JPH01131004A - Production of hydrogen-separating membrane - Google Patents

Production of hydrogen-separating membrane

Info

Publication number
JPH01131004A
JPH01131004A JP28880787A JP28880787A JPH01131004A JP H01131004 A JPH01131004 A JP H01131004A JP 28880787 A JP28880787 A JP 28880787A JP 28880787 A JP28880787 A JP 28880787A JP H01131004 A JPH01131004 A JP H01131004A
Authority
JP
Japan
Prior art keywords
filler
hydrogen
substrate
alloy layer
void
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28880787A
Other languages
Japanese (ja)
Inventor
Akio Furukawa
明男 古川
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28880787A priority Critical patent/JPH01131004A/en
Publication of JPH01131004A publication Critical patent/JPH01131004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain the title high-performance membrane having thereon a hydrogen-occlusive alloy layer of uniform thickness free from pinholes, by cutting and flattening the surface of a porous air-permeable substrate with the void filled with filler and by forming thereon a hydrogen-occlusive alloy layer followed by dissolving the filler off. CONSTITUTION:The void of a porous air-permeable substrate 1 consisting of e.g., air-permeable stainless steel sintered form having a maximum pore size of ca. 1mu is filled with filler 2 made up of a kind of a heat-resistant polymer (e.g., polyphenylene oxide) to occlude said void followed by cutting and grinding the surface of the substrate 1 to form the flat surface 3. Thence, a hydrogen- occlusive alloy layer 4 consisting of e.g., LaNi5 is uniformly formed on this surface 3 through e.g., the sputterling process so that the thickness of the layer is ca. 1mu followed by dissolving the filler 2 off using a solvent such as toluene, chloroform or nitrobenzene at ca. 60 deg.C, thus obtaining the objective membrane 5.

Description

【発明の詳細な説明】 Uノ 産業上の利用分野 本発明は、高純度の水素elnt製する装置等で用いら
れる水素分離膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a hydrogen separation membrane used in an apparatus for producing high-purity hydrogen.

(I従来の技術 半導体の還元工程等で大量に使用される高純度水素は、
例えば銀・パラジクム合金膜透過法?利用した水素精製
装置によって製造されている。
(I) Conventional technology: High-purity hydrogen, which is used in large quantities in the reduction process of semiconductors, is
For example, silver/palladium alloy membrane permeation method? It is produced using hydrogen purification equipment.

しかし、この装置は銀・パラジウム合金が高価であるこ
と、精製時に400℃以上の高温が必要であることと云
う欠点がある。
However, this device has disadvantages in that the silver-palladium alloy is expensive and that high temperatures of 400° C. or higher are required during purification.

そこで、銀・パラジウム合金に代る安価な水素吸蔵合金
を用いることが考えらn1更に水素精製のプロセス速度
を上げるために、膜厚が薄い水素分離膜が要望された。
Therefore, it was considered to use an inexpensive hydrogen storage alloy instead of the silver-palladium alloy, and in order to further increase the process speed of hydrogen purification, a hydrogen separation membrane with a thin film thickness was desired.

とこ)が、膜厚に0.1〜5μm程度とすると、機械的
強度を呆持するために相持体が必要と成る。
However, if the film thickness is approximately 0.1 to 5 μm, a supporting body is required to maintain mechanical strength.

現状では特開昭62−191402号公報で示されるよ
うに、多孔質で通気性を有する例えば焼結金属基板に、
スパッタ法或いは蒸着法で約30μm程度の厚さで水素
吸蔵台金層を形成していた。
Currently, as shown in Japanese Unexamined Patent Publication No. 191402/1983, for example, a porous and breathable sintered metal substrate,
The hydrogen storage base metal layer was formed to a thickness of about 30 μm by sputtering or vapor deposition.

09  発明が解決しようとする問題点しかし、このも
のは、焼結金属基板の表面に細孔があるので、極めて平
坦性が悪く、この表面に形成さnた水素吸蔵合金層も膜
厚が不均一となり、ピンホールが発生しやすい。
09 Problems to be Solved by the Invention However, in this case, since the surface of the sintered metal substrate has pores, the flatness is extremely poor, and the hydrogen storage alloy layer formed on this surface also has an irregular film thickness. It becomes uniform and pinholes are likely to occur.

本発明は、ピンホールの発生?抑えて水素分離膜の性能
全向上せんとするものである。
Does the present invention cause pinholes? The aim is to improve the performance of hydrogen separation membranes while minimizing the amount of hydrogen separation.

に)問題点?解決するための手段 本発明による解決手段は、多孔質で通気性?有する基板
の空孔部に充填剤全充填して該空孔部全閉塞し、次いで
空孔部を含む基板の表面全切削し、研磨して平坦面に形
成し、次いでこの平坦面上に水素吸蔵合金層を均一に形
成し、この後に上記充填剤を空孔部から溶出除去した構
成である。
) Problem? Solution The solution according to the invention is porous and breathable? The pores of the substrate are completely filled with filler to completely block the pores, the entire surface of the substrate including the pores is cut and polished to form a flat surface, and hydrogen is then applied on the flat surface. The structure is such that a storage alloy layer is uniformly formed, and then the filler is eluted and removed from the pores.

(ホ)作用 即ち、基板表面を充填剤毎切削して研磨すると、基板及
び充填剤により平坦面が形成され、この平坦面上に水素
吸蔵合金層を均一に形成する。
(e) Operation: When the substrate surface is cut and polished along with the filler, a flat surface is formed by the substrate and the filler, and a hydrogen storage alloy layer is uniformly formed on this flat surface.

そして、充填剤のみを適当な溶剤等で除去すると、基板
表面上に平坦に水素吸蔵合金属が残シ、膜厚も均一とな
るので、薄くてもピンホールは発生しにくい。
When only the filler is removed using a suitable solvent, the hydrogen-absorbing metal alloy remains flat on the substrate surface and the film thickness is uniform, so pinholes are less likely to occur even if the film is thin.

(へ)実施例 第1図に基づいて説明すると、例えば最大空孔直径1.
amで通気性を有するステンレス焼結体から成る基板1
に、耐熱性高分子材料の一種であるポリフェニレンオキ
シド全充填剤2として加える。即ち、このポリフェニレ
ンオキシドの飽和トルエン溶液中に基板lt−浸漬し、
全ての空孔部全閉塞すると共に全表面に被覆する。
(f) Example To explain based on FIG. 1, for example, the maximum pore diameter is 1.
Substrate 1 made of a stainless steel sintered body having air permeability at am
Polyphenylene oxide, which is a type of heat-resistant polymeric material, is added as a total filler 2. That is, the substrate is lt-immersed in a saturated toluene solution of this polyphenylene oxide,
All pores are completely closed and the entire surface is coated.

そして、取シ出して乾燥し、この後に基板lの表面を充
填剤2と共に切削し、更に研磨して充填剤2が一部を構
成する平坦面3を形成する。
Then, it is taken out and dried, and then the surface of the substrate 1 is cut together with the filler 2 and further polished to form a flat surface 3 of which the filler 2 forms a part.

次層で、平坦面3上に水素吸蔵合金層4としてランタン
・ニッケル合金(LaN i s、)21μmの厚さで
スパッタ法によって均一に形成する。
As the next layer, a hydrogen storage alloy layer 4 of lanthanum-nickel alloy (LaNiS) is uniformly formed on the flat surface 3 to a thickness of 21 μm by sputtering.

次に、水素吸蔵台金層4が形成さ扛た基板1全、約60
℃に刀n熱さnたトルエン、クロロホルム、ニトロベン
ゼン等の溶剤中で、超音波洗浄し、基板1の空孔部に在
る充填剤2(ポリフェニレンオキシド)を溶出して除去
する。
Next, about 60% of the substrate 1 on which the hydrogen storage base metal layer 4 was formed was removed.
The filler 2 (polyphenylene oxide) present in the pores of the substrate 1 is eluted and removed by ultrasonic cleaning in a solvent such as toluene, chloroform, or nitrobenzene heated to a temperature of 0.degree.

最後に基板l全体をアセトン洗浄し、この後に真空乾燥
する。
Finally, the entire substrate 1 is cleaned with acetone, and then vacuum dried.

かくして、得らfした水素分離膜5は、気密度試験の結
果、ピンホールが存在しないことケ確認さnた。
As a result of the airtightness test, it was confirmed that the hydrogen separation membrane 5 thus obtained had no pinholes.

基板lは、通常の金属焼結体、ガラス、セラミック等も
オリ用できる。
The substrate 1 may be a normal metal sintered body, glass, ceramic, or the like.

水素吸蔵合金層4は、希土類・ニッケル基台金、チタニ
クム基台金、マグネシクム・ニッケル基台金全採用す・
ることもでき、その形成方法は、スパッタ法の他に、イ
オンブレーティング法、蒸着法等も利用できる。
The hydrogen storage alloy layer 4 uses all rare earth/nickel based metals, titanium based metals, and magnesium nickel based metals.
In addition to the sputtering method, ion blating method, vapor deposition method, etc. can also be used for the formation method.

充填剤2は、耐熱性高分子等の樹脂で良く、その除去用
溶剤は採用樹脂に応じて選択する。
The filler 2 may be a resin such as a heat-resistant polymer, and the solvent for its removal is selected depending on the resin used.

因みに、水素分離膜5全不発明方法によって得た場合と
従来方法によって得た場合の比較を次表で示す。
Incidentally, the following table shows a comparison between the hydrogen separation membrane 5 obtained by the completely uninvented method and the case obtained by the conventional method.

(トノ発明の効果 不発明に依nば、基板に多孔質で通気性?有するもの全
周いた場合でも水素吸蔵合金層勿平坦面上に均一に形成
できると共に、基板の通気性を保持できる。このために
形属さnた水素吸蔵合金1−でのピンホールの発生を抑
制、防止して、極めて高性能の水部分111Jil得る
ことができるものである。
(Advantages of the Invention According to the invention, even if the substrate is porous and has air permeability all around it, the hydrogen storage alloy layer can be uniformly formed on a flat surface, and the air permeability of the substrate can be maintained. For this reason, it is possible to suppress and prevent the formation of pinholes in the shaped hydrogen storage alloy 1-, and to obtain an extremely high-performance water portion 111Jil.

【図面の簡単な説明】[Brief explanation of the drawing]

第119)(ロ)し9に)(ホ)は本発明方法を順に示
す断面図である。 1・・・基板、2・・・充填剤、3・・・平坦面、4・
・・水素吸蔵合金層、5・・・水素分離膜。
119)(B) to 9)(E) are sectional views sequentially showing the method of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Filler, 3... Flat surface, 4...
...Hydrogen storage alloy layer, 5...Hydrogen separation membrane.

Claims (1)

【特許請求の範囲】[Claims] (1)多孔質で通気性を有する基板の空孔部に充填剤を
充填して該空孔部を閉塞し、次いで空孔部を含む基板の
表面を切削し、研磨して平坦面に形成し、次いでこの平
坦面上に水素吸蔵台金層を均一に形成し、この後に上記
充填剤を空孔部から溶出除去して成る水素分離膜の製造
方法。
(1) Fill the pores of a porous and breathable substrate with a filler to close the pores, and then cut and polish the surface of the substrate including the pores to form a flat surface. Then, a hydrogen storage base metal layer is uniformly formed on the flat surface, and the filler is then eluted and removed from the pores.
JP28880787A 1987-11-16 1987-11-16 Production of hydrogen-separating membrane Pending JPH01131004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28880787A JPH01131004A (en) 1987-11-16 1987-11-16 Production of hydrogen-separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28880787A JPH01131004A (en) 1987-11-16 1987-11-16 Production of hydrogen-separating membrane

Publications (1)

Publication Number Publication Date
JPH01131004A true JPH01131004A (en) 1989-05-23

Family

ID=17734985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28880787A Pending JPH01131004A (en) 1987-11-16 1987-11-16 Production of hydrogen-separating membrane

Country Status (1)

Country Link
JP (1) JPH01131004A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2253173A (en) * 1991-03-01 1992-09-02 Aerospace Systems & Tech Process for the mechanical treatment of porous sheet materials
US5827569A (en) * 1994-07-29 1998-10-27 Akiyama; Shigeo Hydrogen separation membrane and process for producing the same
WO2004011130A1 (en) * 2002-07-25 2004-02-05 Dai Nippon Insatsu Kabushiki Kaisha Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
JP2004057993A (en) * 2002-07-31 2004-02-26 Dainippon Printing Co Ltd Method of manufacturing hydrogen producing filter
JP2007517655A (en) * 2004-01-09 2007-07-05 ビーピー ピー・エル・シー・ Metal palladium composite membrane or alloy palladium composite membrane and method for producing the same
JP2007229616A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hydrogen separation complex and its manufacturing method
JP2008246317A (en) * 2007-03-29 2008-10-16 Ngk Spark Plug Co Ltd Hydrogen separator and fuel cell
JP2009125632A (en) * 2007-11-21 2009-06-11 Ngk Insulators Ltd Gas separation material and its manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2253173A (en) * 1991-03-01 1992-09-02 Aerospace Systems & Tech Process for the mechanical treatment of porous sheet materials
US5333415A (en) * 1991-03-01 1994-08-02 Aerospace Systems & Technologies Ltd. Process for sealing a perforated web material
US5827569A (en) * 1994-07-29 1998-10-27 Akiyama; Shigeo Hydrogen separation membrane and process for producing the same
EP1946826A1 (en) * 2002-07-25 2008-07-23 Dai Nippon Insatsu Kabushiki Kaisha Production method of hydrogen production filter
WO2004011130A1 (en) * 2002-07-25 2004-02-05 Dai Nippon Insatsu Kabushiki Kaisha Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
US7112287B2 (en) 2002-07-25 2006-09-26 Dai Nippon Insatsu Kabushiki Kaisha Thin film supporting substrate for used in filter for hydrogen production filter and method for manufacturing filter for hydrogen production
US8043519B2 (en) 2002-07-25 2011-10-25 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US7241396B2 (en) 2002-07-25 2007-07-10 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US7803263B2 (en) 2002-07-25 2010-09-28 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US7399423B2 (en) 2002-07-25 2008-07-15 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US7744990B2 (en) 2002-07-25 2010-06-29 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US8562847B2 (en) 2002-07-25 2013-10-22 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US8163157B2 (en) 2002-07-25 2012-04-24 Dai Nippon Insatsu Kabushiki Kaisha Method of producing a hydrogen production filter
JP2004057993A (en) * 2002-07-31 2004-02-26 Dainippon Printing Co Ltd Method of manufacturing hydrogen producing filter
JP4681201B2 (en) * 2002-07-31 2011-05-11 大日本印刷株式会社 HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD
US8052775B2 (en) 2004-01-09 2011-11-08 Bp P.L.C. Process for the preparation of a two-layer metal palladium or palladium alloy composite membrane
JP2007517655A (en) * 2004-01-09 2007-07-05 ビーピー ピー・エル・シー・ Metal palladium composite membrane or alloy palladium composite membrane and method for producing the same
JP2007229616A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hydrogen separation complex and its manufacturing method
JP2008246317A (en) * 2007-03-29 2008-10-16 Ngk Spark Plug Co Ltd Hydrogen separator and fuel cell
JP2009125632A (en) * 2007-11-21 2009-06-11 Ngk Insulators Ltd Gas separation material and its manufacturing method

Similar Documents

Publication Publication Date Title
US4857080A (en) Ultrathin composite metal membranes
KR100547527B1 (en) Hydrogen Permeable Structure and Manufacturing Method Thereof
CN104870080A (en) Hydrogen-releasing film
CA2406207A1 (en) Hydrogen-permeable structure and method for manufacture thereof or repair thereof
JPH01131004A (en) Production of hydrogen-separating membrane
KR101459673B1 (en) Method for manufacturing hydrogen separation membrane having high permselectivity
KR20090092532A (en) Metal Composite Membrane for Hydrogen Separation and Preparation Method thereof
KR101176585B1 (en) Method of Manufacturing Palladium Alloy Hydrogen Separation Membrane
JPS6355973B2 (en)
US4781734A (en) Non-porous hydrogen diffusion membrane and utilization thereof
KR101136853B1 (en) Method for Thin Film Coating of Palladium Alloy on Porous Metal Substrate
JP3645088B2 (en) Hydrogen permeable membrane and method for producing the same
JPH04346824A (en) Hydrogen separating membrane
KR101831151B1 (en) Hydrogen filtering membrane and method of manufacturing the same
CN106714947B (en) Film is discharged in hydrogen
WO2005075060A1 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
JPH02271901A (en) Production of hydrogen separating medium
KR101335623B1 (en) Hydrogen separation membrane and method for producing the same
JP2003135943A (en) Hydrogen separating membrane and method for manufacturing the same
JPH08257376A (en) Method for restoring and stabilizing hydrogen gas transmission capacity of hydrogen separation membrane and hydrogen separator using the same
JPS6071003A (en) Hydrogen gas permeable membrane
JP4178143B2 (en) Hydrogen separation membrane and method for producing the same
JPH02268817A (en) Production of hydrogen separating medium
JP2009291742A (en) Hydrogen permeation member and hydrogen generating reactor using the same
JP2747753B2 (en) Method and apparatus for removing trace impurity gas components in inert gas