JP4681201B2 - HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD - Google Patents

HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP4681201B2
JP4681201B2 JP2002222415A JP2002222415A JP4681201B2 JP 4681201 B2 JP4681201 B2 JP 4681201B2 JP 2002222415 A JP2002222415 A JP 2002222415A JP 2002222415 A JP2002222415 A JP 2002222415A JP 4681201 B2 JP4681201 B2 JP 4681201B2
Authority
JP
Japan
Prior art keywords
film
filter
alloy film
hydrogen
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002222415A
Other languages
Japanese (ja)
Other versions
JP2004057993A5 (en
JP2004057993A (en
Inventor
裕 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002222415A priority Critical patent/JP4681201B2/en
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to EP20080007428 priority patent/EP1972373A1/en
Priority to CN2008101317348A priority patent/CN101422704B/en
Priority to CN2008101102793A priority patent/CN101318109B/en
Priority to US10/491,888 priority patent/US7112287B2/en
Priority to CN2008101102810A priority patent/CN101337167B/en
Priority to CN2008101102825A priority patent/CN101318110B/en
Priority to CN200510003381XA priority patent/CN1817421B/en
Priority to EP20080007429 priority patent/EP1946826B1/en
Priority to CN2008101102806A priority patent/CN101337166B/en
Priority to EP20080007427 priority patent/EP2075052A1/en
Priority to EP03771289A priority patent/EP1541221A4/en
Priority to PCT/JP2003/009330 priority patent/WO2004011130A1/en
Priority to CNB038014343A priority patent/CN1290599C/en
Publication of JP2004057993A publication Critical patent/JP2004057993A/en
Priority to US11/304,677 priority patent/US7399423B2/en
Priority to US11/401,868 priority patent/US7241396B2/en
Publication of JP2004057993A5 publication Critical patent/JP2004057993A5/en
Priority to US11/697,842 priority patent/US7803263B2/en
Priority to US12/124,240 priority patent/US7744990B2/en
Priority to US12/124,181 priority patent/US8043519B2/en
Priority to US12/831,416 priority patent/US8163157B2/en
Publication of JP4681201B2 publication Critical patent/JP4681201B2/en
Application granted granted Critical
Priority to US13/228,534 priority patent/US8562847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素製造用フィルタの製造方法に係り、特に燃料電池用に各種の炭化水素系燃料を水蒸気改質して水素リッチガスを生成するための水素製造用フィルタの製造方法に関する。
【0002】
【従来の技術】
近年、地球環境保護の観点で二酸化炭素等の地球温暖化ガスの発生がなく、また、エネルギー効率が高いことから、水素を燃料とすることが注目されている。特に、燃料電池は水素を直接電力に変換できることや、発生する熱を利用するコジェネレーションシステムにおいて高いエネルギー変換効率が可能なことから注目されている。これまで燃料電池は宇宙開発は海洋開発等の特殊な条件において採用されてきたが、最近では自動車や家庭用分散電源用途への開発が進んでいる。また、携帯機器用の燃料電池も開発されている。
【0003】
燃料電池は、天然ガス、ガソリン、ブタンガス、メタノール等の炭化水素系燃料を改質して得られる水素リッチガスと、空気中の酸素とを電気化学的に反応させて直接電気を取り出す発電装置である。一般に燃料電池は炭化水素系燃料を水蒸気改質して水素リッチガスを生成する改質器と、電気を発生させる燃料電池本体と、発生した直流電気を交流に変換する変換器等で構成されている。
このような燃料電池は、燃料電池本体に使用する電解質、反応形態等により、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)、アルカリ型燃料電池(AFC)、固体高分子型燃料電池(PEFC)の5種類がある。このうち、固体高分子型燃料電池(PEFC)は、リン酸型燃料電池(PAFC)、アルカリ型燃料電池(AFC)等の他の燃料電池と比較して、電解質が固体である点において有利な条件を備えている。
【0004】
しかし、固体高分子型燃料電池(PEFC)は触媒に白金を使用し、かつ、作動温度が低いため、電極触媒が少量のCOによって被毒し、特に高電流密度領域において性能劣化が著しいという欠点がある。このため、改質器で生成された改質ガス(水素リッチガス)に含有されるCO濃度を10ppm程度まで低減して高純度水素を製造する必要がある。
改質ガスからのCO除去の方法の一つとして、Pd合金膜をフィルタとして使用した膜分離法が用いられている。Pd合金膜は、膜にピンホールやクラック等がなければ原理的には水素のみが透過可能であり、改質ガス側を高温高圧(例えば、300℃、3〜100kg/cm2)とすることにより、低水素分圧側に水素を透過する。
【0005】
【発明が解決しようとする課題】
上記のような膜分離法では、水素の透過速度は膜厚に反比例するため薄膜化が要求されるが、Pd合金膜は機械的強度の面から、単体では30μm程度までの薄膜化が限度であり、膜厚が十数μm程度のPd合金膜を使用する場合には、Pd合金膜の低水素分圧側に多孔構造の支持体を配置していた。しかし、Pd合金膜と支持体とを別体で改質器に装着するので、良好なシーリングを得るための作業性が悪く、また、Pd合金膜と支持体との擦れが生じてPd合金膜の耐久性が十分ではないという問題があった。
上記の問題を解消するために、接着剤を用いてPd合金膜と多孔構造の支持体とを一体化したフィルタが開発されている。しかし、支持体の孔部に位置するPd合金膜から接着剤を除去する必要があり製造工程が煩雑であるという問題があった。また、改質器において高温高圧下で使用されるので、接着剤の劣化が避けられずフィルタの耐久性が不十分であった。
本発明は上述のような事情に鑑みてなされたものであり、燃料電池の改質器に使用して高純度の水素ガスを安定して製造可能な水素製造用フィルタの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
このような目的を達成するために、本発明の水素製造用フィルタは、複数の貫通孔を有する導電性基材と、各貫通孔内に貫通孔を閉塞するように接着剤を介在させることなく配設された複数のPd合金膜と、を備え、該Pd合金膜は前記導電性基材の表面には位置しないような構成とした。
本発明の製造方法は、複数の貫通孔を有する導電性基材の一方の面に絶縁性フィルムを貼設する貼設工程と、該絶縁性フィルムを貼設していない前記導電性基材の面に前記貫通孔を埋めるように銅めっき層を形成する銅めっき工程と、前記絶縁性フィルムを除去した後の導電性基材面にめっきによりPd合金膜を形成する膜形成工程と、前記銅めっき層を選択エッチングにより除去する除去工程と、を有するような構成とした。
【0007】
また、本発明の製造方法は、導電性基材の両面に所定のレジストパターンを形成し、該レジストパターンをマスクとして両面から前記導電性基材をエッチングして複数の貫通孔を形成するエッチング工程と、前記導電性基材の前記貫通孔内を閉塞するように電解めっきによりPd合金膜を形成する膜形成工程と、前記レジストパターンを除去する除去工程と、を有するような構成とした。
本発明の他の態様として、前記膜形成工程では、まずPd合金を構成する各成分の薄膜を電解めっきにより積層し、その後、熱処理を施して成分拡散によりPd合金膜を形成するような構成とした。
本発明の他の態様として、前記導電性基材はステンレス基板であるような構成とした。
上記のような本発明では、Pd合金膜が薄くても、導電性基材に高い強度で固着され一体化されているので、フィルタの耐久性が極めて高いものとなる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
図1は本発明の水素製造用フィルタの製造方法の一実施形態を示す工程図である。
本発明の製造方法は、まず、貼設工程において、複数の貫通孔13を有する導電性基材12の一方の面12aに絶縁性フィルム14を貼設する((図1(A))。導電性基材12の材質としては、SUS304、SUS430等のオーステナイト系、フェライト系のステンレス等を挙げることができ、厚みは20〜500μm、好ましくは50〜300μmの範囲内で適宜設定することができる。また、貫通孔13は、所定のレジストパターンを介したエッチング、打ち抜き、レーザ加工等の手段により形成したものであり、個々の貫通孔13の開口寸法は10〜500μm、好ましくは50〜300μmの範囲内、導電性基材12の全面積に占める複数の貫通孔13の開口面積の合計を5〜75%、好ましくは10〜50%の範囲内とすることができる。尚、上記の開口寸法は、貫通孔13の開口形状が円形状の場合は直径であり、開口形状が多角形等の場合は最大開口部位と最小開口部位の平均である。以下、本発明において同様である。
【0009】
上記の絶縁性フィルム14は、ポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート等の樹脂フィルムを使用することができる。このような絶縁性フィルム14の厚みは、材質、電気絶縁性能、フィルム強度等を考慮して適宜設定することができ、例えば、30〜300μm程度とすることができる。導電性基材12上への絶縁性フィルム14の貼設は、ポリアミド系等の接着剤を用いた方法、絶縁性フィルムの熱融着性を利用した方法等により行うことができる。
次に、銅めっき工程において、絶縁性フィルム14を貼設していない導電性基材面12bに対して銅めっきを行って、貫通孔13を埋めるように銅めっき層15を形成する(図1(B))。この銅めっき工程は、貫通孔13を銅めっきにより埋めることが目的であり、導電性基材面12b上に形成される銅めっき層15の厚み、形状には特に制限はない。
【0010】
次いで、膜形成工程において、上記の絶縁性フィルム14を除去し、除去後の導電性基材面12a上にめっきによりPd合金膜16を形成する(図1(C))。絶縁性フィルム14の除去は、剥離あるいは溶解により行うことができる。また、Pd合金膜16の形成は、電解めっきにより直接Pd合金膜を形成する方法、電解めっき、あるいは、無電解めっきによりPd合金を構成する各成分の薄膜を導電性基材面12a上に積層し、その後、熱処理を施して成分拡散によりPd合金膜を形成する方法等により行うことができる。例えば、めっきによりPdを10μmの厚みで形成し、この上にめっきによりAgを1μmの厚みで形成し、その後、250℃、10分間の熱処理を施すことによりPd合金化することができる。また、Pd/Ag/Pd3層、Pd/Ag/Pd/Ag4層等の多層めっきを行った後、熱処理を施してもよい。形成するPd合金薄膜16の厚みは0.5〜30μm、好ましくは1〜15μm程度とすることができる。
尚、導電性基材面12aに、例えば、Niストライクめっきを施すことにより、形成されるPd合金膜16に対する密着性を高めることができる。このようなNiストライクめっきの厚みは、例えば、0.01〜0.1μmの範囲で設定することができる。
【0011】
次に、除去工程において、選択エッチングより銅めっき層15を除去することにより、水素製造用フィルタ11を得る(図1(D))。選択エッチングは、アンモニア系のエッチング液を使用し、スプレー方式、浸漬方式、吹きかけ等により行うことができる。
上記のように製造された本発明の水素製造用フィルタ11は、Pd合金膜16が導電性基材12に対して高い強度で固着されており、水素透過効率を高めるためにPd合金膜を薄くしても、耐久性が極めて高いフィルタである。また、接着剤は使用されていないため、耐熱性に優れ高温高圧下での使用が可能であり、さらに、改質器への装着等の作業性にも優れている。
【0012】
図2は本発明の水素製造用フィルタの製造方法の他の実施形態を示す工程図である。
まず、充填工程において、導電性基材22に設けられた複数の貫通孔23に樹脂部材24を充填する((図2(A))。導電性基材22の材質、厚みは、上述の導電性基材12と同様とすることができ、貫通孔23の形成方法、寸法、形成密度も上述の貫通孔13と同様とすることができる。また、導電性基材22は、貫通孔23を形成した後、例えば、Niストライクめっきを施して、後工程で形成されるPd合金膜に対する密着性を高めることができる。このようなNiストライクめっきの厚みは、例えば、0.01〜0.1μmの範囲で設定することができる。
【0013】
上記の樹脂部材は、後述の下地形成工程、膜形成工程において安定した耐性を示し、かつ、除去工程において確実に溶解除去できるものであり、例えば、ノボラック系レジスト樹脂等を使用することができる。このような樹脂材料を貫通孔23に充填するには、スキージング等の方法を採用することができる。
次に、下地形成工程において、貫通孔23に樹脂部材24が充填されている導電性基材22の一方の面にPd合金膜を形成して導電性下地層25を形成する(図2(B))。この下地形成工程は、貫通孔23に充填されている樹脂部材24の露出面に導電性を付与することが目的であり、形成される導電性下地層25の厚みは0.01〜0.2μmの範囲で設定することができる。導電性下地層25となるPd合金膜は、無電解めっきにより形成することができ、また、スパッタリング、真空蒸着等の真空成膜法により形成してもよい。
【0014】
次いで、膜形成工程において、導電性下地層25上にめっきによりPd合金膜26を形成する(図2(C))。このPd合金膜26の形成は、電解めっきにより直接Pd合金膜を形成する方法、電解めっき、あるいは、無電解めっきによりPd合金を構成する各成分の薄膜を導電性下地層25上に積層し、その後、熱処理を施して成分拡散によりPd合金膜を形成する方法等により行うことができる。形成するPd合金薄膜26の厚みは0.5〜30μm、好ましくは1〜15μm程度とすることができる。
【0015】
次に、除去工程において、樹脂部材24のみを溶解して除去することにより、水素製造用フィルタ21を得る(図2(D))。樹脂部材24の溶解除去は、使用する樹脂材料に応じてアセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤、あるいはデスミア溶液(シプレイ(株)製)等を使用し、スプレー方式、浸漬方式等により行うことができる。
上記のように製造された本発明の水素製造用フィルタ21は、Pd合金膜26がPd合金膜からなる導電性下地層25を介して導電性基材22に高い強度で固着されており、水素透過効率を高めるためにPd合金膜(導電性下地層25とPd合金膜26との2層構造をなす)を薄くしても、耐久性が極めて高いフィルタである。また、接着剤は使用されていないため、耐熱性に優れ高温高圧下での使用が可能であり、さらに、改質器への装着等の作業性にも優れている。
【0016】
図3は本発明の水素製造用フィルタの製造方法の他の実施形態を示す工程図である。
本発明の製造方法は、エッチング工程において、まず、導電性基材32の両面に、複数の小開口部を有するレジストパターン34a,34bを形成する((図3(A))。レジストパターン34aの各開口部は、導電性基材32を介してレジストパターン34bの各小開口部に対向しており、相互に対向する小開口部同士の開口面積は同じであってもよく、あるいは、一方、例えばレジストパターン34bの小開口部の開口面積の方を大きくしてもよい。このようなレジストパターン34a,34bの小開口部の形状、寸法は、エッチング条件、導電性基材32の材質、厚み等を考慮して適宜設定することができる。上記の導電性基材32の材質、厚みは、上述の導電性基材12と同様とすることができる。また、レジストパターン34a,34bは、例えば、従来公知のポジ型、ネガ型の感光性レジスト材料から選択した材料を塗布し、所定のマスクを介して露光、現像することにより形成することができる。
【0017】
次に、上記のレジストパターン34a,34bをマスクとして導電性基材32をエッチングすることにより、導電性基材32に微細な貫通孔33を複数形成する(図3(B))。導電性基材32のエッチングは、塩化鉄、塩化銅等のエッチング液を使用し、スプレー方式、浸漬方式、吹きかけ等により行うことができる。このようにエッチングにより導電性基材32に形成された貫通孔33は、導電性基材面32a側の開口面積や、導電性基材面32b側の開口寸法が10〜500μm、好ましくは50〜300μmの範囲内であり、導電性基材32の全面積に占める複数の貫通孔33の開口面積の合計が5〜75%、好ましくは10〜50%の範囲内とすることができる。尚、レジストパターン34a,34bをマスクとして導電性基材32を両面からエッチングする場合、一般に、形成された貫通孔33の内壁面の略中央部に突出部位33aが生じる。したがって、このような突出部位33aが存在する場合、上記の貫通孔33における開口面積は、突出部位33aにおける開口面積とする。
【0018】
次いで、膜形成工程において、導電性基材32の貫通孔33内を閉塞するように電解めっきによりPd合金膜36を形成する(図3(C))。このPd合金膜36の形成は、レジストパターン34a,34bをマスクとして、電解めっきにより直接Pd合金膜を形成する方法、電解めっきによりPd合金を構成する各成分の薄膜を形成し、その後、熱処理を施して成分拡散によりPd合金膜を形成する方法等により行うことができる。このようなPd合金膜36の形成では、上記のエッチング工程で形成された貫通孔33の内壁面の略中央部に突出部位33aが存在する場合、この突出部位33aにて電流密度が高くなり、突出部位33aを閉塞するようにPd合金膜が形成されることになる。形成するPd合金薄膜36の厚みは0.5〜30μm、好ましくは1〜15μm程度とすることができる。また、上記のPd合金膜の形成前に、導電性基材32の貫通孔33内にNiストライクめっきを施し、Pd合金膜に対する密着性を高めることができる。このようなNiストライクめっきの厚みは、例えば、0.01〜0.1μmの範囲で設定することができる。
【0019】
次に、除去工程において、レジストパターン34a,34bを除去することにより、水素製造用フィルタ31を得る(図3(D))。レジストパターン34a,34bの除去は、水酸化ナトリウム溶液等を用いて行うことができる。
上記のように製造された本発明の水素製造用フィルタ31は、Pd合金膜36が貫通孔33を閉塞するように導電性基材32に高い強度で固着されており、水素透過効率を高めるためにPd合金膜を薄くしても、耐久性が極めて高いフィルタである。また、接着剤は使用されていないため、耐熱性に優れ高温高圧下での使用が可能であり、さらに、改質器への装着等の作業性にも優れている。
【0020】
【実施例】
次に、より具体的な実施例を示して本発明を更に詳細に説明する。
[実施例1]
水素製造用のフィルタの作製
基材として厚み50μmのSUS304材を準備し、このSUS304材の両面に感光性レジスト材料(東京応化工業(株)製OFPR)をディップ法により塗布(膜厚7μm(乾燥時))した。次に、開口寸法(開口直径)が120μmである円形状の開口部をピッチ200μmで複数備えたフォトマスクを上記レジスト塗膜上に配し、このフォトマスクを介してレジスト塗布膜を露光し、炭酸水素ナトリウム溶液を使用して現像した。これにより、開口寸法(開口直径)が120μmである円形状の開口部を有するレジストパターンをSUS304材の両面に形成した。尚、各面に形成したレジストパターンの各開口部の中心は、SUS304材を介して一致するようした。
【0021】
次に、上記のレジストパターンをマスクとして、下記の条件でSUS304材をエッチングした。
(エッチング条件)
・温度:50℃
・塩化鉄濃度:45ボーメ
・圧力:3kg/cm2
【0022】
上記のエッチング処理が終了した後、水酸化ナトリウム溶液を用いてレジストパターンを除去し、水洗した。これにより、SUS304材に複数の貫通孔が形成されてなる導電性基材を得た。形成された貫通孔は、内壁面の略中央部に突出部位を有するものであり、突出部位における開口寸法(開口直径)は70μmであった。
次いで、上記のSUS304材の一方の面に、厚み200μmの絶縁性フィルムを貼り付けた。(以上、貼設工程)
【0023】
次に、SUS304材の絶縁性フィルムを貼設していない面に対して、下記の条件で電解銅めっきを行い、貫通孔を銅めっきで埋めると共に、SUS304材の表面に銅めっき層(厚み約80μm)を形成した。(以上、銅めっき工程)
(銅めっき条件)
・使用浴:硫酸銅めっき浴
・液温:30℃
・電流密度:1A/dm2
【0024】
次に、絶縁性フィルムをSUS304材から剥離して除去し、この除去後のSUS304材の表面に下記の条件で電解めっきによりPd合金膜(厚み8μm)を形成した。(以上、膜形成工程)
(電解めっきによるPd合金膜の成膜条件)
・使用浴:塩化Pdめっき浴(Pd濃度:12g/L)
・pH:7〜8
・電流密度:1A/dm2
・液温:40℃
次に、銅めっき層を選択的にエッチングして除去した。(以上、除去工程)
上記の銅めっき層の除去が終了した後、3cm×3cmの寸法に切断して、水素製造用のフィルタとした。
【0025】
水素製造用フィルタの評価
上述のように作製した水素製造用フィルタを改質器に装着し、フィルタのPd合金膜にブタンガスと水蒸気の混合物を高温高圧条件(300℃、10kg/cm2)で連続10時間供給し、フィルタの多孔基材側へ透過する水素リッチガスのCO濃度、および、水素リッチガスの流量を測定した。その結果、改質開始直後から10時間経過するまでの間のCO濃度は8〜10ppmと極めて低く、また、水素リッチガスの流量は10L/時であり、本発明により製造された水素製造用フィルタが優れた耐久性、水素透過効率を有することが確認された。
【0026】
[実施例2]
水素製造用のフィルタの作製
実施例1と同様にして、SUS304材に複数の貫通孔を形成して導電性基材を得た。
次に、上記のSUS304材に下記の条件でNiストライクめっき(厚み0.01μm)を施し、その後、上記のSUS304材の貫通孔に樹脂部材(シプレイ(株)製AZ111)を充填した。この樹脂部材の充填は、スキージングにより行った。(以上、充填工程)

Figure 0004681201
【0027】
次に、貫通孔に樹脂部材が充填されたSUS304材の一方の面に対して、下記の前処理を施し、その後、下記の条件で無電解めっきを行い、貫通孔を充填している樹脂部材表面、および、SUS304材表面に無電解Niめっき層(厚み0.4μm)を形成して導電性下地層とした。(以上、下地形成工程)
(前処理)
アルカリ脱脂 → 水洗 → 化学エッチング(過硫酸アンモニウム200g/L水溶液(20℃±5℃)中にて) → 水洗 → 酸処理(10%希硫酸(常温)) → 水洗 → 酸処理(30%希塩酸(常温)) → 増感
剤付与液中に浸漬(組成:塩化Pd0.5g、塩化第一スズ25g、塩酸300mL、水600mL) → 水洗
【0028】
Figure 0004681201
【0029】
次に、上記の導電性下地層上に下記の条件で電解めっきによりPd合金膜(厚み8μm)を形成した。(以上、膜形成工程)
(電解めっきによるPd合金膜の成膜条件)
・使用浴:塩化Pdめっき浴(Pd濃度:12g/L)
・pH:7〜8
・電流密度:1A/dm2
・液温:40℃
【0030】
次に、貫通孔に充填されている樹脂部材を下記の処理浴(シプレイ(株)製デスミア浴)を用いて溶解除去した。(以上、除去工程)
Figure 0004681201
上記の樹脂部材の除去が終了した後、3cm×3cmの寸法に切断して、水素製造用のフィルタとした。
【0031】
水素製造用フィルタの評価
上述のように作製したフィルタを改質器に装着し、実施例1と同様の条件でフィルタのPd合金膜にブタンガスと水蒸気の混合物を供給し、フィルタの多孔基材側へ透過する水素リッチガスのCO濃度、および、水素リッチガスの流量を測定した。その結果、改質開始直後から300時間経過するまでの間のCO濃度は8〜10ppmと極めて低く、また、水素リッチガスの流量は10L/時であり、本発明により製造された水素製造用フィルタが優れた耐久性、水素透過効率を有することが確認された。
【0032】
[実施例3]
水素製造用のフィルタの作製
下地形成工程において、無電解めっき法に代えて、下記の条件によるスパッタリング法によりPd合金膜(厚み0.2μm)を形成して導電性下地層とした他は、実施例2と同様にして、水素製造用のフィルタを作製した。
(スパッタリング条件)
・RFパワー:500W
・アルゴンガス圧:5.4×10-2Pa
・DC電流:2.5A
【0033】
水素製造用フィルタの評価
上述のように作製したフィルタを改質器に装着し、実施例1と同様の条件でフィルタのPd合金膜にブタンガスと水蒸気の混合物を供給し、フィルタの多孔基材側へ透過する水素リッチガスのCO濃度、および、水素リッチガスの流量を測定した。その結果、改質開始直後から300時間経過するまでの間のCO濃度は8〜10ppmと極めて低く、また、水素リッチガスの流量は10L/時であり、本発明により製造された水素製造用フィルタが優れた耐久性、水素透過効率を有することが確認された。
【0034】
[実施例4]
水素製造用のフィルタの作製
実施例1と同様に、レジストパターンをマスクとしてエッチングによりSUS304材に複数の貫通孔を形成した。但し、エッチング処理が終了した後は、レジストパターンを除去することなくSUS304材の表面に残した。(以上、エッチング工程)
次に、上記のSUS304材の貫通孔内に下記の条件でNiストライクめっき(厚み0.2μm)を施した。
Figure 0004681201
【0035】
次に、レジストパターンをマスクとして、貫通孔内を閉塞するように下記の条件で電解めっきによりPd合金膜(厚み15μm)を形成した。(以上、膜形成工程)
(電解めっきによるPd合金膜の成膜条件)
・使用浴:塩化Pdめっき浴(Pd濃度:12g/L)
・pH:7〜8
・電流密度:1A/dm2
・液温:40℃
次に、SUS304材上のレジストパターンを5%水酸化ナトリウム水溶液を用いて除去した。(以上、除去工程)
上記のレジストパターンの除去が終了した後、3cm×3cmの寸法に切断して、水素製造用のフィルタとした。
【0036】
水素製造用フィルタの評価
上述のように作製したフィルタを改質器に装着し、実施例1と同様の条件でフィルタのPd合金膜にブタンガスと水蒸気の混合物を供給し、フィルタの多孔基材側へ透過する水素リッチガスのCO濃度、および、水素リッチガスの流量を測定した。その結果、改質開始直後から300時間経過するまでの間のCO濃度は8〜10ppmと極めて低く、また、水素リッチガスの流量は10L/時であり、本発明により製造された水素製造用フィルタが優れた耐久性、水素透過効率を有することが確認された。
【0037】
[比較例]
水素製造用のフィルタの作製
実施例1と同様にして、SUS304材に複数の貫通孔を形成して導電性基材を得た。次に、この導電性基材に接着剤を介して厚み30μmのPd合金膜を接着して一体化し、その後、導電性基材の貫通孔に残存する接着剤をアセトンを用いて除去した。この一体化物を3cm×3cmの寸法に切断して、水素製造用のフィルタとした。
【0038】
水素製造用フィルタの評価
上述のように作製したフィルタを改質器に装着し、実施例1と同様の条件でフィルタのPd合金膜にブタンガスと水蒸気の混合物を供給し、フィルタの多孔基材側へ透過する水素リッチガスのCO濃度、および、水素リッチガスの流量を測定した。その結果、改質開始直後から300時間経過するまでは、CO濃度は8〜10ppmと極めて低く良好であったが、300時間経過後は、接着剤が高温高圧条件で劣化したことによるPd合金膜の剥離が生じ、Pd合金膜のクラック発生等によりCO濃度が3%程度まで増大し、耐久性が悪いことが確認された。
【0039】
【発明の効果】
以上詳述したように、本発明の水素製造用フィルタは、接着剤を介在させることなくPd合金膜が複数の貫通孔を有する導電性基材に高い強度で固着され一体化されているため、耐熱性に優れ高温高圧下での使用が可能であるとともに、Pd合金膜を薄くして水素透過効率を高めても耐久性に優れ、かつ、改質器への装着等の作業性に優れるという効果を奏する。また、本発明の製造方法は、めっきにより形成されたPd合金膜が複数の貫通孔を有する導電性基材に高い強度で固着され一体化され、接着剤は使用されていないため、耐熱性に優れ高温高圧下での使用が可能であるとともに、Pd合金膜を薄くして水素透過効率を高めても耐久性に優れ、かつ、改質器への装着等の作業性に優れた水素製造用フィルタを製造することが可能となる。
【図面の簡単な説明】
【図1】本発明の水素製造用フィルタの製造方法の一実施形態を示す工程図である。
【図2】本発明の水素製造用フィルタの製造方法の他の実施形態を示す工程図である。
【図3】本発明の水素製造用フィルタの製造方法の他の実施形態を示す工程図である。
【符号の説明】
11,21,31…水素製造用フィルタ
12,22,32…導電性基材
13,23,33…貫通孔
14…絶縁性フィルム
15…銅めっき層
16…Pd合金膜
24…樹脂部材
25…導電性下地層
26…Pd合金膜
34a,34b…レジストパターン
36…Pd合金膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a hydrogen production filter, and more particularly to a method for producing a hydrogen production filter for producing hydrogen rich gas by steam reforming various hydrocarbon fuels for a fuel cell.
[0002]
[Prior art]
In recent years, attention has been focused on using hydrogen as a fuel because no global warming gas such as carbon dioxide is generated from the viewpoint of protecting the global environment and energy efficiency is high. In particular, fuel cells are attracting attention because they can directly convert hydrogen into electric power and have high energy conversion efficiency in a cogeneration system that uses generated heat. Up to now, fuel cells have been adopted in special conditions such as space development and marine development, but recently they have been developed for use in automobiles and household distributed power supplies. Fuel cells for portable devices have also been developed.
[0003]
A fuel cell is a power generator that directly takes out electricity by electrochemically reacting hydrogen-rich gas obtained by reforming hydrocarbon fuels such as natural gas, gasoline, butane gas, and methanol with oxygen in the air. . In general, a fuel cell is composed of a reformer that generates a hydrogen-rich gas by steam reforming a hydrocarbon-based fuel, a fuel cell body that generates electricity, a converter that converts the generated DC electricity into AC, and the like. .
Such a fuel cell may be a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid oxide fuel cell (SOFC), an alkali, depending on the electrolyte used in the fuel cell body, the reaction mode, and the like. There are five types of fuel cell (AFC) and polymer electrolyte fuel cell (PEFC). Among these, the polymer electrolyte fuel cell (PEFC) is advantageous in that the electrolyte is solid compared to other fuel cells such as a phosphoric acid fuel cell (PAFC) and an alkaline fuel cell (AFC). Have the requirements.
[0004]
However, the polymer electrolyte fuel cell (PEFC) uses platinum as the catalyst and has a low operating temperature, so that the electrode catalyst is poisoned by a small amount of CO, and the performance deterioration is particularly remarkable in a high current density region. There is. For this reason, it is necessary to produce high-purity hydrogen by reducing the CO concentration contained in the reformed gas (hydrogen-rich gas) generated in the reformer to about 10 ppm.
As one method for removing CO from the reformed gas, a membrane separation method using a Pd alloy membrane as a filter is used. The Pd alloy film can in principle only pass hydrogen if the film has no pinholes, cracks, etc., and the reformed gas side is heated to high temperature and pressure (for example, 300 ° C., 3 to 100 kg / cm 3).2) Allows hydrogen to permeate to the low hydrogen partial pressure side.
[0005]
[Problems to be solved by the invention]
In the membrane separation method as described above, the hydrogen permeation rate is inversely proportional to the film thickness, so a thin film is required. However, the Pd alloy film is limited to a thin film of about 30 μm from the standpoint of mechanical strength. In the case of using a Pd alloy film having a film thickness of about a dozen μm or so, a porous support is disposed on the low hydrogen partial pressure side of the Pd alloy film. However, since the Pd alloy film and the support are separately mounted on the reformer, the workability for obtaining good sealing is poor, and the Pd alloy film and the support are rubbed to cause the Pd alloy film. There was a problem that the durability of was not sufficient.
In order to solve the above problems, a filter in which a Pd alloy film and a porous support are integrated using an adhesive has been developed. However, there is a problem that the manufacturing process is complicated because it is necessary to remove the adhesive from the Pd alloy film located in the hole of the support. Further, since the reformer is used under high temperature and high pressure, deterioration of the adhesive is inevitable and the durability of the filter is insufficient.
The present invention has been made in view of the above circumstances, and provides a method for producing a filter for hydrogen production that can be used in a fuel cell reformer to stably produce high-purity hydrogen gas. With the goal.
[0006]
[Means for Solving the Problems]
  In order to achieve such an object, the hydrogen production filter of the present invention includes a conductive base material having a plurality of through holes, and without interposing an adhesive so as to close the through holes in each through hole. A plurality of Pd alloy films disposed;The Pd alloy film is not located on the surface of the conductive substrateThe configuration is as follows.
  The manufacturing method of the present invention includes a step of attaching an insulating film to one surface of a conductive base material having a plurality of through holes, and a step of attaching the conductive base material to which the insulating film is not attached. A copper plating step of forming a copper plating layer so as to fill the through hole in the surface, a film forming step of forming a Pd alloy film by plating on the conductive substrate surface after removing the insulating film, and the copper And a removal step of removing the plating layer by selective etching.
[0007]
  Further, the manufacturing method of the present invention includes an etching step in which a predetermined resist pattern is formed on both surfaces of a conductive substrate, and the conductive substrate is etched from both surfaces using the resist pattern as a mask to form a plurality of through holes. And a film forming step of forming a Pd alloy film by electrolytic plating so as to close the inside of the through hole of the conductive base material, and a removing step of removing the resist pattern.
  As another aspect of the present invention, in the film forming step, a thin film of each component constituting the Pd alloy is first laminated by electrolytic plating, and then a heat treatment is performed to form a Pd alloy film by component diffusion. did.
  As another aspect of the present invention, the conductive base material is a stainless steel substrate.
  In the present invention as described above, even if the Pd alloy film is thin, the filter is extremely high in durability because it is firmly fixed and integrated with the conductive base material with high strength.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a process diagram showing an embodiment of a method for producing a filter for hydrogen production according to the present invention.
In the manufacturing method of the present invention, first, in the attaching step, the insulating film 14 is attached to one surface 12a of the conductive substrate 12 having the plurality of through holes 13 ((FIG. 1A)). Examples of the material of the conductive base material 12 include austenitic stainless steel such as SUS304 and SUS430, ferrite stainless steel, and the like, and the thickness can be appropriately set within a range of 20 to 500 μm, preferably 50 to 300 μm. The through holes 13 are formed by means such as etching, punching, and laser processing through a predetermined resist pattern, and the opening size of each through hole 13 is in the range of 10 to 500 μm, preferably 50 to 300 μm. Of these, the total opening area of the plurality of through-holes 13 occupying the entire area of the conductive base material 12 is in the range of 5 to 75%, preferably 10 to 50%. The above-mentioned opening dimension is the diameter when the opening shape of the through hole 13 is circular, and is the average of the maximum opening portion and the minimum opening portion when the opening shape is a polygon or the like. The same applies to the present invention.
[0009]
As the insulating film 14, a resin film such as polyethylene terephthalate, polypropylene, or polycarbonate can be used. The thickness of the insulating film 14 can be appropriately set in consideration of the material, the electrical insulation performance, the film strength, and the like, and can be set to about 30 to 300 μm, for example. The insulating film 14 can be attached on the conductive substrate 12 by a method using an adhesive such as a polyamide or a method utilizing the heat-fusibility of the insulating film.
Next, in the copper plating step, copper plating is performed on the conductive base material surface 12b on which the insulating film 14 is not pasted to form the copper plating layer 15 so as to fill the through holes 13 (FIG. 1). (B)). The purpose of this copper plating process is to fill the through holes 13 with copper plating, and the thickness and shape of the copper plating layer 15 formed on the conductive substrate surface 12b are not particularly limited.
[0010]
Next, in the film forming step, the insulating film 14 is removed, and a Pd alloy film 16 is formed on the conductive base material surface 12a after the removal by plating (FIG. 1C). The insulating film 14 can be removed by peeling or dissolving. The Pd alloy film 16 is formed by a method of directly forming a Pd alloy film by electrolytic plating, or by laminating thin films of respective components constituting the Pd alloy on the conductive substrate surface 12a by electrolytic plating or electroless plating. Thereafter, the heat treatment can be performed by a method of forming a Pd alloy film by component diffusion and the like. For example, Pd is formed to a thickness of 10 μm by plating, Ag is formed to a thickness of 1 μm by plating, and then a heat treatment is performed at 250 ° C. for 10 minutes to form a Pd alloy. Further, heat treatment may be performed after performing multi-layer plating such as a Pd / Ag / Pd3 layer and a Pd / Ag / Pd / Ag4 layer. The thickness of the Pd alloy thin film 16 to be formed can be about 0.5 to 30 μm, preferably about 1 to 15 μm.
In addition, the adhesiveness with respect to the Pd alloy film 16 formed can be improved by giving Ni strike plating to the electroconductive base material surface 12a, for example. The thickness of such Ni strike plating can be set in the range of 0.01 to 0.1 μm, for example.
[0011]
  Next, in the removing step, the copper plating layer 15 is removed by selective etching to obtain the hydrogen production filter 11 (FIG. 1D). The selective etching can be performed by using an ammonia-based etching solution by a spray method, an immersion method, spraying, or the like.
  Manufactured as aboveOf the present inventionThe hydrogen production filter 11 has a Pd alloy film 16 fixed to the conductive base material 12 with high strength, and has a very high durability even if the Pd alloy film is thinned to increase the hydrogen permeation efficiency. It is. In addition, since no adhesive is used, it is excellent in heat resistance and can be used under high temperature and high pressure, and is also excellent in workability such as mounting on a reformer.
[0012]
FIG. 2 is a process diagram showing another embodiment of the method for producing a hydrogen production filter of the present invention.
First, in the filling step, the resin member 24 is filled in the plurality of through holes 23 provided in the conductive base material 22 ((A) in FIG. 2). The through-hole 23 can be formed in the same way as the through-holes 23, and the formation method, dimensions, and density of the through-holes 23 can be the same as those of the above-described through-holes 13. After the formation, for example, Ni strike plating can be applied to improve the adhesion to the Pd alloy film formed in a later step.The thickness of such Ni strike plating is, for example, 0.01 to 0.1 μm. Can be set within the range.
[0013]
  The resin member described above exhibits stable resistance in the base formation process and film formation process described later, and can be surely dissolved and removed in the removal process. For example, a novolac resist resin or the like can be used. In order to fill the through hole 23 with such a resin material, a method such as squeezing can be employed.
  Next, in the base formation step, the conductive base material in which the through hole 23 is filled with the resin member 2422A Pd alloy film is formed on one of the surfaces to form a conductive underlayer 25 (FIG. 2B). This base formation step is intended to impart conductivity to the exposed surface of the resin member 24 filled in the through hole 23, and the thickness of the conductive base layer 25 to be formed is 0.01 to 0.2 μm. Can be set within the range. The Pd alloy film to be the conductive underlayer 25 can be formed by electroless plating, or may be formed by a vacuum film forming method such as sputtering or vacuum deposition.
[0014]
Next, in the film formation step, a Pd alloy film 26 is formed on the conductive base layer 25 by plating (FIG. 2C). The Pd alloy film 26 is formed by a method of directly forming a Pd alloy film by electrolytic plating, or by laminating a thin film of each component constituting the Pd alloy on the conductive base layer 25 by electrolytic plating or electroless plating. Thereafter, the heat treatment can be performed by a method of forming a Pd alloy film by component diffusion or the like. The thickness of the Pd alloy thin film 26 to be formed can be about 0.5 to 30 μm, preferably about 1 to 15 μm.
[0015]
  Next, in the removing step, only the resin member 24 is dissolved and removed, thereby obtaining the hydrogen production filter 21 (FIG. 2D). The resin member 24 is dissolved and removed by using a solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, or a desmear solution (manufactured by Shipley Co., Ltd.) according to the resin material to be used. Can do.
  Manufactured as aboveOf the present inventionThe filter 21 for hydrogen production has a Pd alloy film 26Made of Pd alloy filmThe Pd alloy film is fixed to the conductive base material 22 through the conductive base layer 25 with high strength and increases the hydrogen permeation efficiency.(A two-layer structure of the conductive underlayer 25 and the Pd alloy film 26 is formed)Even if the thickness of the filter is reduced, the filter has extremely high durability. In addition, since no adhesive is used, it is excellent in heat resistance and can be used under high temperature and high pressure, and is also excellent in workability such as mounting on a reformer.
[0016]
FIG. 3 is a process diagram showing another embodiment of the method for producing a filter for hydrogen production of the present invention.
In the manufacturing method of the present invention, in the etching step, first, resist patterns 34a and 34b having a plurality of small openings are formed on both surfaces of the conductive substrate 32 ((FIG. 3A)). Each opening is opposed to each small opening of the resist pattern 34b via the conductive base material 32, and the opening areas of the small openings facing each other may be the same, or alternatively, For example, the opening area of the small opening portion of the resist pattern 34b may be larger, and the shape and size of such a small opening portion of the resist patterns 34a and 34b are the etching conditions, the material and thickness of the conductive substrate 32. The material and thickness of the conductive base material 32 can be the same as those of the conductive base material 12. The resist pattern 34a, 4b, for example, can be formed by a conventionally known positive type, the selected material is applied from the photosensitive resist material of a negative type, exposed through a predetermined mask and developed.
[0017]
Next, the conductive base material 32 is etched using the resist patterns 34a and 34b as a mask to form a plurality of fine through holes 33 in the conductive base material 32 (FIG. 3B). Etching of the conductive substrate 32 can be performed by using an etching solution such as iron chloride or copper chloride by a spray method, a dipping method, spraying, or the like. Thus, the through-hole 33 formed in the conductive base material 32 by etching has an opening area on the conductive base material surface 32a side and an opening size on the conductive base material surface 32b side of 10 to 500 μm, preferably 50 to 50 μm. The total opening area of the plurality of through-holes 33 occupying the entire area of the conductive base material 32 is in the range of 300 μm, and can be in the range of 5 to 75%, preferably 10 to 50%. When the conductive base material 32 is etched from both sides using the resist patterns 34a and 34b as masks, a protruding portion 33a is generally generated at a substantially central portion of the inner wall surface of the formed through hole 33. Therefore, when such a protruding portion 33a exists, the opening area in the through hole 33 is the opening area in the protruding portion 33a.
[0018]
Next, in the film forming step, a Pd alloy film 36 is formed by electrolytic plating so as to close the inside of the through hole 33 of the conductive base material 32 (FIG. 3C). The Pd alloy film 36 is formed by directly forming a Pd alloy film by electrolytic plating using the resist patterns 34a and 34b as masks, forming a thin film of each component constituting the Pd alloy by electrolytic plating, and then performing heat treatment. And a method of forming a Pd alloy film by component diffusion. In the formation of such a Pd alloy film 36, when the protruding portion 33a is present at the substantially central portion of the inner wall surface of the through hole 33 formed in the above etching process, the current density is increased at the protruding portion 33a. A Pd alloy film is formed so as to close the protruding portion 33a. The thickness of the Pd alloy thin film 36 to be formed can be about 0.5 to 30 μm, preferably about 1 to 15 μm. In addition, before the formation of the Pd alloy film, Ni strike plating can be performed in the through hole 33 of the conductive base material 32 to improve the adhesion to the Pd alloy film. The thickness of such Ni strike plating can be set in the range of 0.01 to 0.1 μm, for example.
[0019]
  Next, in the removing step, the resist patterns 34a and 34b are removed to obtain the hydrogen production filter 31 (FIG. 3D). The resist patterns 34a and 34b can be removed using a sodium hydroxide solution or the like.
  Manufactured as aboveOf the present inventionThe hydrogen production filter 31 is fixed to the conductive base material 32 with high strength so that the Pd alloy film 36 closes the through-hole 33. Even if the Pd alloy film is thinned to increase the hydrogen permeation efficiency, This is a very durable filter. In addition, since no adhesive is used, it is excellent in heat resistance and can be used under high temperature and high pressure, and is also excellent in workability such as mounting on a reformer.
[0020]
【Example】
Next, the present invention will be described in more detail by showing more specific examples.
[Example 1]
Production of filters for hydrogen production
A SUS304 material having a thickness of 50 μm was prepared as a substrate, and a photosensitive resist material (OFPR manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to both surfaces of the SUS304 material by a dipping method (film thickness: 7 μm (when dried)). Next, a photomask provided with a plurality of circular openings having an opening dimension (opening diameter) of 120 μm at a pitch of 200 μm is disposed on the resist coating film, and the resist coating film is exposed through the photomask, Developed using sodium bicarbonate solution. Thereby, a resist pattern having a circular opening having an opening dimension (opening diameter) of 120 μm was formed on both surfaces of the SUS304 material. The center of each opening of the resist pattern formed on each surface was made to coincide with the SUS304 material.
[0021]
Next, using the resist pattern as a mask, the SUS304 material was etched under the following conditions.
(Etching conditions)
・ Temperature: 50 ℃
・ Iron chloride concentration: 45 Baume
・ Pressure: 3kg / cm2
[0022]
After the etching treatment was completed, the resist pattern was removed using a sodium hydroxide solution and washed with water. Thereby, the electroconductive base material by which a some through-hole was formed in SUS304 material was obtained. The formed through-hole has a projecting portion at a substantially central portion of the inner wall surface, and the opening dimension (opening diameter) at the projecting portion was 70 μm.
Next, an insulating film having a thickness of 200 μm was attached to one surface of the SUS304 material. (End of pasting process)
[0023]
Next, electrolytic copper plating is performed on the surface of the SUS304 material on which the insulating film is not affixed under the following conditions to fill the through holes with copper plating and a copper plating layer (thickness of about 80 μm) was formed. (End of copper plating process)
(Copper plating conditions)
-Bath used: Copper sulfate plating bath
Liquid temperature: 30 ° C
・ Current density: 1A / dm2
[0024]
Next, the insulating film was peeled off and removed from the SUS304 material, and a Pd alloy film (thickness 8 μm) was formed on the surface of the SUS304 material after the removal by electrolytic plating under the following conditions. (End of film formation process)
(Deposition conditions of Pd alloy film by electroplating)
Use bath: Pd chloride plating bath (Pd concentration: 12 g / L)
・ PH: 7-8
・ Current density: 1A / dm2
・ Liquid temperature: 40 ℃
Next, the copper plating layer was removed by selective etching. (End of removal process)
After the removal of the copper plating layer was completed, it was cut to a size of 3 cm × 3 cm to obtain a filter for hydrogen production.
[0025]
Evaluation of filters for hydrogen production
The hydrogen production filter produced as described above is mounted on a reformer, and a mixture of butane gas and water vapor is applied to the Pd alloy film of the filter at high temperature and high pressure conditions (300 ° C., 10 kg / cm2) Was continuously supplied for 10 hours, and the CO concentration of the hydrogen rich gas permeating to the porous substrate side of the filter and the flow rate of the hydrogen rich gas were measured. As a result, the CO concentration from the start of reforming until 10 hours elapses is as low as 8 to 10 ppm, and the flow rate of the hydrogen rich gas is 10 L / hour. It was confirmed to have excellent durability and hydrogen permeation efficiency.
[0026]
[Example 2]
Production of filters for hydrogen production
In the same manner as in Example 1, a plurality of through holes were formed in the SUS304 material to obtain a conductive substrate.
Next, Ni strike plating (thickness 0.01 μm) was applied to the above SUS304 material under the following conditions, and then a resin member (AZ111 manufactured by Shipley Co., Ltd.) was filled in the through hole of the above SUS304 material. The resin member was filled by squeezing. (End of filling process)
Figure 0004681201
[0027]
Next, the following pretreatment is performed on one surface of the SUS304 material in which the through hole is filled with the resin member, and then the electroless plating is performed under the following conditions to fill the through hole. An electroless Ni plating layer (thickness 0.4 μm) was formed on the surface and the surface of the SUS304 material to form a conductive underlayer. (End of the base formation process)
(Preprocessing)
Alkaline degreasing → Water washing → Chemical etching (in 200 g / L ammonium persulfate aqueous solution (20 ° C ± 5 ° C)) → Water washing → Acid treatment (10% dilute sulfuric acid (room temperature)) → Water wash → Acid treatment (30% dilute hydrochloric acid (room temperature) )) → Sensitization
Immersion in the agent application solution (Composition: Pd chloride 0.5 g, stannous chloride 25 g, hydrochloric acid 300 mL, water 600 mL) → Washed with water
[0028]
Figure 0004681201
[0029]
Next, a Pd alloy film (thickness 8 μm) was formed on the conductive base layer by electrolytic plating under the following conditions. (End of film formation process)
(Deposition conditions of Pd alloy film by electroplating)
Use bath: Pd chloride plating bath (Pd concentration: 12 g / L)
・ PH: 7-8
・ Current density: 1A / dm2
・ Liquid temperature: 40 ℃
[0030]
Next, the resin member filled in the through hole was dissolved and removed using the following treatment bath (Desmear bath manufactured by Shipley Co., Ltd.). (End of removal process)
Figure 0004681201
After the removal of the resin member was finished, it was cut into a size of 3 cm × 3 cm to obtain a filter for hydrogen production.
[0031]
Evaluation of filters for hydrogen production
The filter produced as described above is attached to the reformer, and a mixture of butane gas and water vapor is supplied to the Pd alloy film of the filter under the same conditions as in Example 1, and the hydrogen-rich gas that permeates the porous substrate side of the filter. The CO concentration and the flow rate of the hydrogen rich gas were measured. As a result, the CO concentration from the start of reforming to the elapse of 300 hours is as extremely low as 8 to 10 ppm, and the flow rate of the hydrogen rich gas is 10 L / hour. It was confirmed to have excellent durability and hydrogen permeation efficiency.
[0032]
[Example 3]
Production of filters for hydrogen production
In the base formation step, instead of the electroless plating method, except that a Pd alloy film (thickness 0.2 μm) was formed by a sputtering method under the following conditions to form a conductive base layer, the same as in Example 2, A filter for producing hydrogen was produced.
(Sputtering conditions)
・ RF power: 500W
Argon gas pressure: 5.4 × 10-2Pa
DC current: 2.5A
[0033]
Evaluation of filters for hydrogen production
The filter produced as described above is attached to the reformer, and a mixture of butane gas and water vapor is supplied to the Pd alloy film of the filter under the same conditions as in Example 1, and the hydrogen-rich gas that permeates the porous substrate side of the filter. The CO concentration and the flow rate of the hydrogen rich gas were measured. As a result, the CO concentration from the start of reforming to the elapse of 300 hours is as extremely low as 8 to 10 ppm, and the flow rate of the hydrogen rich gas is 10 L / hour. It was confirmed to have excellent durability and hydrogen permeation efficiency.
[0034]
[Example 4]
Production of filters for hydrogen production
As in Example 1, a plurality of through holes were formed in the SUS304 material by etching using the resist pattern as a mask. However, after the etching process was completed, the resist pattern was left on the surface of the SUS304 material without being removed. (End of etching process)
Next, Ni strike plating (thickness 0.2 μm) was performed in the through hole of the SUS304 material under the following conditions.
Figure 0004681201
[0035]
Next, using the resist pattern as a mask, a Pd alloy film (thickness 15 μm) was formed by electroplating under the following conditions so as to close the inside of the through hole. (End of film formation process)
(Deposition conditions of Pd alloy film by electroplating)
Use bath: Pd chloride plating bath (Pd concentration: 12 g / L)
・ PH: 7-8
・ Current density: 1A / dm2
・ Liquid temperature: 40 ℃
Next, the resist pattern on the SUS304 material was removed using a 5% aqueous sodium hydroxide solution. (End of removal process)
After the removal of the resist pattern was completed, the filter was cut to a size of 3 cm × 3 cm to obtain a hydrogen production filter.
[0036]
Evaluation of filters for hydrogen production
The filter produced as described above is attached to the reformer, and a mixture of butane gas and water vapor is supplied to the Pd alloy film of the filter under the same conditions as in Example 1, and the hydrogen-rich gas that permeates the porous substrate side of the filter. The CO concentration and the flow rate of the hydrogen rich gas were measured. As a result, the CO concentration from the start of reforming to the elapse of 300 hours is as extremely low as 8 to 10 ppm, and the flow rate of the hydrogen rich gas is 10 L / hour. It was confirmed to have excellent durability and hydrogen permeation efficiency.
[0037]
[Comparative example]
Production of filters for hydrogen production
In the same manner as in Example 1, a plurality of through holes were formed in the SUS304 material to obtain a conductive substrate. Next, a Pd alloy film having a thickness of 30 μm was bonded to the conductive base material via an adhesive and integrated, and then the adhesive remaining in the through holes of the conductive base material was removed using acetone. This integrated product was cut to a size of 3 cm × 3 cm to obtain a filter for hydrogen production.
[0038]
Evaluation of filters for hydrogen production
The filter produced as described above is attached to the reformer, and a mixture of butane gas and water vapor is supplied to the Pd alloy film of the filter under the same conditions as in Example 1, and the hydrogen-rich gas that permeates the porous substrate side of the filter. The CO concentration and the flow rate of the hydrogen rich gas were measured. As a result, the CO concentration was as low as 8 to 10 ppm and good until 300 hours after the start of reforming, but after 300 hours, the Pd alloy film was caused by the deterioration of the adhesive under high temperature and high pressure conditions. It was confirmed that the CO concentration increased to about 3% due to the occurrence of cracks in the Pd alloy film and the durability was poor.
[0039]
【The invention's effect】
  As detailed above,The hydrogen production filter of the present invention has excellent heat resistance and high temperature and high pressure because the Pd alloy film is firmly fixed and integrated with a conductive substrate having a plurality of through-holes without interposing an adhesive. In addition, the Pd alloy film can be made thin, and even if the Pd alloy film is thinned to increase the hydrogen permeation efficiency, it has excellent durability and workability such as attachment to a reformer. Moreover, the production method of the present invention comprises:Pd alloy film formed by plating is fixed and integrated with a conductive substrate having multiple through holes with high strength, and no adhesive is used, so it has excellent heat resistance and can be used under high temperature and pressure In addition, it is possible to manufacture a hydrogen production filter that is excellent in durability even when the Pd alloy film is thinned to increase the hydrogen permeation efficiency and that is excellent in workability such as mounting on a reformer. .
[Brief description of the drawings]
FIG. 1 is a process diagram showing an embodiment of a method for producing a filter for hydrogen production according to the present invention.
FIG. 2 is a process diagram showing another embodiment of a method for producing a filter for hydrogen production according to the present invention.
FIG. 3 is a process diagram showing another embodiment of a method for producing a filter for hydrogen production according to the present invention.
[Explanation of symbols]
11, 21, 31 ... Filter for hydrogen production
12, 22, 32 ... conductive substrate
13, 23, 33 ... through hole
14 ... Insulating film
15 ... Copper plating layer
16 ... Pd alloy film
24. Resin member
25. Conductive underlayer
26 ... Pd alloy film
34a, 34b ... resist pattern
36 ... Pd alloy film

Claims (5)

複数の貫通孔を有する導電性基材と、各貫通孔内に貫通孔を閉塞するように接着剤を介在させることなく配設された複数のPd合金膜と、を備え、該Pd合金膜は前記導電性基材の表面には位置しないことを特徴とする水素製造用フィルタ。A conductive base material having a plurality of through holes, and a plurality of Pd alloy films disposed without interposing an adhesive so as to close the through holes in each through hole, the Pd alloy film comprising: A filter for hydrogen production, wherein the filter is not located on the surface of the conductive substrate . 複数の貫通孔を有する導電性基材の一方の面に絶縁性フィルムを貼設する貼設工程と、
該絶縁性フィルムを貼設していない前記導電性基材の面に前記貫通孔を埋めるように銅めっき層を形成する銅めっき工程と、
前記絶縁性フィルムを除去した後の導電性基材面にめっきによりPd合金膜を形成する膜形成工程と、
前記銅めっき層を選択エッチングにより除去する除去工程と、を有することを特徴とする水素製造用フィルタの製造方法。
A pasting step of pasting an insulating film on one surface of a conductive substrate having a plurality of through holes;
A copper plating step of forming a copper plating layer so as to fill the through hole in the surface of the conductive base material on which the insulating film is not pasted;
A film forming step of forming a Pd alloy film by plating on the surface of the conductive substrate after removing the insulating film;
And a removing step of removing the copper plating layer by selective etching.
導電性基材の両面に所定のレジストパターンを形成し、該レジストパターンをマスクとして両面から前記導電性基材をエッチングして複数の貫通孔を形成するエッチング工程と、
前記導電性基材の前記貫通孔内を閉塞するように電解めっきによりPd合金膜を形成する膜形成工程と、
前記レジストパターンを除去する除去工程と、を有することを特徴とする水素製造用フィルタの製造方法。
An etching step of forming a predetermined resist pattern on both surfaces of the conductive substrate, and etching the conductive substrate from both surfaces using the resist pattern as a mask to form a plurality of through holes;
A film forming step of forming a Pd alloy film by electrolytic plating so as to close the inside of the through hole of the conductive substrate;
And a removing step of removing the resist pattern.
前記膜形成工程では、まずPd合金を構成する各成分の薄膜を電解めっきにより積層し、その後、熱処理を施して成分拡散によりPd合金膜を形成することを特徴とする請求項3に記載の水素製造用フィルタの製造方法。4. The hydrogen according to claim 3 , wherein in the film formation step, thin films of respective components constituting the Pd alloy are first laminated by electrolytic plating, and then a heat treatment is performed to form a Pd alloy film by component diffusion. A manufacturing method of a manufacturing filter. 前記導電性基材はステンレス基板であることを特徴とする請求項2乃至請求項4のいずれかに記載の水素製造用フィルタの製造方法。The method for producing a filter for hydrogen production according to any one of claims 2 to 4 , wherein the conductive base material is a stainless steel substrate.
JP2002222415A 2002-07-25 2002-07-31 HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD Expired - Fee Related JP4681201B2 (en)

Priority Applications (21)

Application Number Priority Date Filing Date Title
JP2002222415A JP4681201B2 (en) 2002-07-31 2002-07-31 HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD
CNB038014343A CN1290599C (en) 2002-07-25 2003-07-23 Thin film supporting substrate for used in filter for hydrogen production filter and method for manufacturing filter for hydrogen production
CN2008101317348A CN101422704B (en) 2002-07-25 2003-07-23 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US10/491,888 US7112287B2 (en) 2002-07-25 2003-07-23 Thin film supporting substrate for used in filter for hydrogen production filter and method for manufacturing filter for hydrogen production
CN2008101102810A CN101337167B (en) 2002-07-25 2003-07-23 Production method of hydrogen production filter
CN2008101102825A CN101318110B (en) 2002-07-25 2003-07-23 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
CN200510003381XA CN1817421B (en) 2002-07-25 2003-07-23 Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
EP20080007429 EP1946826B1 (en) 2002-07-25 2003-07-23 Production method of hydrogen production filter
CN2008101102806A CN101337166B (en) 2002-07-25 2003-07-23 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
EP20080007427 EP2075052A1 (en) 2002-07-25 2003-07-23 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
EP03771289A EP1541221A4 (en) 2002-07-25 2003-07-23 Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
PCT/JP2003/009330 WO2004011130A1 (en) 2002-07-25 2003-07-23 Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
EP20080007428 EP1972373A1 (en) 2002-07-25 2003-07-23 Production method of hydrogen production filter
CN2008101102793A CN101318109B (en) 2002-07-25 2003-07-23 Production method of hydrogen production filter
US11/304,677 US7399423B2 (en) 2002-07-25 2005-12-16 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US11/401,868 US7241396B2 (en) 2002-07-25 2006-04-12 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US11/697,842 US7803263B2 (en) 2002-07-25 2007-04-09 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US12/124,181 US8043519B2 (en) 2002-07-25 2008-05-21 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US12/124,240 US7744990B2 (en) 2002-07-25 2008-05-21 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US12/831,416 US8163157B2 (en) 2002-07-25 2010-07-07 Method of producing a hydrogen production filter
US13/228,534 US8562847B2 (en) 2002-07-25 2011-09-09 Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222415A JP4681201B2 (en) 2002-07-31 2002-07-31 HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD

Publications (3)

Publication Number Publication Date
JP2004057993A JP2004057993A (en) 2004-02-26
JP2004057993A5 JP2004057993A5 (en) 2006-12-07
JP4681201B2 true JP4681201B2 (en) 2011-05-11

Family

ID=31942440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222415A Expired - Fee Related JP4681201B2 (en) 2002-07-25 2002-07-31 HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP4681201B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043696A1 (en) * 2004-10-20 2006-04-27 Dai Nippon Printing Co., Ltd. Filter for purifying hydrogen and method for manufacture thereof
JP4956231B2 (en) * 2007-03-01 2012-06-20 新光電気工業株式会社 Through-hole filling method
JP6324491B2 (en) * 2014-03-31 2018-05-16 富士フイルム株式会社 Gas separation complex and method for producing the same
JP6359895B2 (en) * 2014-06-27 2018-07-18 東京応化工業株式会社 Membrane filter
JP6460658B2 (en) * 2014-06-27 2019-01-30 東京応化工業株式会社 Membrane filter
US10137665B2 (en) 2016-01-14 2018-11-27 Tokyo Ohka Kogyo Co., Ltd. Method for manufacturing laminate, and laminate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131004A (en) * 1987-11-16 1989-05-23 Sanyo Electric Co Ltd Production of hydrogen-separating membrane
JPH04326931A (en) * 1991-04-25 1992-11-16 Mitsubishi Kakoki Kaisha Ltd Production of hydrogen separation membrane
JPH0553527B2 (en) * 1987-06-26 1993-08-10 Kogyo Gijutsuin
JPH06277472A (en) * 1993-03-31 1994-10-04 Ngk Insulators Ltd Gas separation member and production thereof
JPH10337455A (en) * 1997-06-06 1998-12-22 Mitsubishi Heavy Ind Ltd Production of hydrogen permeable membrane
JPH11104472A (en) * 1997-10-02 1999-04-20 Oputonikusu Seimitsu:Kk Permeable membrane structural body for hydrogen refining, its manufacture and hydrogen refining apparatus using the same
JPH11286785A (en) * 1998-03-31 1999-10-19 Tokyo Gas Co Ltd Hydrogen-permeable membrane and its preparation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553527B2 (en) * 1987-06-26 1993-08-10 Kogyo Gijutsuin
JPH01131004A (en) * 1987-11-16 1989-05-23 Sanyo Electric Co Ltd Production of hydrogen-separating membrane
JPH04326931A (en) * 1991-04-25 1992-11-16 Mitsubishi Kakoki Kaisha Ltd Production of hydrogen separation membrane
JPH06277472A (en) * 1993-03-31 1994-10-04 Ngk Insulators Ltd Gas separation member and production thereof
JPH10337455A (en) * 1997-06-06 1998-12-22 Mitsubishi Heavy Ind Ltd Production of hydrogen permeable membrane
JPH11104472A (en) * 1997-10-02 1999-04-20 Oputonikusu Seimitsu:Kk Permeable membrane structural body for hydrogen refining, its manufacture and hydrogen refining apparatus using the same
JPH11286785A (en) * 1998-03-31 1999-10-19 Tokyo Gas Co Ltd Hydrogen-permeable membrane and its preparation

Also Published As

Publication number Publication date
JP2004057993A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US7803263B2 (en) Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
JP5076502B2 (en) Hydrogen purification filter and method for producing the same
JPWO2006043696A6 (en) Hydrogen purification filter and method for producing the same
JP4714052B2 (en) Hydrogen purification filter and method for producing the same
JP5050411B2 (en) Hydrogen purification filter and method for producing the same
JP4681201B2 (en) HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD
JP5235489B2 (en) Hydrogen permselective membrane and method for producing the same
JP4224272B2 (en) Thin film support substrate used for hydrogen production filter and method for producing hydrogen production filter
JP4714064B2 (en) Method for producing hydrogen purification filter
JP5173931B2 (en) Hydrogen permselective membrane and method for producing the same
JP5061695B2 (en) Hydrogen purification filter and method for producing the same
JP4537685B2 (en) Membrane reactor for hydrogen production
JP2004057866A (en) Method of manufacturing hydrogen producing filter
JP5422982B2 (en) Method for producing hydrogen purification filter
JP2014054631A (en) Hydrogen refining filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R150 Certificate of patent or registration of utility model

Ref document number: 4681201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees