and the performance deterioration is particularly remarkable in a high current density region. There is. For this reason, it is necessary to reduce the CO concentration contained in the reformed gas (hydrogen-rich gas) generated by the reformer to about 10 ppm.
As one of the means for purifying hydrogen by removing CO from the reformed gas, a hydrogen purification filter having a Pd alloy film has been developed. In particular, only hydrogen is permeable, and the reformed gas side is set to a high temperature and high pressure (for example, 500 ° C., 3 to 10 kg / cm 2 (0.29 to 0.98 MPa)), thereby achieving a low hydrogen partial pressure side. Permeates hydrogen.

上記のようなPd合金膜を使用した水素精製法では、水素の透過速度は膜厚に反比例するため薄膜化が要求されるが、Pd合金膜は機械的強度の面から、単体では30μm程度までの薄膜化が限度であり、膜厚が十数μm程度のPd合金膜を使用する場合には、Pd合金膜の低水素分圧側に多孔構造の支持体を配置していた。しかし、Pd合金膜と支持体とを別体で改質器に装着するので、良好なシーリングを得るための作業性が悪く、また、Pd合金膜と支持体との擦れが生じてPd合金膜の耐久性が十分ではないという問題があった。   In the hydrogen refining method using the Pd alloy film as described above, the hydrogen permeation rate is inversely proportional to the film thickness, so that a thin film is required. However, from the viewpoint of mechanical strength, the Pd alloy film alone is about 30 μm. In the case of using a Pd alloy film having a film thickness of about several tens of μm, a porous support was disposed on the low hydrogen partial pressure side of the Pd alloy film. However, since the Pd alloy film and the support are separately mounted on the reformer, the workability for obtaining good sealing is poor, and the Pd alloy film and the support are rubbed to cause the Pd alloy film. There was a problem that the durability of was not sufficient.

上記の問題を解消するために、支持体上に直接Pd合金膜を成膜し、Pd合金膜と支持体とを一体化した水素精製フィルタが開発されている。例えば、仮支持体上にPd合金膜を形成し、このPd合金膜上にレジストパターンを形成し、次に、Pd合金膜の30〜95%を覆うように、微細な開口部を有する金属ベース膜を電解めっきで形成し、その後、仮支持体を除去することにより製造された水素精製フィルタがある(特許文献1)。また、貫通孔を有する導電性基材の一方の面に金属板を配し、導電性基材の他方の面から銅めっきすることにより、貫通孔を埋めるように銅めっき層を形成し、上記の金属膜を除去した後、その面にPd合金膜を成膜し、銅めっき層を選択エッチングにより除去して製造された水素精製フィルタがある(特許文献2)。
特開2002−292259号公報 特開2004−57866号公報
In order to solve the above problem, a hydrogen purification filter in which a Pd alloy film is directly formed on a support and the Pd alloy film and the support are integrated has been developed. For example, a Pd alloy film is formed on a temporary support, a resist pattern is formed on the Pd alloy film, and then a metal base having fine openings so as to cover 30 to 95% of the Pd alloy film. There is a hydrogen purification filter manufactured by forming a film by electrolytic plating and then removing the temporary support (Patent Document 1). Further, a metal plate is arranged on one surface of the conductive substrate having a through hole, and a copper plating layer is formed so as to fill the through hole by copper plating from the other surface of the conductive substrate. There is a hydrogen purification filter manufactured by removing the metal film, forming a Pd alloy film on the surface, and removing the copper plating layer by selective etching (Patent Document 2).
JP 2002-292259 A JP 2004-57866 A

しかしながら、上述の特許文献1の水素精製フィルタでは、Pd合金膜上への金属ベース膜の電解めっきによる形成に長時間を要し、また、充分な強度を有する厚みの大きな金属ベース膜の形成が困難であるという問題があった。また、形成した金属ベース膜の微細な開口部にレジストが残存し易いという問題もあった。
また、上述の特許文献2の水素精製フィルタは、銅めっきによる貫通孔を埋める工程において、銅めっき層、特に貫通孔の奥部(後工程にてPd合金膜が形成される部位)にボイドと呼ばれる銅めっきが充填されない空隙が発生する場合があり、Pd合金膜の形成工程において、このボイドがPd合金膜のピンホール欠陥の原因となることがあった。このため、工程管理が煩雑となり、製造コストの低減に支障を来たしていた。
However, in the above-described hydrogen purification filter of Patent Document 1, it takes a long time to form the metal base film on the Pd alloy film by electrolytic plating, and the formation of a thick metal base film having sufficient strength is difficult. There was a problem that it was difficult. There is also a problem that the resist is likely to remain in the fine opening of the formed metal base film.
Further, the hydrogen purification filter of Patent Document 2 described above has voids in the copper plating layer, particularly in the deep part of the through hole (part where the Pd alloy film is formed in the subsequent process) in the step of filling the through hole by copper plating. In some cases, a void that is not filled with copper plating is generated, and in the process of forming the Pd alloy film, this void may cause pinhole defects in the Pd alloy film. For this reason, process management has become complicated, which has hindered the reduction of manufacturing costs.

さらに、支持体の一方の面に直接Pd合金膜を成膜した従来の水素精製フィルタは、Pd合金膜の応力により反りが発生し、製造工程中や、組み立て・装着等における取り扱い性が悪いという問題があった。このような反りの発生は、支持体の厚みを大きくすることにより防止できるが、水素精製フィルタの薄型化の要請があり、支持体厚みが10〜50μm程度である場合には、反り防止の有効な対応が困難であった。また、高温下での長時間の使用により、Pd合金膜中へ支持体の構成材料が拡散して水素透過効率が低下するという問題もあった。
本発明は上述のような事情に鑑みてなされたものであり、水素精製において優れた水素透過効率を示す水素精製フィルタと、このようなフィルタを簡便に製造するための製造方法を提供することを目的とする。
Furthermore, the conventional hydrogen purification filter in which the Pd alloy film is directly formed on one surface of the support is warped due to the stress of the Pd alloy film, and is difficult to handle during the manufacturing process and during assembly and mounting. There was a problem. Such warpage can be prevented by increasing the thickness of the support, but there is a demand for thinning of the hydrogen purification filter, and when the thickness of the support is about 10 to 50 μm, it is effective in preventing warpage. It was difficult to respond properly. Further, there has been a problem that the use of the material for a long time at a high temperature diffuses the constituent material of the support into the Pd alloy film, resulting in a decrease in hydrogen permeation efficiency.
This invention is made | formed in view of the above situations, and provides the hydrogen purification filter which shows the hydrogen permeation efficiency excellent in hydrogen purification, and the manufacturing method for manufacturing such a filter simply. Objective.

このような目的を達成するために、本発明の水素精製フィルタは、孔部を複数有する多孔支持体と、該多孔支持体の一方の面に配設された拡散防止層と、前記孔部を覆うように前記拡散防止層を介して前記多孔支持体上に配設されたPd合金膜と、該Pd合金膜の外側の領域であって前記多孔支持体の少なくとも一方の面に位置する環状の外枠部材とを備え、該外枠部材の厚みはPd合金膜の厚み以上であるような構成とした。   In order to achieve such an object, the hydrogen purification filter of the present invention comprises a porous support having a plurality of pores, a diffusion prevention layer disposed on one surface of the porous support, and the pores. A Pd alloy film disposed on the porous support through the diffusion prevention layer so as to cover, and an annular region located outside the Pd alloy film and located on at least one surface of the porous support An outer frame member, and the thickness of the outer frame member is equal to or greater than the thickness of the Pd alloy film.

本発明の他の態様として、前記拡散防止層は、窒化チタン、炭化チタン、窒化ケイ素、炭化ケイ素、酸化マグネシウム、酸化セリウム、酸化亜鉛の1種であるような構成とした。
本発明の他の態様として、前記多孔支持体は、ステンレス鋼であり、前記外枠部材は鉄またはニッケルであるような構成とした。
本発明の他の態様として、前記多孔支持体の厚みは10〜50μmの範囲内であり、前記Pd合金膜の厚みは1〜5μmの範囲内であるような構成とした。
本発明の他の態様として、前記外枠部材の幅は1〜5mmの範囲内であるような構成とした。
本発明の他の態様として、前記外枠部材の厚みは前記Pd合金膜よりも3〜50μm厚いものであるような構成とした。
As another aspect of the present invention, the diffusion preventing layer is configured to be one of titanium nitride, titanium carbide, silicon nitride, silicon carbide, magnesium oxide, cerium oxide, and zinc oxide.
As another aspect of the present invention, the porous support is made of stainless steel, and the outer frame member is made of iron or nickel.
As another aspect of the present invention, the porous support has a thickness in the range of 10 to 50 μm, and the Pd alloy film has a thickness in the range of 1 to 5 μm.
As another aspect of the present invention, the outer frame member has a width in the range of 1 to 5 mm.
As another aspect of the present invention, the outer frame member has a thickness that is 3 to 50 μm thicker than the Pd alloy film.

また、本発明の水素精製フィルタの製造方法は、支持体の表面側に拡散防止層を形成し、該拡散防止層上にPd合金膜を形成する膜形成工程と、前記Pd合金膜の外側領域の前記支持体上に、前記Pd合金膜以上の厚みを有する環状の外枠部材を形成する外枠部材形成工程と、前記外枠部材よりも内側の領域に複数の開口部が位置するレジストパターンを前記支持体の裏面側に形成し、該レジストパターンをマスクとして前記支持体を裏面側からエッチングすることにより、前記支持体に複数の貫通孔を形成し、その後、該貫通孔に露出する前記拡散防止層をエッチングにより除去して多孔支持体を作製するエッチング工程と、を有するような構成とした。   Further, the method for producing a hydrogen purification filter of the present invention includes a film forming step of forming a diffusion prevention layer on the surface side of the support and forming a Pd alloy film on the diffusion prevention layer, and an outer region of the Pd alloy film. An outer frame member forming step of forming an annular outer frame member having a thickness equal to or greater than that of the Pd alloy film on the support, and a resist pattern in which a plurality of openings are located in a region inside the outer frame member Is formed on the back side of the support, and the support is etched from the back side using the resist pattern as a mask to form a plurality of through holes in the support, and then exposed to the through holes. And an etching step of removing the diffusion prevention layer by etching to produce a porous support.

本発明の他の態様として、前記外枠部材形成工程では、電解めっきにより、鉄またはニッケルからなる外枠部材を形成するような構成とした。
本発明の他の態様として、前記膜形成工程では、真空蒸着、イオンプレーティング、スパッタリング、無電解めっきのいずれかの方法により、窒化チタン、炭化チタン、窒化ケイ素、炭化ケイ素、酸化マグネシウム、酸化セリウム、酸化亜鉛のいずれかからなる前記拡散防止層を形成するような構成とした。
As another aspect of the present invention, in the outer frame member forming step, an outer frame member made of iron or nickel is formed by electrolytic plating.
As another aspect of the present invention, in the film formation step, titanium nitride, titanium carbide, silicon nitride, silicon carbide, magnesium oxide, cerium oxide is formed by any one of vacuum deposition, ion plating, sputtering, and electroless plating. The diffusion preventing layer made of any of zinc oxide is formed.

本発明の水素精製フィルタは、多孔支持体とPd合金膜との間に拡散防止層を備えるので、Pd合金膜中への多孔支持体の構成材料の拡散が確実に防止され、高温下での長時間の使用でも高い水素透過効率が維持されるとともに、拡散防止層が多孔支持体およびPd合金膜と高い密着性を確保するので、耐久性が大幅に向上し、また、Pd合金膜の外側領域に存在する環状の外枠部材が、Pd合金膜の応力に対抗して、水素精製フィルタの反りを防止するので、組み立て・装着等における取り扱い性が極めて良好でありながら、総厚の薄い水素精製フィルタが可能である。
また、本発明の水素精製フィルタの製造方法は、支持体上に拡散防止層を介してPd合金膜を形成するので、形成されたPd合金膜は膜厚が均一で水素透過性能が高いものとなり、また、最終の水素精製フィルタには残らないような部材の付加・除去が不要なので、工程が簡便なものとなり、さらに、多孔支持体を作製するエッチング工程の前に、環状の外枠部材を形成するので、エッチング工程が終了した状態での水素精製フィルタの反りが防止され、製造工程中における取り扱い性が良好である。
Since the hydrogen purification filter of the present invention includes a diffusion prevention layer between the porous support and the Pd alloy film, the diffusion of the constituent material of the porous support into the Pd alloy film is surely prevented, and at a high temperature. High hydrogen permeation efficiency is maintained even when used for a long time, and the diffusion preventing layer ensures high adhesion with the porous support and the Pd alloy film, so that the durability is greatly improved. The annular outer frame member present in the region resists the stress of the Pd alloy film and prevents the hydrogen purification filter from warping. A purification filter is possible.
Further, in the method for producing a hydrogen purification filter of the present invention, a Pd alloy film is formed on a support through a diffusion prevention layer, so that the formed Pd alloy film has a uniform film thickness and high hydrogen permeation performance. In addition, since it is not necessary to add or remove a member that does not remain in the final hydrogen purification filter, the process becomes simple, and an annular outer frame member is attached before the etching process for producing the porous support. Since it forms, the hydrogen purification filter is prevented from warping in the state where the etching process is completed, and the handleability during the manufacturing process is good.

以下、本発明の実施形態について図面を参照して説明する。
[水素精製フィルタ]
図1は、本発明の水素精製フィルタの一実施形態を示す斜視図であり、図2は、図1に示される水素精製フィルタのA−A線における縦拡大部分断面図である。図1および図2において、水素精製フィルタ1は、複数の微細な孔部3を有する多孔支持体2と、この多孔支持体2の表面2a側に拡散防止層5を介して配設されたPd合金膜6と、Pd合金膜6の外側の領域であって、多孔支持体2の表面2a側に位置する環状の外枠部材8を備えるものである。そして、外枠部材8の厚みTは、Pd合金膜6の厚み以上である。
水素精製フィルタ1を構成する多孔支持体2は、SUS304、SUS430等のオーステナイト系、フェライト系のステンレス鋼等の材料を用いて作製することができ、厚みは10〜50μmの範囲内で適宜設定することができる。
Embodiments of the present invention will be described below with reference to the drawings.
[Hydrogen purification filter]
FIG. 1 is a perspective view showing an embodiment of the hydrogen purification filter of the present invention, and FIG. 2 is a longitudinally enlarged partial sectional view taken along line AA of the hydrogen purification filter shown in FIG. 1 and 2, the hydrogen purification filter 1 includes a porous support 2 having a plurality of fine pores 3, and Pd disposed on the surface 2 a side of the porous support 2 via a diffusion prevention layer 5. The alloy film 6 and a region outside the Pd alloy film 6 and an annular outer frame member 8 positioned on the surface 2a side of the porous support 2 are provided. The thickness T of the outer frame member 8 is equal to or greater than the thickness of the Pd alloy film 6.
The porous support 2 constituting the hydrogen purification filter 1 can be produced using materials such as austenitic and ferritic stainless steel such as SUS304 and SUS430, and the thickness is appropriately set within a range of 10 to 50 μm. be able to.

この多孔支持体2が有する孔部3は、開口径が15〜150μmの範囲であることが好ましい。また、Pd合金膜6の配設領域における孔部3の開口の合計面積は、Pd合金膜6の面積の20〜80%を占めることが好ましい。尚、多孔支持体2の厚み方向において孔部3の開口径に差がある場合には、上記開口径は最小開口径を意味する。
水素精製フィルタ1を構成する拡散防止層5は、Pd合金膜6中への多孔支持体2の構成材料の拡散を防止し、かつ、多孔支持体2とPd合金膜6に対して高い密着性を確保するための層である。このような拡散防止層5は、Ti、Si、Al、Mg、Ce、Cr、Ca、Zr等から選択される1種以上の元素の窒化物、酸化物、炭化物からなる薄膜であり、例えば、窒化チタン(TiN)、炭化チタン(TiC)、窒化ケイ素(SiN)、炭化ケイ素(SiC)、酸化マグネシウム(MgO)、酸化セリウム(CeO2)、酸化亜鉛(ZnO)等の薄膜とすることができる。また、拡散防止層5として、Zr、Mo、Ta、W、Cr、Hf、Nb、Ru等の高融点金属からなる薄膜であってもよい。このような拡散防止層5の厚みは、材質を考慮して適宜設定することができ、例えば、0.01〜20μm、好ましくは0.5〜2μm程度とすることができる。
The pores 3 of the porous support 2 preferably have an opening diameter in the range of 15 to 150 μm. In addition, the total area of the openings of the holes 3 in the region where the Pd alloy film 6 is disposed preferably occupies 20 to 80% of the area of the Pd alloy film 6. In addition, when there exists a difference in the opening diameter of the hole part 3 in the thickness direction of the porous support body 2, the said opening diameter means a minimum opening diameter.
The diffusion preventing layer 5 constituting the hydrogen purification filter 1 prevents the constituent material of the porous support 2 from diffusing into the Pd alloy film 6 and has high adhesion to the porous support 2 and the Pd alloy film 6. It is a layer for securing. Such a diffusion prevention layer 5 is a thin film made of a nitride, oxide, or carbide of one or more elements selected from Ti, Si, Al, Mg, Ce, Cr, Ca, Zr, etc. A thin film such as titanium nitride (TiN), titanium carbide (TiC), silicon nitride (SiN), silicon carbide (SiC), magnesium oxide (MgO), cerium oxide (CeO 2 ), or zinc oxide (ZnO) can be formed. . Further, the diffusion preventing layer 5 may be a thin film made of a refractory metal such as Zr, Mo, Ta, W, Cr, Hf, Nb, Ru. The thickness of the diffusion preventing layer 5 can be appropriately set in consideration of the material, and can be, for example, about 0.01 to 20 μm, preferably about 0.5 to 2 μm.

水素精製フィルタ1を構成するPd合金膜6は、通常、Pd含有量が60重量%以上であり、添加元素としてAg、Cu、Pt、Au、Ni、Co、V、Nb、Ta、Zr等の1種あるいは2種以上を含有するものである。このようなPd合金膜6の厚みは、水素透過速度向上の点から薄いほど好ましいが、例えば、1〜5μmの範囲内で適宜設定することができる。   The Pd alloy film 6 constituting the hydrogen purification filter 1 usually has a Pd content of 60% by weight or more, and Ag, Cu, Pt, Au, Ni, Co, V, Nb, Ta, Zr and the like as additive elements. It contains 1 type or 2 types or more. The thickness of the Pd alloy film 6 is preferably as thin as possible from the viewpoint of improving the hydrogen permeation rate, but can be appropriately set within a range of 1 to 5 μm, for example.

水素精製フィルタ1を構成する環状の外枠部材8は、断面が方形であり、Pd合金膜6の一方にのみ多孔支持体2を備えた構造におけるPd合金膜6の応力に対抗し、反りを防止する目的で配されたものである。このような外枠部材8は、上述のように、その厚みTがPd合金膜6の厚み以上であり、例えば、Pd合金膜6の厚みよりも3〜50μm厚く設定することができる。外枠部材8の厚みTがPd合金膜6の厚み未満であると、水素精製フィルタ1に反りが発生し易くなり好ましくない。この外枠部材8の材質は鉄、ニッケル、金、銀、銅等のいずれかであってよい。尚、本発明において、反りが防止されている状態とは、水素精製フィルタ1を水平定盤上に載置した場合に、定盤からPd合金膜6の表面までの高さのバラツキが3mm以下であることを意味する。
また、環状の外枠部材8の幅Wは、1〜5mmの範囲で設定することができ、外枠部材8の断面形状は、図示例では方形であるが、これに限定されるものではなく、台形、ドーム形状等であってもよい。
The annular outer frame member 8 constituting the hydrogen purification filter 1 has a square cross section and resists the warpage of the Pd alloy film 6 in the structure in which the porous support 2 is provided only on one side of the Pd alloy film 6. It is arranged for the purpose of preventing. As described above, the thickness T of the outer frame member 8 is equal to or greater than the thickness of the Pd alloy film 6, and can be set to be 3 to 50 μm thicker than the thickness of the Pd alloy film 6, for example. If the thickness T of the outer frame member 8 is less than the thickness of the Pd alloy film 6, the hydrogen purification filter 1 is likely to warp, which is not preferable. The material of the outer frame member 8 may be iron, nickel, gold, silver, copper, or the like. In the present invention, the state in which warpage is prevented means that, when the hydrogen purification filter 1 is placed on a horizontal surface plate, the height variation from the surface plate to the surface of the Pd alloy film 6 is 3 mm or less. It means that.
Further, the width W of the annular outer frame member 8 can be set in the range of 1 to 5 mm, and the cross-sectional shape of the outer frame member 8 is rectangular in the illustrated example, but is not limited thereto. It may be trapezoidal, dome-shaped, or the like.

図3は、本発明の水素精製フィルタの他の実施形態を示す図2相当の断面図である。図3において、水素精製フィルタ11は、複数の微細な孔部13を有する多孔支持体12と、この多孔支持体12の表面12a側に拡散防止層15を介して配設されたPd合金膜16と、Pd合金膜16の外側の領域であって、多孔支持体12の裏面12b側に位置する環状の外枠部材18を備えるものである。そして、外枠部材18の厚みTは、Pd合金膜16の厚み以上である。
この水素精製フィルタ11は、環状の外枠部材18を多孔支持体12の裏面12b側に備えている他は、上述の水素精製フィルタ1と同様である。したがって、水素精製フィルタ11を構成する多孔支持部材12、拡散防止層15、Pd合金膜16、および、環状の外枠部材18は、それぞれ上述の多孔支持部材2、拡散防止層5、Pd合金膜6、および、環状の外枠部材8と同様とすることができ、ここでの説明は省略する。
FIG. 3 is a cross-sectional view corresponding to FIG. 2 showing another embodiment of the hydrogen purification filter of the present invention. In FIG. 3, the hydrogen purification filter 11 includes a porous support 12 having a plurality of fine holes 13, and a Pd alloy film 16 disposed on the surface 12 a side of the porous support 12 via a diffusion prevention layer 15. And an annular outer frame member 18 located on the back surface 12b side of the porous support 12 in the region outside the Pd alloy film 16. The thickness T of the outer frame member 18 is equal to or greater than the thickness of the Pd alloy film 16.
This hydrogen purification filter 11 is the same as the hydrogen purification filter 1 described above except that an annular outer frame member 18 is provided on the back surface 12b side of the porous support 12. Accordingly, the porous support member 12, the diffusion prevention layer 15, the Pd alloy film 16, and the annular outer frame member 18 that constitute the hydrogen purification filter 11 are respectively the porous support member 2, the diffusion prevention layer 5, and the Pd alloy film. 6 and the annular outer frame member 8, and a description thereof is omitted here.

また、図4は、本発明の水素精製フィルタの他の実施形態を示す図2相当の断面図である。図4において、水素精製フィルタ21は、複数の微細な孔部23を有する多孔支持体22と、この多孔支持体22の表面22a側に拡散防止層25を介して配設されたPd合金膜26と、Pd合金膜26の外側の領域であって、多孔支持体22の表面22a側に位置する環状の外枠部材28aと、多孔支持体22の裏面22b側に位置する環状の外枠部材28bを備えるものである。すなわち、環状の外枠部材28が多孔支持体22の各面に位置する外枠部材28aと外枠部材28bとからなっている。そして、外枠部材28の厚み(外枠部材28aの厚みT1と外枠部材28bの厚みT2の合計)は、Pd合金膜26の厚み以上である。   FIG. 4 is a cross-sectional view corresponding to FIG. 2 showing another embodiment of the hydrogen purification filter of the present invention. In FIG. 4, the hydrogen purification filter 21 includes a porous support 22 having a plurality of fine pores 23, and a Pd alloy film 26 disposed on the surface 22 a side of the porous support 22 via a diffusion prevention layer 25. And an annular outer frame member 28a located on the surface 22a side of the porous support 22 and an annular outer frame member 28b located on the back surface 22b side of the porous support 22 in a region outside the Pd alloy film 26. Is provided. That is, the annular outer frame member 28 includes an outer frame member 28 a and an outer frame member 28 b that are positioned on each surface of the porous support 22. The thickness of the outer frame member 28 (the sum of the thickness T1 of the outer frame member 28a and the thickness T2 of the outer frame member 28b) is equal to or greater than the thickness of the Pd alloy film 26.

この水素精製フィルタ21は、環状の外枠部材28a,28bを多孔支持体22の両面に備えている他は、上述の水素精製フィルタ1と同様である。したがって、水素精製フィルタ21を構成する多孔支持部材22、拡散防止層25、および、Pd合金膜26は、それぞれ上述の多孔支持部材2、拡散防止層5、および、Pd合金膜6と同様とすることができる。また、環状の外枠部材28は、各外枠部材28a,28bの厚みT1、T2を、その合計がPd合金膜26の厚み以上とする他は、上述の環状の外枠部材8と同様とすることができ、ここでの説明は省略する。   This hydrogen purification filter 21 is the same as the above-described hydrogen purification filter 1 except that annular outer frame members 28 a and 28 b are provided on both surfaces of the porous support 22. Therefore, the porous support member 22, the diffusion prevention layer 25, and the Pd alloy film 26 constituting the hydrogen purification filter 21 are the same as the porous support member 2, the diffusion prevention layer 5, and the Pd alloy film 6 described above, respectively. be able to. The annular outer frame member 28 is the same as the annular outer frame member 8 except that the thicknesses T1 and T2 of the outer frame members 28a and 28b are equal to or greater than the thickness of the Pd alloy film 26. The description here will be omitted.

上述のような本発明の水素精製フィルタは、多孔支持体2,12,22とPd合金膜6,16,26との間に拡散防止層5,15,25を備えるので、Pd合金膜6,16,26中への多孔支持体2,12,22の構成材料の拡散が確実に防止され、高温下での長時間の使用でも高い水素透過効率が維持される。また、拡散防止層5,15,25が多孔支持体2,12,22およびPd合金膜6,16,26と高い密着性を確保するので、優れた耐久性を具備したものとなる。さらに、Pd合金膜2,16,26の外側領域に存在する環状の外枠部材8,18,28a,28bが、Pd合金膜6,16,26の応力に対抗するので、多孔支持体2,12,22が薄いものであっても、水素精製フィルタの反りが防止される。   Since the hydrogen purification filter of the present invention as described above includes the diffusion prevention layers 5, 15, 25 between the porous supports 2, 12, 22 and the Pd alloy films 6, 16, 26, the Pd alloy film 6, Diffusion of the constituent materials of the porous supports 2, 12, 22 into 16, 26 is reliably prevented, and high hydrogen permeation efficiency is maintained even when used for a long time at high temperatures. Further, since the diffusion preventing layers 5, 15, and 25 ensure high adhesion with the porous supports 2, 12, and 22 and the Pd alloy films 6, 16, and 26, they have excellent durability. Further, since the annular outer frame members 8, 18, 28a, 28b existing in the outer region of the Pd alloy films 2, 16, 26 counter the stress of the Pd alloy films 6, 16, 26, the porous support 2, Even if 12, 22 is thin, warping of the hydrogen purification filter is prevented.

尚、上述の実施形態は例示であり、本発明の水素精製フィルタは、これらに限定されるものではない。例えば、上述の実施形態では、拡散防止層は多孔支持体の全面に(Pd合金膜が形成されていない領域にも)配設されているが、Pd合金膜の直下のみに配設されたものであってもよい。また、水素精製フィルタの形状は、図示例では円形であるが、方形、多角形、楕円形等の任意の形状することができ、これに伴って、拡散防止層、Pd合金膜の形状、および、外枠部材の環形状も適宜設定することができる。   In addition, the above-mentioned embodiment is an illustration and the hydrogen purification filter of this invention is not limited to these. For example, in the above-described embodiment, the diffusion preventing layer is disposed on the entire surface of the porous support (even in a region where the Pd alloy film is not formed), but is disposed only directly below the Pd alloy film. It may be. In addition, the shape of the hydrogen purification filter is circular in the illustrated example, but can be any shape such as a square, a polygon, an ellipse, and accordingly, the shape of the diffusion preventing layer, the Pd alloy film, and The ring shape of the outer frame member can also be set as appropriate.

[水素精製フィルタの製造方法]
次に、本発明の水素精製フィルタの製造方法を説明する。
図5および図6は、本発明の水素精製フィルタの製造方法の一実施形態を、上述の本発明の水素精製フィルタ1を例として示す工程図である。
本発明の製造方法は、まず、膜形成工程において、多孔支持体用の支持体2′の表面2′a側に拡散防止層5を形成し(図5(A))、この拡散防止層5上にPd合金膜6を形成する(図5(B))。
支持体2′は、SUS304、SUS430等のオーステナイト系、フェライト系のステンレス鋼等の材料を用いることができ、厚みは10〜50μmの範囲内とすることができる。
[Method for producing hydrogen purification filter]
Next, the manufacturing method of the hydrogen purification filter of this invention is demonstrated.
FIG. 5 and FIG. 6 are process diagrams showing an embodiment of the method for producing a hydrogen purification filter of the present invention, taking the above-described hydrogen purification filter 1 of the present invention as an example.
In the production method of the present invention, first, in the film formation step, the diffusion prevention layer 5 is formed on the surface 2'a side of the support 2 'for the porous support (FIG. 5A). A Pd alloy film 6 is formed thereon (FIG. 5B).
For the support 2 ', materials such as austenitic and ferritic stainless steel such as SUS304 and SUS430 can be used, and the thickness can be in the range of 10 to 50 µm.

拡散防止層5は、真空蒸着、イオンプレーティング、スパッタリング等の真空成膜法、あるいは、無電解めっきにより形成することができる。具体的には、Ti、Si、Al、Mg、Ce、Cr、Ca、Zr等から選択される1種以上の元素の窒化物、酸化物、あるいは炭化物の薄膜として形成することができ、例えば、窒化チタン(TiN)、炭化チタン(TiC)、窒化ケイ素(SiN)、炭化ケイ素(SiC)、酸化マグネシウム(MgO)、酸化セリウム(CeO2)、酸化亜鉛(ZnO)等の薄膜が挙げられる。また、拡散防止層5は、Zr、Mo、Ta、W、Cr、Hf、Nb、Ru等の高融点金属の薄膜として形成することもできる。拡散防止層5を支持体2′の所望の部位に形成する場合には、非形成部位にレジストパターンを設けたり、所望のマスクを介して成膜することができる。 The diffusion prevention layer 5 can be formed by a vacuum film formation method such as vacuum deposition, ion plating, sputtering, or electroless plating. Specifically, it can be formed as a thin film of nitride, oxide, or carbide of one or more elements selected from Ti, Si, Al, Mg, Ce, Cr, Ca, Zr, etc. Examples include thin films such as titanium nitride (TiN), titanium carbide (TiC), silicon nitride (SiN), silicon carbide (SiC), magnesium oxide (MgO), cerium oxide (CeO 2 ), and zinc oxide (ZnO). The diffusion prevention layer 5 can also be formed as a thin film of a refractory metal such as Zr, Mo, Ta, W, Cr, Hf, Nb, Ru. In the case where the diffusion preventing layer 5 is formed in a desired portion of the support 2 ', a resist pattern can be provided in a non-formed portion or can be formed through a desired mask.

Pd合金膜6は、電解めっきにより形成することができる。また、電解めっき、あるいは、無電解めっきによりPd合金を構成する各成分の薄膜を拡散防止層5上に積層し、その後、熱処理を施して成分拡散によりPd合金膜6を形成することもできる。この場合、例えば、めっきによりPdを3μmの厚みで形成し、この上にめっきによりAgを1μmの厚みで形成し、その後、500℃、24時間の熱処理を施すことによりPd合金化することができる。また、Pd/Ag/Pd3層、Pd/Ag/Pd/Ag4層等の多層めっきを行った後、熱処理を施してもよい。形成するPd合金膜6の厚みは1〜5μm程度とすることができる。   The Pd alloy film 6 can be formed by electrolytic plating. It is also possible to form a Pd alloy film 6 by component diffusion by laminating a thin film of each component constituting the Pd alloy on the diffusion prevention layer 5 by electrolytic plating or electroless plating, and then performing heat treatment. In this case, for example, Pd can be formed to a thickness of 3 μm by plating, Ag can be formed to a thickness of 1 μm by plating, and then subjected to heat treatment at 500 ° C. for 24 hours to form a Pd alloy. . Further, heat treatment may be performed after performing multi-layer plating such as a Pd / Ag / Pd3 layer and a Pd / Ag / Pd / Ag4 layer. The thickness of the Pd alloy film 6 to be formed can be about 1 to 5 μm.

次に、外枠部材形成工程において、Pd合金膜6の外側の領域に環状の外枠部材8を形成する(図5(C))。水素精製フィルタ1の製造例では、外枠部材8を支持体2′の表面2′a側に形成するが、上述の水素精製フィルタ11の製造では、外枠部材を支持体の裏面側に形成し、さらに、上述の水素精製フィルタ21の製造では、外枠部材を支持体の表面側および裏面側に形成する。外枠部材8は、例えば、非形成部位にレジストパターンを形成し、電解めっきにより鉄、ニッケル、金、銀、銅等を析出させて形成することができる。形成する外枠部材8の厚みは、Pd合金膜6の厚み以上とし、例えば、Pd合金膜6の厚みよりも3〜50μm厚く設定することができる。   Next, in the outer frame member forming step, an annular outer frame member 8 is formed in a region outside the Pd alloy film 6 (FIG. 5C). In the manufacturing example of the hydrogen purification filter 1, the outer frame member 8 is formed on the surface 2'a side of the support 2 '. However, in the manufacture of the hydrogen purification filter 11, the outer frame member is formed on the back surface side of the support. Further, in the manufacture of the hydrogen purification filter 21 described above, the outer frame members are formed on the front surface side and the back surface side of the support. The outer frame member 8 can be formed, for example, by forming a resist pattern in a non-formed portion and depositing iron, nickel, gold, silver, copper, or the like by electrolytic plating. The thickness of the outer frame member 8 to be formed is equal to or greater than the thickness of the Pd alloy film 6, and can be set to be 3 to 50 μm thicker than the thickness of the Pd alloy film 6, for example.

次いで、エッチング工程において、支持体2′の裏面2′b側にレジストパターン9を形成する(図6(A))。このレジストパターン9は、外枠部材8よりも内側の領域、すなわち、支持体2′を介してPd合金膜6と対向する領域に複数の開口部9aを備えている。次に、レジストパターン9をマスクとして支持体2′を裏面2′b側からエッチングすることにより、支持体2′に複数の貫通孔3を形成する(図6(B))。その後、これらの貫通孔3に露出している拡散防止層5を選択エッチングにより除去して多孔支持体2を作製する(図6(C))。これにより、水素精製フィルタ1が得られる。
支持体2′のエッチングは、塩化第二鉄系等のエッチング液を使用し、裏面からのスプレー方式、裏面のみの浸漬方式等により行うことができる。このような裏面2′b側からの支持体2′のエッチングにより、形成される貫通孔3は、通常、裏面2′b側の開口が大きいものとなる。この場合、多孔支持体2の強度と水素透過効率とを高いレベルで維持するために、貫通孔3の最小開口径(表面2′a側)は、支持体2′の厚みの1.5〜3倍の大きさ、貫通孔3の最大開口径(裏面2′b側)は、支持体2′の厚みの3.5〜5倍の大きさとなるように、レジストパターン9の開口部9a、エッチング条件を設定することが好ましい。
Next, in an etching process, a resist pattern 9 is formed on the back surface 2'b side of the support 2 '(FIG. 6A). The resist pattern 9 includes a plurality of openings 9a in a region inside the outer frame member 8, that is, a region facing the Pd alloy film 6 through the support 2 '. Next, the support 2 'is etched from the back surface 2'b side using the resist pattern 9 as a mask, thereby forming a plurality of through holes 3 in the support 2' (FIG. 6B). Thereafter, the diffusion preventing layer 5 exposed in these through holes 3 is removed by selective etching to produce a porous support 2 (FIG. 6C). Thereby, the hydrogen purification filter 1 is obtained.
Etching of the support 2 'can be performed by using a ferric chloride-based etching solution by a spray method from the back surface, a dipping method only on the back surface, or the like. By such etching of the support 2 'from the back surface 2'b side, the through-hole 3 to be formed usually has a large opening on the back surface 2'b side. In this case, in order to maintain the strength and hydrogen permeation efficiency of the porous support 2 at a high level, the minimum opening diameter (on the surface 2′a side) of the through hole 3 is 1.5 to 1.5 mm of the thickness of the support 2 ′. The opening 9a of the resist pattern 9 is three times larger and the maximum opening diameter of the through hole 3 (on the back surface 2'b side) is 3.5 to 5 times the thickness of the support 2 '. It is preferable to set etching conditions.

また、拡散防止層5の選択エッチングは、拡散防止層5の材質を考慮してエッチング液を適宜選択して行うことができる。例えば、支持体2′がステンレス鋼であり、拡散防止層5が窒化チタンである場合には、エッチング液として過酸化水素水を使用することができる。また、レジストパターン9の除去は、アルカリ性水溶液等を用いて行うことができる。
上記のような本発明の製造方法では、支持体2′の平坦面上に拡散防止層5を介してPd合金膜6を形成するので、均一な膜厚のPd合金膜6の形成が可能である。また、多孔支持体2を作製するエッチング工程の前に、環状の外枠部材8を形成するので、エッチング工程が終了した状態での反りが防止され、製造工程中における取り扱い性が良好である。さらに、最終の水素精製フィルタ1には残らないような部材の付加・除去の工程がないので、工程が簡便なものとなる。
Further, the selective etching of the diffusion preventing layer 5 can be performed by appropriately selecting an etching solution in consideration of the material of the diffusion preventing layer 5. For example, when the support 2 'is stainless steel and the diffusion prevention layer 5 is titanium nitride, hydrogen peroxide can be used as an etching solution. The resist pattern 9 can be removed using an alkaline aqueous solution or the like.
In the manufacturing method of the present invention as described above, the Pd alloy film 6 is formed on the flat surface of the support 2 'via the diffusion prevention layer 5, so that it is possible to form the Pd alloy film 6 having a uniform thickness. is there. In addition, since the annular outer frame member 8 is formed before the etching step for producing the porous support 2, warpage in the state where the etching step is completed is prevented, and the handleability during the manufacturing process is good. Furthermore, since there is no member addition / removal process that does not remain in the final hydrogen purification filter 1, the process becomes simple.

次に、より具体的な実施例を示して本発明を更に詳細に説明する。
[実施例1]
支持体として厚み40μmの円形(直径35mm)のSUS304材を準備した。次いで、このSUS304材の両面に感光性レジスト材料(東京応化工業(株)製 OFPR)をディップ法により塗布(塗布量7μm(乾燥時))した。次に、開口直径30mmの円形開口を備えたフォトマスクを介して一方の面のレジスト塗膜を露光し、炭酸水素ナトリウムを使用して現像した。これにより、SUS304材の一方の面のみが直径30mmの円形で露出するようにレジストパターンを形成した。
次に、SUS304材の上記の円形露出部に、真空蒸着法により窒化チタンの薄膜(厚み0.5μm)を成膜して拡散防止層とした。
Next, the present invention will be described in more detail by showing more specific examples.
[Example 1]
A circular (35 mm diameter) SUS304 material having a thickness of 40 μm was prepared as a support. Next, a photosensitive resist material (OFPR manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to both surfaces of this SUS304 material by a dipping method (application amount: 7 μm (when dry)). Next, the resist coating film on one surface was exposed through a photomask having a circular opening with an opening diameter of 30 mm, and developed using sodium hydrogen carbonate. Thus, a resist pattern was formed so that only one surface of the SUS304 material was exposed as a circle having a diameter of 30 mm.
Next, a thin film of titanium nitride (thickness 0.5 μm) was formed on the circular exposed portion of the SUS304 material by a vacuum vapor deposition method to form a diffusion preventing layer.

次いで、この拡散防止層上に、下記の条件で電解めっきによりPd合金膜(厚み5μm)を形成し、その後、水酸化ナトリウムを用いてレジストパターンを除去した。(以上、膜形成工程)
(Pd合金膜の成膜条件)
・使用浴 : 塩化Pdめっき浴(Pd濃度:12g/L)
・pH : 7〜8
・電流密度 : 1A/dm2
・液温 : 40℃
Next, a Pd alloy film (thickness 5 μm) was formed on the diffusion prevention layer by electrolytic plating under the following conditions, and then the resist pattern was removed using sodium hydroxide. (End of film formation process)
(Pd alloy film deposition conditions)
-Bath used: Pd chloride plating bath (Pd concentration: 12 g / L)
・ PH: 7-8
・ Current density: 1 A / dm 2
・ Liquid temperature: 40 ℃

次に、上記のように拡散防止層とPd合金膜を形成したSUS304材の両面に感光性レジスト材料(東京応化工業(株)製 OFPR)をディップ法により塗布(塗布量10μm(乾燥時))した。その後、幅3mmの環状の開口部(開口部の内径は31mm)を備えたフォトマスクを、その開口部が拡散防止層とPd合金膜が形成されている面のSUS304材の周縁部に位置するように配し、このフォトマスクを介してレジスト塗膜を露光し、炭酸水素ナトリウムを使用して現像した。これにより、拡散防止層とPd合金膜が形成されている面のSUS304材の周縁部(Pd合金膜よりも外側の領域)のみが幅3mmで環状に露出するようにレジストパターンを形成した。   Next, a photosensitive resist material (OFPR manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied to both surfaces of the SUS304 material on which the diffusion preventing layer and the Pd alloy film are formed as described above (application amount: 10 μm (when dried)). did. Thereafter, a photomask having an annular opening having a width of 3 mm (the inner diameter of the opening is 31 mm) is located at the peripheral edge of the SUS304 material on the surface on which the diffusion prevention layer and the Pd alloy film are formed. The resist coating film was exposed through this photomask and developed using sodium hydrogen carbonate. As a result, a resist pattern was formed such that only the peripheral portion (region outside the Pd alloy film) of the SUS304 material on the surface on which the diffusion prevention layer and the Pd alloy film were formed was exposed in an annular shape with a width of 3 mm.

次に、SUS304材の上記の環状の露出部に、下記の条件でNi電解めっきによりNi膜(厚み10μm)を形成して外枠部材とした。その後、水酸化ナトリウムを用いてレジストパターンを除去した。(以上、外枠部材形成工程)
(Ni電解めっき条件)
・使用浴 : 塩化ニッケル浴
・液温 : 55℃
・電流密度 : 10A/dm2
Next, a Ni film (thickness: 10 μm) was formed on the annular exposed portion of the SUS304 material by Ni electrolytic plating under the following conditions to obtain an outer frame member. Thereafter, the resist pattern was removed using sodium hydroxide. (End of outer frame member forming process)
(Ni electrolytic plating conditions)
・ Use bath: Nickel chloride bath ・ Liquid temperature: 55 ℃
・ Current density: 10 A / dm 2

次いで、SUS304材の裏面に感光性レジスト材料(東京応化工業(株)製 OFPR)をディップ法により塗布(塗布量7μm(乾燥時))した。次に、開口寸法(開口直径)90μmである円形の開口部をピッチ120μmで複数備えたフォトマスクをレジスト塗膜上に配し、このフォトマスクを介してレジスト塗布膜を露光し、炭酸水素ナトリウムを使用して現像した。これにより、開口寸法(開口直径)が90μmである円形状の開口部を有するレジストパターンをSUS304材の裏面側に形成した。   Next, a photosensitive resist material (OFPR manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to the back surface of the SUS304 material by a dipping method (application amount: 7 μm (when dry)). Next, a photomask provided with a plurality of circular openings having an opening size (opening diameter) of 90 μm at a pitch of 120 μm is disposed on the resist coating film, and the resist coating film is exposed through the photomask, and sodium hydrogen carbonate. Developed using Thus, a resist pattern having a circular opening having an opening dimension (opening diameter) of 90 μm was formed on the back side of the SUS304 material.

次に、上記のレジストパターンをマスクとして、下記の条件でSUS304材を裏面側からスプレー方式でエッチングした。
(エッチング条件)
・温度 : 50℃
・塩化第二鉄濃度: 45ボーメ
・圧力 : 0.30MPa
Next, using the resist pattern as a mask, the SUS304 material was etched by spraying from the back side under the following conditions.
(Etching conditions)
・ Temperature: 50 ℃
・ Ferric chloride concentration: 45 Baume ・ Pressure: 0.30 MPa

上記のエッチング処理が終了した後、水酸化ナトリウムを用いてレジストパターンを除去し、水洗した。これにより、貫通孔をSUS304材に形成して多孔支持体とした。これらの貫通孔は、いずれもPd合金膜が形成されている領域に形成されたものであり、各貫通孔は、SUS304材の裏面側の開口寸法(開口直径)が95μmであり、SUS304材の表面側の開口寸法(開口直径)が70μmである断面円形状のものであった。
次に、拡散防止層の選択エッチング液として過酸化水素水を用いて、貫通孔の奥部に露出している拡散防止層を選択的にエッチングして除去し、水洗した。(以上、エッチング工程)
上記の工程により、図1および図2に示されるような本発明の水素精製フィルタを得た。
After the above etching treatment was completed, the resist pattern was removed using sodium hydroxide and washed with water. Thereby, a through hole was formed in the SUS304 material to obtain a porous support. These through holes are all formed in the region where the Pd alloy film is formed. Each through hole has an opening size (opening diameter) of 95 μm on the back side of the SUS304 material. The surface side opening dimension (opening diameter) was 70 μm.
Next, using a hydrogen peroxide solution as a selective etching solution for the diffusion preventing layer, the diffusion preventing layer exposed in the inner part of the through hole was selectively removed by etching and washed with water. (End of etching process)
Through the above steps, the hydrogen purification filter of the present invention as shown in FIGS. 1 and 2 was obtained.

上述のように作製した水素精製フィルタを水平定盤上に載置し、定盤からPd合金膜の表面までの高さを測定した結果、高さのバラツキが3mm以下であり、反りのないことが確認された。
また、水素精製フィルタを改質器に装着し、Pd合金膜にメタノールと水蒸気の混合物を高温高圧条件(500℃、0.50MPa)で連続100時間供給し、水素精製フィルタの多孔支持体側へ透過する水素リッチガスのCO濃度、および、水素リッチガスの流量を測定した。その結果、改質開始直後から300時間経過するまでの間のCO濃度は5〜10ppmと極めて低く、また、水素リッチガスの流量は1L/分であり、本発明の水素精製フィルタが優れた耐久性、水素透過効率を有することを確認した。
As a result of placing the hydrogen purification filter prepared as described above on a horizontal surface plate and measuring the height from the surface plate to the surface of the Pd alloy film, the height variation is 3 mm or less and there is no warpage. Was confirmed.
In addition, a hydrogen purification filter is attached to the reformer, and a mixture of methanol and water vapor is supplied to the Pd alloy membrane for 100 hours continuously under high temperature and high pressure conditions (500 ° C., 0.50 MPa), and permeates to the porous support side of the hydrogen purification filter. The CO concentration of the hydrogen rich gas and the flow rate of the hydrogen rich gas were measured. As a result, the CO concentration from the start of reforming to the elapse of 300 hours is as extremely low as 5 to 10 ppm, and the flow rate of the hydrogen rich gas is 1 L / min, and the hydrogen purification filter of the present invention has excellent durability. The hydrogen permeation efficiency was confirmed.

[実施例2]
環状の外枠部材を、SUS304材の裏面側(拡散防止層、Pd合金膜が形成されていない面)の周縁部に形成した他は、実施例1と同様にして、図3に示されるような本発明の水素精製フィルタを得た。
作製した水素精製フィルタを水平定盤上に載置し、定盤からPd合金膜の表面までの高さを測定した結果、高さのバラツキが3mm以下であり、反りのないことが確認された。
また、水素精製フィルタを改質器に装着し、実施例1と同様の高温高圧条件でフィルタのPd合金膜にメタノールと水蒸気の混合物を供給し、フィルタの多孔支持体側へ透過する水素リッチガスのCO濃度、および、水素リッチガスの流量を測定した。その結果、改質開始直後から300時間経過するまでの間のCO濃度は5〜10ppmと極めて低く、また、水素リッチガスの流量は1L/分であり、本発明の水素精製フィルタが優れた耐久性、水素透過効率を有することを確認した。
[Example 2]
As shown in FIG. 3, in the same manner as in Example 1, except that the annular outer frame member is formed on the peripheral edge of the back surface side (the surface on which the diffusion preventing layer and the Pd alloy film are not formed) of the SUS304 material. Thus, a hydrogen purification filter of the present invention was obtained.
The produced hydrogen purification filter was placed on a horizontal surface plate, and the height from the surface plate to the surface of the Pd alloy film was measured. As a result, the height variation was 3 mm or less, and it was confirmed that there was no warp. .
In addition, a hydrogen purification filter is attached to the reformer, and a mixture of methanol and water vapor is supplied to the Pd alloy membrane of the filter under the same high-temperature and high-pressure conditions as in Example 1, and CO of hydrogen-rich gas that permeates to the porous support side of the filter. The concentration and the flow rate of the hydrogen rich gas were measured. As a result, the CO concentration from the start of reforming to the elapse of 300 hours is as extremely low as 5 to 10 ppm, and the flow rate of the hydrogen rich gas is 1 L / min, and the hydrogen purification filter of the present invention has excellent durability. The hydrogen permeation efficiency was confirmed.

[比較例1]
環状の外枠部材を形成しない他は、実施例1と同様にして、水素精製フィルタを得た。
作製した水素精製フィルタを水平定盤上に載置し、定盤からPd合金膜の表面までの高さを測定した結果、高さのバラツキが7mmであり、反りが発生していることが確認された。
[Comparative Example 1]
A hydrogen purification filter was obtained in the same manner as in Example 1 except that the annular outer frame member was not formed.
The produced hydrogen purification filter was placed on a horizontal platen, and the height from the platen to the surface of the Pd alloy film was measured. As a result, the height variation was 7 mm, and it was confirmed that warpage occurred. It was done.

[比較例2]
環状の外枠部材の厚みを2μmとした他は、実施例1と同様にして、水素精製フィルタを得た。
作製した水素精製フィルタを水平定盤上に載置し、定盤からPd合金膜の表面までの高さを測定した結果、高さのバラツキが5mmであり、反りが発生していることが確認された。
[Comparative Example 2]
A hydrogen purification filter was obtained in the same manner as in Example 1 except that the thickness of the annular outer frame member was 2 μm.
The produced hydrogen purification filter was placed on a horizontal surface plate, and the height from the surface plate to the surface of the Pd alloy film was measured. As a result, the height variation was 5 mm, and it was confirmed that warpage occurred. It was done.

[比較例3]
拡散防止層を形成しない他は、実施例1と同様にして、水素精製フィルタを得た。
作製した水素精製フィルタを水平定盤上に載置し、定盤からPd合金膜の表面までの高さを測定した結果、高さのバラツキが3mm以下であり、反りのないことが確認された。
また、水素精製フィルタを改質器に装着し、実施例1と同様の高温高圧条件でフィルタのPd合金膜にメタノールと水蒸気の混合物を供給し、フィルタの多孔支持体側へ透過する水素リッチガスのCO濃度、および、水素リッチガスの流量を測定した。その結果、改質開始直後から100時間経過するまでの間のCO濃度は5〜10ppmと極めて低く、また、水素リッチガスの流量は1L/分であったが、100時間経過したあたりから水素選択透過性が低下し、CO濃度は10ppmを超え、ガスのリーク量が増加し、水素リッチガスの純度が低下した。
[Comparative Example 3]
A hydrogen purification filter was obtained in the same manner as in Example 1 except that the diffusion prevention layer was not formed.
The produced hydrogen purification filter was placed on a horizontal surface plate, and the height from the surface plate to the surface of the Pd alloy film was measured. As a result, the height variation was 3 mm or less, and it was confirmed that there was no warp. .
In addition, a hydrogen purification filter is attached to the reformer, and a mixture of methanol and water vapor is supplied to the Pd alloy membrane of the filter under the same high-temperature and high-pressure conditions as in Example 1, and CO of hydrogen-rich gas that permeates to the porous support side of the filter. The concentration and the flow rate of the hydrogen rich gas were measured. As a result, the CO concentration from the start of reforming to the elapse of 100 hours was as extremely low as 5 to 10 ppm, and the flow rate of the hydrogen rich gas was 1 L / min. The CO concentration exceeded 10 ppm, the amount of gas leakage increased, and the purity of the hydrogen-rich gas decreased.

高純度の水素リッチガスを必要とする種々の分野に利用することができる。   It can be used in various fields that require high-purity hydrogen-rich gas.

本発明の水素精製フィルタの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the hydrogen purification filter of this invention. 図1に示される水素精製フィルタのA−A線における縦拡大部分断面図である。FIG. 2 is a longitudinally enlarged partial sectional view taken along line AA of the hydrogen purification filter shown in FIG. 1. 本発明の水素精製フィルタの他の実施形態を示す図2相当の部分断面図である。It is a fragmentary sectional view equivalent to FIG. 2 which shows other embodiment of the hydrogen purification filter of this invention. 本発明の水素精製フィルタの他の実施形態を示す図2相当の部分断面図である。It is a fragmentary sectional view equivalent to FIG. 2 which shows other embodiment of the hydrogen purification filter of this invention. 本発明の水素精製フィルタの製造方法の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the manufacturing method of the hydrogen purification filter of this invention. 本発明の水素精製フィルタの製造方法の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the manufacturing method of the hydrogen purification filter of this invention.

符号の説明Explanation of symbols

1,11,21…水素精製フィルタ
2,12,22…多孔支持体
3,13,23…孔部
5,15,25…拡散防止層
6,16,26…Pd合金膜
8,18,28,28a,28b…外枠部材
2′…支持体
9…レジストパターン
9a…開口部
DESCRIPTION OF SYMBOLS 1,11,21 ... Hydrogen refinement | purification filter 2,12,22 ... Porous support body 3,13,23 ... Hole 5,15,25 ... Diffusion prevention layer 6,16,26 ... Pd alloy film 8,18,28, 28a, 28b ... outer frame member 2 '... support 9 ... resist pattern 9a ... opening

Claims (9)

孔部を複数有する多孔支持体と、該多孔支持体の一方の面に配設された拡散防止層と、前記孔部を覆うように前記拡散防止層を介して前記多孔支持体上に配設されたPd合金膜と、該Pd合金膜の外側の領域であって前記多孔支持体の少なくとも一方の面に位置する環状の外枠部材とを備え、該外枠部材の厚みはPd合金膜の厚み以上であることを特徴とする水素精製フィルタ。   A porous support having a plurality of pores, a diffusion prevention layer disposed on one surface of the porous support, and disposed on the porous support via the diffusion prevention layer so as to cover the pores A Pd alloy film, and an annular outer frame member located on at least one surface of the porous support in a region outside the Pd alloy film, and the thickness of the outer frame member is the same as that of the Pd alloy film. A hydrogen purification filter having a thickness equal to or greater than the thickness. 前記拡散防止層は、窒化チタン、炭化チタン、窒化ケイ素、炭化ケイ素、酸化マグネシウム、酸化セリウム、酸化亜鉛の1種であることを特徴とする請求項1に記載の水素精製フィルタ。   2. The hydrogen purification filter according to claim 1, wherein the diffusion prevention layer is one of titanium nitride, titanium carbide, silicon nitride, silicon carbide, magnesium oxide, cerium oxide, and zinc oxide. 前記多孔支持体は、ステンレス鋼であり、前記外枠部材は鉄またはニッケルであることを特徴とする請求項1または請求項2に記載の水素精製フィルタ。   The hydrogen purification filter according to claim 1 or 2, wherein the porous support is stainless steel, and the outer frame member is iron or nickel. 前記多孔支持体の厚みは10〜50μmの範囲内であり、前記Pd合金膜の厚みは1〜5μmの範囲内であることを特徴とする請求項1乃至請求項3のいずれかに記載の水素精製フィルタ。   4. The hydrogen according to claim 1, wherein the porous support has a thickness in the range of 10 to 50 μm, and the Pd alloy film has a thickness in the range of 1 to 5 μm. Purification filter. 前記外枠部材の幅は1〜5mmの範囲内であることを特徴とする請求項1乃至請求項4のいずれかに記載の水素精製フィルタ。   5. The hydrogen purification filter according to claim 1, wherein a width of the outer frame member is in a range of 1 to 5 mm. 前記外枠部材の厚みは前記Pd合金膜よりも3〜50μm厚いものであることを特徴とする請求項1乃至請求項5のいずれかに記載の水素精製フィルタ。 6. The hydrogen purification filter according to claim 1, wherein a thickness of the outer frame member is 3 to 50 [mu] m thicker than the Pd alloy film. 水素精製フィルタの製造方法において、
支持体の表面側に拡散防止層を形成し、該拡散防止層上にPd合金膜を形成する膜形成工程と、
前記Pd合金膜の外側領域の前記支持体上に、前記Pd合金膜以上の厚みを有する環状の外枠部材を形成する外枠部材形成工程と、
前記外枠部材よりも内側の領域に複数の開口部が位置するレジストパターンを前記支持体の裏面側に形成し、該レジストパターンをマスクとして前記支持体を裏面側からエッチングすることにより、前記支持体に複数の貫通孔を形成し、その後、該貫通孔に露出する前記拡散防止層をエッチングにより除去して多孔支持体を作製するエッチング工程と、を有することを特徴とする水素精製フィルタの製造方法。
In the method for producing a hydrogen purification filter,
Forming a diffusion preventing layer on the surface side of the support, and forming a Pd alloy film on the diffusion preventing layer; and
An outer frame member forming step of forming an annular outer frame member having a thickness equal to or greater than that of the Pd alloy film on the support in the outer region of the Pd alloy film;
A resist pattern having a plurality of openings located in a region inside the outer frame member is formed on the back side of the support, and the support is etched from the back side using the resist pattern as a mask. Forming a porous support by forming a plurality of through holes in the body and then removing the diffusion prevention layer exposed in the through holes by etching to produce a porous support. Method.
前記外枠部材形成工程では、電解めっきにより、鉄またはニッケルからなる外枠部材を形成することを特徴とする請求項7に記載の水素精製フィルタの製造方法。   The method for manufacturing a hydrogen purification filter according to claim 7, wherein in the outer frame member forming step, an outer frame member made of iron or nickel is formed by electrolytic plating. 前記膜形成工程では、真空蒸着、イオンプレーティング、スパッタリング、無電解めっきのいずれかの方法により、窒化チタン、炭化チタン、窒化ケイ素、炭化ケイ素、酸化マグネシウム、酸化セリウム、酸化亜鉛のいずれかからなる前記拡散防止層を形成することを特徴とする請求項7または請求項8に記載の水素精製フィルタの製造方法。   In the film forming step, any one of vacuum deposition, ion plating, sputtering, and electroless plating is used, and the film is formed of any one of titanium nitride, titanium carbide, silicon nitride, silicon carbide, magnesium oxide, cerium oxide, and zinc oxide. The method for producing a hydrogen purification filter according to claim 7 or 8, wherein the diffusion preventing layer is formed.
JP2006072233A 2006-03-16 2006-03-16 Hydrogen purification filter and method for producing the same Expired - Fee Related JP4714052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072233A JP4714052B2 (en) 2006-03-16 2006-03-16 Hydrogen purification filter and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072233A JP4714052B2 (en) 2006-03-16 2006-03-16 Hydrogen purification filter and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007245010A true JP2007245010A (en) 2007-09-27
JP4714052B2 JP4714052B2 (en) 2011-06-29

Family

ID=38589859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072233A Expired - Fee Related JP4714052B2 (en) 2006-03-16 2006-03-16 Hydrogen purification filter and method for producing the same

Country Status (1)

Country Link
JP (1) JP4714052B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685192B1 (en) * 2010-07-27 2011-05-18 富久代 市村 Solid-state secondary battery using silicon compound and method for manufacturing the same
JP4800440B1 (en) * 2010-12-22 2011-10-26 富久代 市村 Solid-state secondary battery using silicon compound and method for manufacturing the same
EP3276716A1 (en) * 2016-07-27 2018-01-31 Industrial Technology Research Institute Electrocatalyst and fuel cell employing the same
CN111551627A (en) * 2015-09-03 2020-08-18 浜松光子学株式会社 Sample support and method for producing sample support
JP2021093240A (en) * 2019-12-06 2021-06-17 トヨタ自動車株式会社 Cooling system for fuel cell
US11646187B2 (en) 2015-09-03 2023-05-09 Hamamatsu Photonics K.K. Surface-assisted laser desorption/ionization method, mass spectrometry method and mass spectrometry device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478019B (en) * 2014-09-19 2018-05-11 中国石油化工股份有限公司 A kind of composition metal Hydrogen Separation film and its preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576738A (en) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd Hydrogen gas separation membrane
JP2000233119A (en) * 1999-02-12 2000-08-29 Toyota Motor Corp Hydrogen purifying membrane
JP2000296316A (en) * 1999-04-12 2000-10-24 Ishikawajima Harima Heavy Ind Co Ltd Pressure-resistant hydrogen permeable membrane and its production
JP2001286742A (en) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576738A (en) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd Hydrogen gas separation membrane
JP2000233119A (en) * 1999-02-12 2000-08-29 Toyota Motor Corp Hydrogen purifying membrane
JP2000296316A (en) * 1999-04-12 2000-10-24 Ishikawajima Harima Heavy Ind Co Ltd Pressure-resistant hydrogen permeable membrane and its production
JP2001286742A (en) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014556A1 (en) * 2010-07-27 2012-02-02 Ichimura Fukuyo Solid secondary battery using silicon compound and method for manufacturing same
JP2012028266A (en) * 2010-07-27 2012-02-09 Fukuyo Ichimura Solid-state secondary battery by silicon compound and method of manufacturing the same
JP4685192B1 (en) * 2010-07-27 2011-05-18 富久代 市村 Solid-state secondary battery using silicon compound and method for manufacturing the same
JP4800440B1 (en) * 2010-12-22 2011-10-26 富久代 市村 Solid-state secondary battery using silicon compound and method for manufacturing the same
WO2012086258A1 (en) * 2010-12-22 2012-06-28 Ichimura Fukuyo Solid secondary cell using silicon compound and method for producing same
CN111551627A (en) * 2015-09-03 2020-08-18 浜松光子学株式会社 Sample support and method for producing sample support
US11961728B2 (en) 2015-09-03 2024-04-16 Hamamatsu Photonics K.K. Surface-assisted laser desorption/ionization method, mass spectrometry method and mass spectrometry device
US11646187B2 (en) 2015-09-03 2023-05-09 Hamamatsu Photonics K.K. Surface-assisted laser desorption/ionization method, mass spectrometry method and mass spectrometry device
CN107665998A (en) * 2016-07-27 2018-02-06 财团法人工业技术研究院 Electrocatalysis catalyst and fuel cell thereof
CN107665998B (en) * 2016-07-27 2021-02-26 财团法人工业技术研究院 Electrocatalysis catalyst and fuel cell thereof
US10566631B2 (en) 2016-07-27 2020-02-18 Industrial Technology Research Institute Electrocatalyst and fuel cell employing the same
EP3276716A1 (en) * 2016-07-27 2018-01-31 Industrial Technology Research Institute Electrocatalyst and fuel cell employing the same
JP2021093240A (en) * 2019-12-06 2021-06-17 トヨタ自動車株式会社 Cooling system for fuel cell
JP7264029B2 (en) 2019-12-06 2023-04-25 トヨタ自動車株式会社 fuel cell cooling system

Also Published As

Publication number Publication date
JP4714052B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP5076502B2 (en) Hydrogen purification filter and method for producing the same
JPWO2006043696A6 (en) Hydrogen purification filter and method for producing the same
EP1946826B1 (en) Production method of hydrogen production filter
JP4714052B2 (en) Hydrogen purification filter and method for producing the same
JP2005327732A (en) Reformer for fuel cell system, its manufacturing method, and fuel cell including this
JP4714064B2 (en) Method for producing hydrogen purification filter
JP5050411B2 (en) Hydrogen purification filter and method for producing the same
JP5173931B2 (en) Hydrogen permselective membrane and method for producing the same
JP5235489B2 (en) Hydrogen permselective membrane and method for producing the same
JP5061695B2 (en) Hydrogen purification filter and method for producing the same
JP4224272B2 (en) Thin film support substrate used for hydrogen production filter and method for producing hydrogen production filter
JP4681201B2 (en) HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD
JP2005166531A (en) Fuel cell
JP5422982B2 (en) Method for producing hydrogen purification filter
JP2014054631A (en) Hydrogen refining filter
JP2004057866A (en) Method of manufacturing hydrogen producing filter
JP5368892B2 (en) Method for producing hydrogen selective permeable membrane
JP2004148138A (en) Hydrogen separation membrane and hydrogen production apparatus using the same
JP2006127922A (en) Metal member for fuel cell, and its manufacturing method
JP2008004392A (en) Hydrogen transmission metal layer/electrolyte composite, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4714052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees