JPS6355973B2 - - Google Patents

Info

Publication number
JPS6355973B2
JPS6355973B2 JP54033555A JP3355579A JPS6355973B2 JP S6355973 B2 JPS6355973 B2 JP S6355973B2 JP 54033555 A JP54033555 A JP 54033555A JP 3355579 A JP3355579 A JP 3355579A JP S6355973 B2 JPS6355973 B2 JP S6355973B2
Authority
JP
Japan
Prior art keywords
hydrogen
palladium
filter
hollow fiber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54033555A
Other languages
Japanese (ja)
Other versions
JPS55127124A (en
Inventor
Shunsuke Minami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP3355579A priority Critical patent/JPS55127124A/en
Publication of JPS55127124A publication Critical patent/JPS55127124A/en
Publication of JPS6355973B2 publication Critical patent/JPS6355973B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は透過速度の大きい高純度水素透過性フ
イルター並びに高性能の水素ガス分離装置に関す
るものである。さらに詳しくは多孔質でガス透過
率の大きい支持体上にパラジウム薄膜を形成せし
めて得た水素透過性フイルター及び支持体として
中空繊維を用いて得た水素透過性フイルターから
なる水素ガス分離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-purity hydrogen permeable filter with a high permeation rate and a high-performance hydrogen gas separation device. More specifically, the present invention relates to a hydrogen gas separation device comprising a hydrogen permeable filter obtained by forming a palladium thin film on a porous support with high gas permeability, and a hydrogen permeable filter obtained by using hollow fibers as the support.

水素は有害な酸化や窒化が認められないことか
ら、金属冶金、電子材料製造に近年用いられるよ
うになつているほか、エネルギー源として、ある
いは化学工業用途としても見直されはじめてい
る。
Since hydrogen does not undergo harmful oxidation or nitridation, it has recently been used in metal metallurgy and electronic material manufacturing, and is also being reconsidered as an energy source and for chemical industry applications.

特に高純度の水素製造用にはロール圧延や槌打
ち法で製造したパラジウムホイルを透過して精製
されている。
In particular, for the production of high-purity hydrogen, it is purified by passing through palladium foil produced by roll rolling or hammering.

従来使用されているロール圧延や槌打ち法で製
造したパラジウムホイルは薄くても20μ前後の厚
さであり、フイルターとして重要な水素ガス透過
速度が小であり、大量の超純粋水素の製造には不
適であり、また一方では飽和過電位に達するまで
長い時間を必要とし、水素電極を用いての電位の
迅速な測定が行なえない欠点があつた。また必要
以上のパラジウム金属は高価であり、省資源の観
点からも好ましくない。更にパラジウムホイルは
やや脆く、さらに水素を吸収すると著るしい体積
膨張がありさらに脆くなる欠点があり、このよう
なことから取扱も困難で、広い工業用途に純粋な
水素が必要とされているにも拘らず精製が高価に
なつているため余り使用されていない。
Palladium foil manufactured by conventionally used roll rolling or hammering methods has a thickness of around 20μ at the thinnest, and the hydrogen gas permeation rate, which is important for filters, is low, making it difficult to produce large amounts of ultra-pure hydrogen. On the other hand, it required a long time to reach the saturation overpotential, and had the disadvantage that the potential could not be measured quickly using a hydrogen electrode. Further, palladium metal in excess of the necessary amount is expensive and is not preferred from the viewpoint of resource conservation. Furthermore, palladium foil is somewhat brittle, and when it absorbs hydrogen, it undergoes significant volumetric expansion, making it even more brittle.For these reasons, it is difficult to handle, and pure hydrogen is required for a wide range of industrial applications. However, it is not used much because it has become expensive to purify.

本発明者は、パラジウムホイルを薄くし、かつ
水素の精製を容易ならしめるために鋭意検討し、
パラジウムホイルを単体として用いるのでなく、
新しいフイルターとして、気体透過性を有し、取
扱の容異な有機高分子からなる多孔性支持体上に
薄い蒸着膜を形成せしめることに成功し、この表
面蒸着をされた複合フイルターを水素ガス透過用
フイルターとして使用し、水素ガスの透過速度を
増大せしめると共に、工業的に利用しうる大量の
純粋な水素を製造しうるモジユールを開発するこ
とに成功した。
The inventor of the present invention made extensive studies to make palladium foil thinner and to facilitate the purification of hydrogen.
Rather than using palladium foil alone,
As a new filter, we succeeded in forming a thin vapor-deposited film on a porous support made of organic polymer that has gas permeability and is difficult to handle, and we have created a composite filter with this surface vapor-deposited film for hydrogen gas permeation. We succeeded in developing a module that can be used as a filter to increase the permeation rate of hydrogen gas and to produce large amounts of industrially usable pure hydrogen.

即ち本発明は 1 10%以上の空孔率を有し、水素ガスの透過係
数が20℃において5×10-7(c.c.・cm/cm2,sec・
cmHg)以上を有し、貫通孔の孔径が200Å未
満の有機高分子多孔質中空繊維支持体表面にパ
ラジウム又はパラジウム合金の0.03μ〜15μの厚
さの薄膜を形成させてなる水素透過性フイルタ
ーにあり、さらに 2 1)によつて得られた中空繊維フイルターを
二本以上束ねて両端を固定シールし、原料水素
ガスをフイルター外表面側又はフイルターの内
側から送り、精製水素をフイルターの中空部を
通つた端部から又はフイルター外表面側から得
るようにせしめた水素ガス分離装置にある。
That is, the present invention has a porosity of 110% or more, and a hydrogen gas permeability coefficient of 5×10 -7 (cc・cm/cm 2 , sec・cm) at 20°C.
cmHg) or more, and a hydrogen permeable filter formed by forming a thin film of palladium or palladium alloy with a thickness of 0.03μ to 15μ on the surface of an organic polymer porous hollow fiber support with a through-hole diameter of less than 200Å. In addition, two or more hollow fiber filters obtained in 2 1) are bundled together and fixedly sealed at both ends, raw hydrogen gas is fed from the outer surface of the filter or from the inside of the filter, and purified hydrogen is passed through the hollow part of the filter. Hydrogen gas is obtained from the end of the filter or from the outer surface of the filter.

以下本発明をさらに詳しく説明する。 The present invention will be explained in more detail below.

本発明の特徴の1つは水素透過速度を大きくす
るためパラジウム膜の膜厚を薄くしたことであ
り、膜の強度を維持するため、支持体上に薄膜を
形成させ複合膜としたことである。
One of the features of the present invention is that the thickness of the palladium membrane is reduced in order to increase the hydrogen permeation rate, and in order to maintain the strength of the membrane, a thin film is formed on the support to create a composite membrane. .

支持体としては、強度がありしかもガス透過性
の大きいものを用いる必要がある。本発明者は、
この支持体について検討した結果、空孔率が10%
以上でかつ水素ガスの透過係数が20℃で5×10-7
(c.c.・cm/cm2,sec・cmHg)以上ある有機高分子
多孔質中空繊維を用いることが必要であることを
見出した。
The support must be strong and have high gas permeability. The inventor is
As a result of studying this support, the porosity was 10%.
or more and the permeability coefficient of hydrogen gas is 5×10 -7 at 20℃
(cc·cm/cm 2 , sec·cmHg) or more, it has been found that it is necessary to use an organic polymer porous hollow fiber.

ここに空孔率とは次式で表わされるものであ
る。
Here, the porosity is expressed by the following formula.

空孔率=
支持体単位体積に含まれる空孔の体積/支持体の単位体
積(1) 本発明に用いられる有機高分子多孔質中空繊維
支持体の場合、ガス透過性を大きくするため支持
体内の空孔は連結し合つている必要がある。この
ような支持体の空孔率は、支持体基材に吸収され
ない低粘度液体にフイルターを浸漬し、その浸漬
前後のフイルターの重量変化と、基材および液体
の密度から(1)式により空孔率を求めることが出来
る。又ガス透過率は第1図で示したような膜モジ
ユールによつて求めることが出来る。中空繊維の
場合、ガス透過率が大きいと中空導管内での圧力
損失が大きくなるため中空繊維の長さを一定(20
cm)にして第1図のようにU字状に曲げて両端を
固定し測定した。
Porosity =
Volume of pores included in unit volume of support/unit volume of support (1) In the case of the organic polymer porous hollow fiber support used in the present invention, the pores in the support are They need to be connected. The porosity of such a support can be determined by immersing the filter in a low-viscosity liquid that is not absorbed by the support base material, and calculating the porosity using equation (1) from the weight change of the filter before and after immersion and the density of the base material and liquid. Porosity can be determined. Gas permeability can also be determined by a membrane module as shown in FIG. In the case of hollow fibers, if the gas permeability is high, the pressure loss in the hollow conduit becomes large, so the length of the hollow fibers is kept constant (20
cm), bent it into a U-shape as shown in Figure 1, fixed both ends, and measured.

本発明に用いられる支持体は公知の方法で作る
ことが出来る。たとえば湿式製膜法で得られる半
透膜や中空繊維、溶融成形で得られる中空繊維を
延伸することによつても得ることが出来る。
The support used in the present invention can be produced by a known method. For example, it can also be obtained by stretching a semipermeable membrane or hollow fiber obtained by a wet film forming method, or a hollow fiber obtained by melt molding.

支持体表面に均一でしかも薄いパラジウム膜を
形成させるためには、支持体表面に存在する孔の
孔径が小さいことが必要である。この孔径が200
Åをおえると、パラジウム膜が孔の部分で陥没し
0.03μという薄い膜を作ることは出来ない。この
ような目的に対しては湿式製膜法で得られる半透
膜は効果的支持体となる。即ち該半透膜は一般に
膜表面に薄い緻密層(孔径が小さい)を有し、膜
内部はスポンジ層(孔径が大きい)を有する構造
となるからである。
In order to form a uniform and thin palladium film on the surface of the support, it is necessary that the pores present on the surface of the support have a small pore diameter. This hole diameter is 200
When the palladium film is exposed to Å, it collapses at the hole.
It is not possible to create a film as thin as 0.03μ. For such purposes, semipermeable membranes obtained by wet membrane forming methods serve as effective supports. That is, the semipermeable membrane generally has a structure having a thin dense layer (small pore size) on the membrane surface and a sponge layer (large pore size) inside the membrane.

本発明は支持体として中空繊維を用いるため装
置体積あたりの膜面積を著るしく大きくすること
が出来る。
Since the present invention uses hollow fibers as a support, the membrane area per device volume can be significantly increased.

本発明の多孔質中空繊維の大きさは特に限定さ
れないが、通常内径は10μ以上肉厚は5μ以上であ
る。内径は好ましくは20μ以上が良く、大量のガ
スを処理する場合ガス送入の圧損が経済性を支配
するため太い方が良く、5.0mmφのチユーブ状で
も良い。但し内径が大きくて肉厚が小さいと力学
的に弱くなること、モジユールとした場合表面積
が少なくなることを考えると0.2〜2mmφ程度が
好ましい。肉厚はガスの透過率を支配することに
なるので力的に耐えられるだけ薄い方が好ましい
ので、5μ以上好ましくは8μ以上で、100μ好まし
くは50μ以下であることが好ましい。
The size of the porous hollow fibers of the present invention is not particularly limited, but usually has an inner diameter of 10 μm or more and a wall thickness of 5 μm or more. The inner diameter is preferably 20μ or more, and when processing a large amount of gas, the pressure loss of gas feeding dominates economic efficiency, so the thicker the better, and a tube shape of 5.0 mmφ may also be used. However, considering that if the inner diameter is large and the wall thickness is small, it will become mechanically weak, and if it is made into a module, the surface area will be reduced, a diameter of about 0.2 to 2 mm is preferable. Since the wall thickness controls the gas permeability, it is preferable that it be as thin as possible to withstand force, so it is preferably 5μ or more, preferably 8μ or more, and 100μ or less, preferably 50μ or less.

最近は技術の進歩によつて、不均一構造を有す
る中空繊維を開発され、表面層だけが緻密な膜構
造を有し、内部は多孔質構造を有するものが利用
できる。この場合は肉厚は厚くてもガス透過性の
抵抗とはならず、中空糸の取扱性を基準として良
い。いづれにしても水素透過性を良好に保つため
には支持体としては5×10-7c.c.・cm/cm2,sec,
cmHgより透過率が大きいことが好ましい。良い
蒸着膜を形成させるためには、200Å以上の内表
面に貫通する孔を有さないことが必要である。
Recently, due to advances in technology, hollow fibers with a non-uniform structure have been developed, with only the surface layer having a dense membrane structure and the inside having a porous structure. In this case, even if the wall thickness is thick, it will not be a resistance to gas permeability, and the handleability of the hollow fiber may be used as a criterion. In any case, in order to maintain good hydrogen permeability, the support should be 5×10 -7 cc・cm/cm 2 , sec,
It is preferable that the transmittance is greater than cmHg. In order to form a good deposited film, it is necessary that there be no holes penetrating the inner surface of 200 Å or more.

支持体として使用される有機高分子多孔質中空
繊維の材質は特に制限されるものではなく、セル
ロース、セルロースジアセテート、セルロースト
リアセテート、ポリエチレン、ポリプロピレン、
ポリ4弗化エチレンなどポリ弗素化重合体、ポリ
エステル系のポリエチレンテレフタレート、ポリ
ブチレンテレフタレート、ポリアミド系のナイロ
ン6、ナイロン6,6、ポリアクリロニトリル系
重合体、ポリ塩化ビニル、ポリビニルアルコー
ル、ポリスルフオン、ポリベンヅイミダゾール、
ポリメタフエニレンイソフタルアミドなど耐熱性
重合体など市販の高分子材料を利用した中空繊維
を利用出来る。超純粋な水素を得るためには1%
以上(重量当り)の揮発性低分子化合物を含まな
いことが好ましい。
The material of the organic polymer porous hollow fiber used as the support is not particularly limited, and may include cellulose, cellulose diacetate, cellulose triacetate, polyethylene, polypropylene,
Polyfluorinated polymers such as polytetrafluoroethylene, polyester-based polyethylene terephthalate, polybutylene terephthalate, polyamide-based nylon 6, nylon 6,6, polyacrylonitrile-based polymers, polyvinyl chloride, polyvinyl alcohol, polysulfon, polyben Duimidazole,
Hollow fibers made of commercially available polymeric materials such as heat-resistant polymers such as polymetaphenylene isophthalamide can be used. 1% to obtain ultra-pure hydrogen
It is preferable that the amount of volatile low molecular weight compounds (per weight) not included.

中空繊維の製造法には特に限定されることはな
く、ガス透過率が5×10-7c.c.・cm/cm2,sec,cm
Hg以上あれば良い。
There are no particular limitations on the manufacturing method of hollow fibers, and gas permeability of 5×10 -7 cc・cm/cm 2 , sec, cm
It is good if it is Hg or more.

次にこれらの支持体へのパラジウム薄膜の形成
法について説明する。
Next, a method for forming a palladium thin film on these supports will be explained.

均一で薄に膜を形成させるためには公知の真空
蒸着法を用いることが出来る。電子ビーム蒸着
法、抵抗加熱蒸着法、高周波加熱蒸着法などであ
る。即ち支持体およびパラジウム又はパラジウム
合金を真空蒸着室に入れ、真空にした後金属をそ
の融点近傍まで加熱することによつて蒸発した金
属は、支持体表面に均一に付着し、薄膜を形成す
る。薄膜の厚さは、真空度、金属に温度及び蒸着
時間によつて決められる。水素透過速度及び薄膜
の均一性、ピンホール等無欠陥等から薄膜の厚み
は0.03〜15μが有用である。
In order to form a uniform and thin film, a known vacuum evaporation method can be used. These methods include electron beam evaporation, resistance heating evaporation, and high frequency heating evaporation. That is, the support and palladium or palladium alloy are placed in a vacuum evaporation chamber, evacuated, and then the metal is heated to near its melting point, whereby the evaporated metal uniformly adheres to the surface of the support and forms a thin film. The thickness of the thin film is determined by the degree of vacuum, the temperature of the metal, and the deposition time. A thickness of 0.03 to 15 μm is useful for the thin film in view of hydrogen permeation rate, uniformity of the thin film, absence of defects such as pinholes, etc.

中空繊維の場合蒸着することによつて強度は重
要なフアクターではなくなり、膜厚を著るしく薄
くすることが可能であり、ピンホールの発性を防
止出来る最小の厚みで良く、300Å以上あれば良
い。蒸着膜厚が厚くなりすぎると中空繊維表面か
らの剥離が生ずるため欠陥となり易く、また目的
とする透過性の向上、経済性の向上には不利とな
るので、15μ以下が好ましい。
In the case of hollow fibers, by vapor deposition, strength is no longer an important factor, and the film thickness can be made significantly thinner, and the minimum thickness that can prevent the occurrence of pinholes is sufficient, as long as it is 300 Å or more. good. If the thickness of the deposited film becomes too thick, peeling from the surface of the hollow fiber will occur, which will easily result in defects, and will be disadvantageous to the desired improvement in permeability and economical efficiency, so it is preferably 15 μm or less.

蒸着には支持体中の不純物としての揮発性ガス
を除去することが必要で、あらかじめ別の装置を
用いて真空乾燥することが好ましいが、少量の場
合は蒸着装置で行なつても良い。蒸着の真空度は
蒸着膜厚によつて多小変えても良いが、少なくと
も1×10-5Torr以上の真空度が必要である。好
ましくは5×10-6Torr程度が均一な膜を与える。
支持体の温度は通常70℃以下常温以上が好まし
い。
For vapor deposition, it is necessary to remove volatile gases as impurities in the support, and it is preferable to perform vacuum drying in advance using a separate device, but in the case of a small amount, a vapor deposition device may be used. The degree of vacuum during vapor deposition may be varied depending on the thickness of the deposited film, but it is necessary to have a degree of vacuum of at least 1×10 −5 Torr or higher. Preferably, a pressure of about 5×10 −6 Torr provides a uniform film.
The temperature of the support is usually 70° C. or lower and preferably room temperature or higher.

中空繊維の蒸着にあたつては、パラジウム又は
その合金は比較的高い真空度を必要とし通常蒸着
粒子が中空繊維の裏側まで廻り込まないために、
2回蒸着を繰返えすか、同時に2極以上の蒸着用
金属の蒸発源を有する装置を用いたり、蒸着室内
で中空糸を回転させることが好ましい。蒸着用の
金属としてはパラジウムおよびパラジウム合金を
使用出来る。
When depositing hollow fibers, palladium or its alloys require a relatively high degree of vacuum, and the deposition particles usually do not go around to the back side of the hollow fibers.
It is preferable to repeat the vapor deposition twice, to use an apparatus having two or more metal evaporation sources at the same time, or to rotate the hollow fiber within the vapor deposition chamber. Palladium and palladium alloys can be used as metals for deposition.

ここにパラジウム合金とは例えばパラジウムと
銀等で、水素を透過するものはパラジウムの部分
であるから、必ずしもパラジウム単独である必要
はなく、パラジウム合金も本発明で利用出来るの
である。
Here, the palladium alloy is, for example, palladium and silver, and since it is the palladium portion that permeates hydrogen, it is not necessarily necessary to use palladium alone, and palladium alloys can also be used in the present invention.

次に中空繊維状水素透過フイルターを利用した
ガス分離装置について説明する。
Next, a gas separation device using a hollow fibrous hydrogen permeable filter will be explained.

第1,2図は本装置の概念図である。第1図は
パラジウム薄膜を表面に有する中空糸4をU字状
に曲げ両端部を接着剤で6に固定し、容器3に入
れたものである。接着部6は精製ガスと粗製ガス
を分離する役目もする。即ち2又は5より粗製水
素ガスを送り中空糸4の外壁と接触させる。中空
糸膜を透過し精製された水素ガス7は8から取り
出すことが出来る。被処理ガスは5又は1より外
部へ放出される。第2図の場合は、中空糸を平行
に並べ中空糸の開口部を2ケ所にして接着固定し
た場合で、この場合は中空糸の内壁側へ粗製ガス
を送り、外壁部より精製水素を取り出す場合であ
る。粗製ガス側と精製ガス側とで圧力差を設ける
とさらに有効である。本装置により小型のモジユ
ールで大量の精製水素を得ることが出来る。
Figures 1 and 2 are conceptual diagrams of this device. In FIG. 1, a hollow fiber 4 having a palladium thin film on its surface is bent into a U-shape, both ends are fixed to 6 with adhesive, and the fiber is placed in a container 3. The adhesive part 6 also serves to separate purified gas and crude gas. That is, crude hydrogen gas is sent from 2 or 5 and brought into contact with the outer wall of the hollow fiber 4. Hydrogen gas 7 that has passed through the hollow fiber membrane and been purified can be taken out from 8. The gas to be treated is discharged to the outside from 5 or 1. In the case shown in Figure 2, the hollow fibers are arranged in parallel and the openings of the hollow fibers are made in two places and fixed with adhesive. In this case, crude gas is sent to the inner wall of the hollow fiber, and purified hydrogen is taken out from the outer wall. This is the case. It is even more effective to provide a pressure difference between the crude gas side and the purified gas side. With this device, a large amount of purified hydrogen can be obtained with a small module.

以下に実施例をもつて詳細に説明する。 A detailed explanation will be given below using examples.

実施例 1 ポリプロピレンを原料とする中空繊維を溶融紡
糸法で製造し延伸して多孔質中空繊維を得た。中
空繊維の形状は外径200μ、内径160μであり、こ
の中空繊維のガス透過係数は水素ガスの場合20℃
で3.4×10-5c.c.・cm/cm2,sec,cmHgであり、空
孔率は40%であり、エタノール中でのバルブポイ
ント法による最大孔径は190Åであつた。
Example 1 Hollow fibers made from polypropylene were produced by a melt spinning method and stretched to obtain porous hollow fibers. The shape of the hollow fiber is 200μ in outer diameter and 160μ in inner diameter, and the gas permeability coefficient of this hollow fiber is 20℃ for hydrogen gas.
The porosity was 40%, and the maximum pore diameter measured by the bulb point method in ethanol was 190 Å.

この中空繊維にパラジウムを抵抗加熱蒸着法で
蒸着中真空度を6×10-6Torrに維持し、蒸着膜
の厚さが300オングストローム、500オングストロ
ーム、1000オングストロームになるように時間を
変えて蒸着した。なお蒸着は中空繊維を中心に保
ち、移動させつつ上下から同時に蒸着した。
Palladium was deposited onto this hollow fiber using a resistance heating evaporation method, maintaining the degree of vacuum at 6 × 10 -6 Torr during deposition, and varying the time so that the thickness of the deposited film was 300 angstroms, 500 angstroms, and 1000 angstroms. . The vapor deposition was carried out simultaneously from above and below while keeping the hollow fiber in the center and moving it.

このようにして得られたパラジウム蒸着中空繊
維の各々について、長さ25cmに切断したもの10本
を束ねその両端をエポキシ系接着剤で接着し第1
図に示すようなモジユールを試作した。外表面積
は12.56cm2となる。このモジユールに外側から水
素ガスボンベから得たガスと空気を1:1に混合
して流し込み、水素電極に導いた。電池は白金黒
付白金電極と、甘汞電極で構成し、0.2Mフター
ル酸水素カリウムと0.2N塩酸のPH緩衝溶液を用
いた。水素電極にモジユールを通して精製した水
素ガスを通じたところ、いずれのモジユールの場
合も数秒後に電池の起電力は平衡値に達した。こ
れにより水素ガスは精製され、優れたガス分離性
と透過性が確認された。
Each of the palladium-deposited hollow fibers thus obtained was cut to a length of 25 cm, and 10 fibers were bundled and both ends were glued with epoxy adhesive.
We prototyped a module as shown in the figure. The outer surface area will be 12.56 cm 2 . A 1:1 mixture of gas and air obtained from a hydrogen gas cylinder was poured into this module from the outside and led to the hydrogen electrode. The battery was composed of a platinum electrode with black platinum and a molten metal electrode, and a PH buffer solution of 0.2M potassium hydrogen phthalate and 0.2N hydrochloric acid was used. When purified hydrogen gas was passed through the module to the hydrogen electrode, the electromotive force of the cell reached an equilibrium value after a few seconds for all modules. As a result, hydrogen gas was purified, and excellent gas separation and permeability were confirmed.

実施例 2 アクリロニトリル共重合体からなる中空繊維を
乾湿式紡糸法で得た。中空繊維の内径は180μ、
膜厚は80μであつた。この中空糸の断面を電子顕
微鏡で観察すると、外壁部には膜厚0.2μ以下の緻
密層が存在し、この緻密層には200Å以上の孔径
を有する孔は存在しなかつた。一方、緻密層以外
の膜内部には孔径0.1〜10μの空孔が多数存在して
いた。この膜の空孔率は65%で水素ガス透過係数
は5.3×10-4(c.c.・cm/cm2・sec・cmHg)であつ
た。抵抗加熱蒸着法で真空度を5×10-6Torrに
維持しつつ、この膜の緻密層側表面にパラジウム
―銀合金(銀の含量は50%以下)を、蒸着膜の厚
さが500Åになるように蒸着した。得られたパラ
ジウム薄膜コート中空繊維を用いて、実施例1と
同様にモジユールを作成(有効長;15cm,10本,
膜外表面積;16.0cm2)し、実施例1と同様にし
て、電池の起電力を測定したところ、起電力は
7.3秒後に平衡値に達した。水素ガスが短時間に
精製され、優れたガス分離性と透過性が確認され
た。
Example 2 Hollow fibers made of an acrylonitrile copolymer were obtained by a wet-dry spinning method. The inner diameter of the hollow fiber is 180μ,
The film thickness was 80μ. When the cross section of this hollow fiber was observed with an electron microscope, a dense layer with a thickness of 0.2 μm or less was present on the outer wall, and no pores with a pore diameter of 200 Å or more were present in this dense layer. On the other hand, there were many pores with a pore size of 0.1 to 10 μm inside the membrane other than the dense layer. The porosity of this membrane was 65%, and the hydrogen gas permeability coefficient was 5.3×10 -4 (cc·cm/cm 2 ·sec·cmHg). While maintaining the degree of vacuum at 5 × 10 -6 Torr using resistance heating evaporation method, palladium-silver alloy (silver content is 50% or less) is deposited on the surface of the dense layer side of this film until the thickness of the evaporated film is 500 Å. It was deposited so that Using the obtained palladium thin film coated hollow fibers, modules were prepared in the same manner as in Example 1 (effective length: 15 cm, 10 fibers,
Membrane outer surface area: 16.0 cm 2 ), and the electromotive force of the battery was measured in the same manner as in Example 1, and the electromotive force was
Equilibrium value was reached after 7.3 seconds. Hydrogen gas was purified in a short time, and excellent gas separation and permeability were confirmed.

比較例 1 ポリプロピレンを用いて中空繊維に溶融紡糸
し、アニール処理後室温で1.2倍延伸し、次いで
140℃で熱延伸して全延伸倍率を2.0倍とし、これ
を145℃で熱セツトした。得られた多孔質ポリプ
ロピレン中空繊維は内径200μ、膜厚25μで、膜厚
方向に均一に開孔しており、水銀圧入法で測定し
た平均孔径は1200Å、空孔率は43%、水素ガスの
透過係数は20℃で1.5×10-3c.c..cm/cm2.sec.cmH
gであつた。この中空繊維を用いた以外は実施例
1と同様にしてパラジウムを、各々500Å、1000
Å、2000Åの膜厚になるように真空蒸着した。
Comparative Example 1 Polypropylene was melt-spun into hollow fibers, and after annealing, it was stretched 1.2 times at room temperature, and then
It was hot stretched at 140°C to give a total stretching ratio of 2.0 times, and then heat set at 145°C. The obtained porous polypropylene hollow fibers have an inner diameter of 200μ, a film thickness of 25μ, and pores are uniformly opened in the film thickness direction.The average pore diameter measured by mercury intrusion method is 1200Å, the porosity is 43%, and the hydrogen gas The permeability coefficient is 1.5×10 -3 cc at 20℃. cm/ cm2 . sec.cmH
It was hot at g. Palladium was deposited at 500 Å and 1000 Å in the same manner as in Example 1 except that this hollow fiber was used.
Vacuum deposition was performed to a film thickness of 2000 Å.

得られたパラジウム薄膜被覆中空繊維を用いて
実施例1と同様にしてモジユールを作成し、実施
例1と同様にして電池の起電力が平衡値に達する
迄の時間を測定したところ、膜厚500Åのもので
32秒、1000Åのもので27秒、2000Åのもので23秒
と遅く、本願発明のフイルターに比べて劣るもの
であつた。
A module was made in the same manner as in Example 1 using the obtained hollow fiber coated with a palladium thin film, and the time taken for the electromotive force of the battery to reach an equilibrium value was measured in the same manner as in Example 1. It was found that the film thickness was 500 Å. It belongs to
The filters were 32 seconds long, 27 seconds for the 1000 Å filter, and 23 seconds for the 2000 Å filter, which were inferior to the filter of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は中空状水素過フイルタ
ーを用いたモジユールの正面概念図である。 1…水素含有粗製ガス、2…ガス導入口、3…
モジユール外筒、4…パラジウム蒸着中空糸、5
…ガス排出口、6…中空糸接着部、7…純粋水素
ガス、8…純粋ガス出口。
FIGS. 1 and 2 are conceptual front views of a module using a hollow hydrogen filter. 1...Hydrogen-containing crude gas, 2...Gas inlet, 3...
Module outer cylinder, 4... Palladium vapor-deposited hollow fiber, 5
...Gas outlet, 6...Hollow fiber bonding part, 7...Pure hydrogen gas, 8...Pure gas outlet.

Claims (1)

【特許請求の範囲】 1 10%以上の空孔率を有し、水素ガスの透過係
数が20℃において5×10-7(c.c.・cm/cm2・sec・cm
Hg)以上を有し、貫通孔の孔径が200Å未満の
有機高分子多孔質中空繊維支持体表面にパラジウ
ム又はパラジウム合金の0.03μ〜15μの厚さの薄膜
を形成させてなる水素透過性フイルター。 2 10%以上の空孔率を有し、水素ガスの透過係
数が20℃において5×10-7(c.c.・cm/cm2・sec・cm
Hg)以上を有し、貫通孔の孔径が200Å未満の有
機高分子多孔質中空繊維の表面にパラジウム又は
パラジウム合金の0.03μ〜15μの厚さの膜を形成さ
せてなる水素透過性フイルターを二本以上束ねて
両端を固定シールし、原料水素ガスをフイルター
外表面側又はフイルターの内面から送り、精製水
素をフイルターの中空部を通つた端部から又はフ
イルター外表面側から得るようにせしめたガス分
離装置。
[Claims] 1. Has a porosity of 10% or more, and has a hydrogen gas permeability coefficient of 5×10 -7 (cc・cm/cm 2・sec・cm
A hydrogen-permeable filter comprising a thin film of palladium or a palladium alloy having a thickness of 0.03 to 15 μ and formed on the surface of an organic polymer porous hollow fiber support having a through-hole diameter of less than 200 Å. 2 It has a porosity of 10% or more, and the hydrogen gas permeability coefficient is 5×10 -7 (cc・cm/cm 2・sec・cm
A hydrogen permeable filter is made by forming a membrane of palladium or palladium alloy with a thickness of 0.03μ to 15μ on the surface of an organic polymer porous hollow fiber with a through-hole diameter of less than 200 Å. Gas that is made to bundle two or more bottles and securely seal both ends so that raw hydrogen gas is sent from the outer surface of the filter or the inner surface of the filter, and purified hydrogen is obtained from the end passing through the hollow part of the filter or from the outer surface of the filter. Separation device.
JP3355579A 1979-03-22 1979-03-22 Hydrogen permeable combined filter and hydrogen gas separator Granted JPS55127124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355579A JPS55127124A (en) 1979-03-22 1979-03-22 Hydrogen permeable combined filter and hydrogen gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355579A JPS55127124A (en) 1979-03-22 1979-03-22 Hydrogen permeable combined filter and hydrogen gas separator

Publications (2)

Publication Number Publication Date
JPS55127124A JPS55127124A (en) 1980-10-01
JPS6355973B2 true JPS6355973B2 (en) 1988-11-07

Family

ID=12389793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355579A Granted JPS55127124A (en) 1979-03-22 1979-03-22 Hydrogen permeable combined filter and hydrogen gas separator

Country Status (1)

Country Link
JP (1) JPS55127124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143068A (en) * 2014-06-16 2017-08-17 日東電工株式会社 Hydrogen discharging method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166342A (en) * 1981-03-31 1982-10-13 Toyobo Co Ltd Porous glass fiber
JPS588510A (en) * 1981-07-09 1983-01-18 Toyobo Co Ltd Composite membrane for separating gas
DE3332346A1 (en) * 1983-09-08 1985-04-04 Kernforschungsanlage Jülich GmbH, 5170 Jülich HYDROGEN PERMEATION WALL, METHOD FOR PRODUCING THE SAME AND THE USE THEREOF
JPS6161612A (en) * 1984-08-31 1986-03-29 Japan Goatetsukusu Kk Selective gas permeable material
US4734106A (en) * 1985-05-08 1988-03-29 A/G Technology Corporation Gas separating
USRE33502E (en) * 1985-05-08 1990-12-25 A/G Technology Corporation Gas separating
US8496837B2 (en) 2007-04-05 2013-07-30 Department Of Biotechnology Reactor for reductive conversion reactions using palladized bacterial cellulose
KR101763609B1 (en) * 2014-08-13 2017-08-02 한국과학기술연구원 Palladium deposited separation membrane having PBI based membrane support and method for preparing the same
CN104261348B (en) * 2014-10-14 2016-08-17 陈崇文 Metal palladium-based composite membrane hydrogen separation device
WO2017104569A1 (en) * 2015-12-14 2017-06-22 日東電工株式会社 Support for forming hydrogen discharge film, and laminated hydrogen discharge film
WO2017104570A1 (en) * 2015-12-14 2017-06-22 日東電工株式会社 Support for forming hydrogen discharge film, and laminated hydrogen discharge film
JP6490182B1 (en) * 2017-12-12 2019-03-27 株式会社飯島機械製作所 Hydrogen gas separator
JP7081824B2 (en) * 2019-02-26 2022-06-07 株式会社飯島機械製作所 Hydrogen gas separator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055965A (en) * 1973-09-19 1975-05-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055965A (en) * 1973-09-19 1975-05-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143068A (en) * 2014-06-16 2017-08-17 日東電工株式会社 Hydrogen discharging method

Also Published As

Publication number Publication date
JPS55127124A (en) 1980-10-01

Similar Documents

Publication Publication Date Title
JPS6355973B2 (en)
US3350846A (en) Separation of hydrogen by permeation
JPH0470046B2 (en)
JPH04227036A (en) Air take-in system for furnace of residence
US5045357A (en) Process for preparing a membranous gas separator
WO2018221684A1 (en) Gas separation membrane, gas separation membrane element, gas separator, and gas separation method
JP2016089197A (en) Base material for alkali water electrolysis diaphragm
JPH07112533B2 (en) Method for producing ceramic porous membrane
EP0436720B1 (en) Hydrolyzed membrane and process for its production
JP2002066280A (en) Gas separation filter and method for manufacturing the same
JPH07275676A (en) Multiple membrane,its preparation and method of application
JPH038816B2 (en)
CN113195079A (en) Power generation system
JPH0260370B2 (en)
JPWO2005068058A1 (en) Hydrogen or helium permeable membrane, storage membrane and method of forming the same
Kuraoka et al. High-selectivity, high-flexibility glass hollow-fiber membrane for gas separation
US5320754A (en) Pan composite membranes
JPS5815483B2 (en) Method for forming asymmetric composite membrane
WO2020122151A1 (en) Power generation system
JP2706783B2 (en) Membrane gas separator
JP5781946B2 (en) Structure containing high aspect ratio molecular structure and method for producing the same
JPS61408A (en) Hollow yarn composite membrane
JPS59102419A (en) Material for filtration and its manufacture
JP2003210951A (en) Hydrogen separation filter, its manufacturing method and hydrogen concentrator
JP3218101B2 (en) Semipermeable membrane for separating organic matter and method for producing the same