JPS6071003A - Hydrogen gas permeable membrane - Google Patents

Hydrogen gas permeable membrane

Info

Publication number
JPS6071003A
JPS6071003A JP18140183A JP18140183A JPS6071003A JP S6071003 A JPS6071003 A JP S6071003A JP 18140183 A JP18140183 A JP 18140183A JP 18140183 A JP18140183 A JP 18140183A JP S6071003 A JPS6071003 A JP S6071003A
Authority
JP
Japan
Prior art keywords
membrane
hydrogen gas
metal hydride
film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18140183A
Other languages
Japanese (ja)
Other versions
JPS642407B2 (en
Inventor
Shigemasa Kawai
河合 重征
Yasushi Nakada
泰詩 中田
Yoshiyuki Fukumoto
福本 義行
Kazu Yamanaka
山中 計
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP18140183A priority Critical patent/JPS6071003A/en
Publication of JPS6071003A publication Critical patent/JPS6071003A/en
Publication of JPS642407B2 publication Critical patent/JPS642407B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To prevent the deterioration of a laminated membrane, by supplying hydrogen gas to the stock material side of a laminated membrane while reducing the pressure in the permeation side thereof, and occluding the hydrogen gas with the metal hydride membrane of the laminated membrane to prevent the metal hydride membrane from containing moisture. CONSTITUTION:As metal hydride, one having hydrogen equilibrium decomposition pressure of about 1-10kg/cm<2> in the vicinity of a room temp. is pref. from a practical aspect and a rare earth element-Ni type alloy can be used. A metal hydride membrane can be usually formed by a vacuum vapor deposition method, a sputtering method or an ion beam method. In a hydrogen permeable membrane, metal oxide 2 is exposed in a stock material side 1 and a base plate comprising a high-molecular polymer membrane 5 is laminated between metal oxide 2 and the metal hydride membrane 4 in a permeation side 3. This membrane is arranged so that the metal oxide membrane is positioned in the stock material side remote from the metal hydride membrane.

Description

【発明の詳細な説明】 本発明は選択的に水素ガスを透過させる透過膜に関し、
詳しくは、金属水素化物を利用した水素ガス透過膜に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permeable membrane that selectively permeates hydrogen gas,
Specifically, the present invention relates to a hydrogen gas permeable membrane using metal hydride.

一般に水素ガスは炭化水素やアンモニアの分解、或いは
水の電気分解等によって工業的に製造されているが、か
かる水素ガスは不純物ガスとしてヘリウム、アルゴン等
の不活性ガスのほか、酸素、水、窒素、−酸化炭素、二
酸化炭素、二酸化イオウ、窒素酸化物、メタン等を含有
しているため、例えば、半導体工業、金属処理工業或い
は機器分析等の分野においては、上記の和製水素ガスを
精製した後に使用している。
Hydrogen gas is generally produced industrially by decomposition of hydrocarbons and ammonia, or water electrolysis, but such hydrogen gas contains impurity gases such as inert gases such as helium and argon, as well as oxygen, water, and nitrogen. , -Contains carbon oxide, carbon dioxide, sulfur dioxide, nitrogen oxide, methane, etc., so for example, in the semiconductor industry, metal processing industry, or instrumental analysis field, after the above Japanese hydrogen gas is purified. I am using it.

このような水素ガスを精製するための方法として、例え
ば、パラジウム合金からなる薄膜に加圧加熱下に水素ガ
スを供給し、水素ガスを選択的に透過させて水素ガスを
精製する方法が知られている。しかし、この方法によれ
ば、合金自体が非常に高価であるうえに、高温で水素ガ
スを処理する必要があるので、所要エネルギー費用もま
た高価であり、更に、パラジウム合金膜が耐久性に劣る
難点がある。
As a method for purifying such hydrogen gas, for example, a method is known in which hydrogen gas is supplied to a thin film made of a palladium alloy under pressure and heat, and the hydrogen gas is selectively permeated to purify hydrogen gas. ing. However, according to this method, the alloy itself is very expensive, the required energy cost is also high because it is necessary to process hydrogen gas at high temperature, and furthermore, the palladium alloy film has poor durability. There are some difficulties.

一方、近年、ある種の金属又は合金が水素ガスを選択的
に吸蔵して金属水素化物を形成し、また、この金属水素
化物が可逆的に水素を放出する特性を利用した水素ガス
精製が提案されるに至っている。かかる目的に使用し得
る金属水素化物薄膜として、例えば基板上に金属水素化
物の薄膜を蒸着させてなるものが提案されているが(特
開昭58−27976号公報)、シかし、市販の通常の
水素ガスは種々の不純物、特に、水を4.0 ppm程
度、酸素をs ppm程度含有するので、金属水素化物
として例えば希土類元素系合金、マグネシウム系合金、
鉄系合金等を使用した場合、これらの金属水素化物は酸
素及び水の存在下に酸化されで劣化するので、金属水素
化物!膜の水素透過能力、従って、得られる水素ガスの
精製度も経時的に低下する。
On the other hand, in recent years, it has been proposed that certain metals or alloys selectively absorb hydrogen gas to form metal hydrides, and that hydrogen gas purification has been proposed that takes advantage of the properties of these metal hydrides to reversibly release hydrogen. It has come to be. As a metal hydride thin film that can be used for this purpose, for example, a thin film of metal hydride deposited on a substrate has been proposed (Japanese Unexamined Patent Publication No. 58-27976), but commercially available Ordinary hydrogen gas contains various impurities, especially about 4.0 ppm of water and about s ppm of oxygen, so metal hydrides such as rare earth alloys, magnesium alloys, etc.
When using iron-based alloys, these metal hydrides are oxidized and degraded in the presence of oxygen and water, so metal hydrides! The hydrogen permeability of the membrane, and therefore the degree of purification of the resulting hydrogen gas, also decreases over time.

本発明は水素ガス透過膜における上記した問題を解決す
るためになされたものであって、金属水素化物が劣化せ
ず、従って、水素ガスの透過性能と水素ガス精製能力が
区期間にわたって安定である水素ガス透過膜を提供する
ことを目的とする。
The present invention was made in order to solve the above-mentioned problems in hydrogen gas permeable membranes, and the metal hydride does not deteriorate, so the hydrogen gas permeation performance and hydrogen gas purification ability are stable over a period of time. The purpose is to provide a hydrogen gas permeable membrane.

本発明は、原料側より透過側へ選択的に水素ガスを透過
させる透過膜において、この透過膜が水素透過性を有す
る高分子重合体膜と、水素透過性と共に防湿性を有する
金属酸化物膜と、水素を選択的に吸蔵し得る金属水素化
物膜とからなる積層膜であって、上記金属水素化物膜よ
りも原料側に上記金属酸化物膜が設けられていることを
特徴とする。
The present invention provides a permeable membrane that selectively permeates hydrogen gas from the raw material side to the permeate side. and a metal hydride film capable of selectively absorbing hydrogen, characterized in that the metal oxide film is provided closer to the raw material than the metal hydride film.

本発明の水素ガス透過膜において、基板として用いる高
分子重合体膜は、(多連する金属酸化物膜及び金属水素
化物膜の支持体であり、積層膜からなる本発明の透過膜
に強度や柔軟性を付与しくMると共に、水素透過性を有
することが必要であり、特に常温におけるガス透過係数
が10= cJ (STP )・cm / cJ・秒・
cm)1g以上であるものが好ましい。
In the hydrogen gas permeable membrane of the present invention, the polymer membrane used as the substrate is a support for multiple metal oxide membranes and metal hydride membranes, and the permeable membrane of the present invention consisting of a laminated membrane has strength and In addition to imparting flexibility, it is necessary to have hydrogen permeability, and in particular, the gas permeability coefficient at room temperature is 10 = cJ (STP) cm / cJ seconds.
cm) is preferably 1 g or more.

従って、好ましい具体例として天然ゴム、ポリ(4−メ
チルペンテン−1)、ポリジメチルシロキサン、エチル
セルロース等を挙げることができる。また、多孔性樹脂
膜、例えば、ポリテトラフルオロエチレンやポリプロピ
レンからなる多孔性膜も好ましい具体例である。
Therefore, preferred specific examples include natural rubber, poly(4-methylpentene-1), polydimethylsiloxane, and ethyl cellulose. Further, a porous resin film, such as a porous film made of polytetrafluoroethylene or polypropylene, is also a preferred example.

また、水素ガス透過性を有すると共に防湿性を有する金
属酸化物膜としては、例えば酸化マグネシウム膜が好適
である。このような酸化マグネシウム膜は既に知られて
いるように、減圧酸素雰囲気下に金属マグネシウムを加
熱蒸発させ、基板又は後述する金属水素化物膜上に真空
蒸着させることにより得られる。膜厚は0.01〜0.
5μmが好ましい。膜厚が0.01μmよりも薄いとき
は、一様な連続膜を形成し難いために防湿性が低下する
ので好ましくない。しかし、0.5μmよりも厚いとき
は、膜が柔軟性に欠けるようになり、割れが発生するの
で好ましくない。
Further, as the metal oxide film having hydrogen gas permeability and moisture resistance, for example, a magnesium oxide film is suitable. As is already known, such a magnesium oxide film can be obtained by heating and evaporating metal magnesium in a reduced pressure oxygen atmosphere and vacuum depositing it on a substrate or a metal hydride film to be described later. The film thickness is 0.01~0.
5 μm is preferred. When the film thickness is thinner than 0.01 μm, it is not preferable because it is difficult to form a uniform continuous film and the moisture proofing property decreases. However, when it is thicker than 0.5 μm, the film becomes inflexible and cracks occur, which is not preferable.

金属水素化物膜を構成する金属水素化物は特に制限され
るものではないが、常温付近で1〜10kg / c+
J程度の水素平衡分解圧を有するものが実用上から好ま
しく、また、本発明の水素ガス透過膜は後述するように
金属水素化物膜の水分による劣化をよく防止得るので、
希土類元素系合金、例えば、希土類元素−Ni系合金を
用いることができる。金属水素化物膜は通常の真空蒸着
法、スパッタ法、イオンビーム法等、従来より知られて
いる方法によることができる。尚、既に知られているよ
うに、合金を蒸着させる場合、構成金属の蒸気圧が異な
るときは、蒸着膜が所定の合金組成を有しないので、原
料組成を適宜に調整する必要がある。また、所謂フラッ
シュ蒸着法によってもよい。
The metal hydride constituting the metal hydride film is not particularly limited, but it has a weight of 1 to 10 kg/c+ at around room temperature.
It is preferable from a practical point of view to have a hydrogen equilibrium decomposition pressure of approximately J, and the hydrogen gas permeable membrane of the present invention can effectively prevent deterioration of metal hydride membranes due to moisture, as will be described later.
A rare earth element alloy, for example, a rare earth element-Ni alloy can be used. The metal hydride film can be formed by a conventionally known method such as a normal vacuum evaporation method, sputtering method, or ion beam method. As is already known, when depositing an alloy, if the constituent metals have different vapor pressures, the deposited film will not have a predetermined alloy composition, so it is necessary to adjust the raw material composition appropriately. Alternatively, a so-called flash vapor deposition method may be used.

金属水素化物膜の膜厚は0.01〜10μmの範囲が適
当である。
The appropriate thickness of the metal hydride film is in the range of 0.01 to 10 μm.

本発明の水素ガス透過膜は、以上のようにして得られる
積層膜を活性化処理して得られる。即ち、積層膜の原料
側に水素ガスを供給し、透過側を減圧して、積層膜にお
ける金属水素化物膜に水素ガスを吸蔵させるのである。
The hydrogen gas permeable membrane of the present invention is obtained by activating the laminated membrane obtained as described above. That is, hydrogen gas is supplied to the raw material side of the laminated membrane, and the pressure on the permeate side is reduced, so that the metal hydride film in the laminated membrane absorbs hydrogen gas.

勿論、水素ガス透過を行なう際に同時にこの活性化処理
を行なってもよいことは明らかである。
Of course, it is clear that this activation treatment may be performed at the same time as hydrogen gas permeation.

本発明の透過膜においては、前記金属酸化物膜は、この
金属水素化物膜よりも原料側に積層されて金属水素化物
膜の水分に対するバリヤ一層として作用し、金属水素化
物膜に水分が含有されることを防いで、金属水素化物膜
の劣化を防止する。
In the permeable membrane of the present invention, the metal oxide film is laminated closer to the raw material side than the metal hydride film, and acts as a barrier layer against moisture in the metal hydride membrane, so that moisture is not contained in the metal hydride membrane. This prevents deterioration of the metal hydride film.

更に、原料水素ガスが炭化水素や硫化水素のように高分
子重合体膜を膨潤させるような場合にも、金属酸化物膜
を高分子重合体膜よりも原料側に配置すれば、金属水素
化物膜は重合体膜のこれらの不純物ガスに対するバリヤ
ーとして作用し、重合体膜を保護してその耐久性を高め
る。
Furthermore, even if the raw material hydrogen gas swells the polymer film, such as hydrocarbon or hydrogen sulfide, if the metal oxide film is placed closer to the raw material than the polymer film, the metal hydride The membrane acts as a barrier to these impurity gases of the polymer membrane, protecting it and increasing its durability.

図面は本発明の水素ガス透過膜の実施例を示す断面図で
ある。
The drawing is a sectional view showing an embodiment of the hydrogen gas permeable membrane of the present invention.

本発明の水素ガス透過膜においては、基本的には第1図
に示すように、通常、原料側1に金属酸化物膜2が露出
され、透過側3の金属水素化物膜4との間に高分子重合
体膜5よりなる基板が積層されて構成されるが、しかし
、第2図に示すように、透過lul+ 3の金属水素化
物膜3を保護するためにこの金属水素化物膜の透過側に
更に基板5が積層されてもよく、また、第3図に示すよ
うに、原料側1の金属酸化物膜2の表面を保護するため
にその原料側に更に基板5が積層されてもよい。また、
第4図に示すように、必要に応じて、原料側1から基板
5、金属酸化物11’ii2及び金属水素化物膜4がこ
の順序で積層されて構成されてもよい。
Basically, in the hydrogen gas permeable membrane of the present invention, as shown in FIG. It is constructed by laminating substrates made of polymer films 5, but as shown in FIG. Further, as shown in FIG. 3, a substrate 5 may be further laminated on the raw material side 1 in order to protect the surface of the metal oxide film 2 on the raw material side 1. . Also,
As shown in FIG. 4, if necessary, the substrate 5, the metal oxide 11'ii2, and the metal hydride film 4 may be laminated in this order from the raw material side 1.

本発明の水素ガス透過膜を製造するに際しては、基板上
に金属水素化物膜を蒸着し、次いで、この上に更に金属
酸化物膜を蒸着することにより、上記第1図に示すよう
な透過膜を得るが、また、別箇の基板上に金属水素化物
膜と金属酸化物膜とをそれぞれ蒸着し、金属水素化物膜
に対して上記金属酸化物膜が原料側に位置するように積
層してもよい。例えば、第2図に示す透過膜はかかる方
法によって製造することができる。また、例えば第5図
に示す透過膜は、第1の基板5上に金属酸化物膜2が形
成された積層膜6と、第2の基板5”上に金属水素化物
膜4”が形成された積層膜6゛とが基板5及び5゛を相
互に接合されて形成されている。
In manufacturing the hydrogen gas permeable membrane of the present invention, a metal hydride film is deposited on a substrate, and then a metal oxide film is further deposited on the substrate to form a permeable film as shown in FIG. However, a metal hydride film and a metal oxide film are each deposited on separate substrates, and the metal oxide film is stacked on the raw material side with respect to the metal hydride film. Good too. For example, the permeable membrane shown in FIG. 2 can be manufactured by such a method. Further, for example, the transmission film shown in FIG. 5 includes a laminated film 6 in which a metal oxide film 2 is formed on a first substrate 5, and a metal hydride film 4'' is formed on a second substrate 5''. A laminated film 6' is formed by bonding the substrates 5 and 5' together.

本発明の水素ガス透過膜は、金属水素化物膜よりも原料
側に金属酸化物膜が位置するように水素ガスに対して配
設され、通常、原料側に水素ガスを加圧して供給し、透
過側に透過ガスとして精製水素ガスを得るものである。
The hydrogen gas permeable membrane of the present invention is disposed with respect to hydrogen gas such that the metal oxide film is located on the raw material side rather than the metal hydride film, and usually pressurized hydrogen gas is supplied to the raw material side. Purified hydrogen gas is obtained as permeate gas on the permeate side.

従って、透過膜を透過する水素ガスが水分を含有してい
る場合にも、この水分は金属酸化物膜によって透過膜を
透過するのを阻止され、水分を含有しない水素ガスが金
属水素化物膜を透過することとなるので、透過側に得ら
れる水素ガスは水分を含有しないと共に、金属水素化物
膜が水分によって劣化せず、従って、長期間にわたって
安定して水素ガスを選択的に透過させて精製水素ガスを
得ることができる。
Therefore, even if the hydrogen gas that permeates through the permeable membrane contains moisture, this moisture is prevented from permeating through the permeable membrane by the metal oxide membrane, and the hydrogen gas that does not contain moisture passes through the metal hydride membrane. Since the hydrogen gas obtained on the permeate side does not contain moisture, the metal hydride membrane does not deteriorate due to moisture, and therefore hydrogen gas can be selectively permeated stably over a long period of time for purification. Hydrogen gas can be obtained.

更に、本発明の透過膜によれば、原料水素ガスが炭化水
素や硫化水素のように高分子重合体膜を膨潤させる不純
物ガスを含有するような場合にも、重合体膜よりも原料
側に金属酸化物膜を積層すれば、金属酸化物膜が重合体
膜のこれらの不純物ガスに対するバリヤーとして作用す
るので、基板を保護してその耐久性を高める。
Furthermore, according to the permeable membrane of the present invention, even when the raw material hydrogen gas contains impurity gases such as hydrocarbons and hydrogen sulfide that cause the polymer membrane to swell, the permeable membrane is closer to the raw material side than the polymer membrane. Laminating a metal oxide film protects the substrate and increases its durability, since the metal oxide film acts as a barrier to these impurity gases in the polymer film.

以下に実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 基板として厚み60μm、孔径約0.1μmの微孔を有
するポリテトラフルオロエチレン多孔性膜を用い、これ
に酸化マグネシウム膜を蒸着させた。
A polytetrafluoroethylene porous membrane having a thickness of 60 μm and micropores with a pore diameter of about 0.1 μm was used as an example substrate, and a magnesium oxide film was deposited thereon.

この酸化物膜は、蒸着反応容器内をI X 10−54 Torrに減圧した後、酸素分圧が3 x I Q T
orrとなるように導入し、次いで、金属マグネシウム
を抵抗加熱により加熱し、蒸発源と上記多孔性膜との距
離を25cmとし、成膜速度100人/分の速度で膜厚
2000人の酸化マグネシウムの蒸着膜を形成させた。
This oxide film was formed after the pressure inside the vapor deposition reaction vessel was reduced to I x 10-54 Torr, and then the oxygen partial pressure was reduced to 3 x I Q T
Then, metal magnesium was heated by resistance heating, the distance between the evaporation source and the porous membrane was set to 25 cm, and the film formation rate was 100 people/min, and the film thickness was 2,000 people. A vapor-deposited film was formed.

別に、I X 1 (1’ Torrの減圧雰囲気下に
蒸着膜がLaNi5となるように原料金属組成を調整し
、この原料を電子銃にて加熱し、成膜速度300人/分
で膜厚3000人の金属水素化物膜を基板上に蒸着形成
させた。
Separately, the raw metal composition was adjusted so that the deposited film was LaNi5 under a reduced pressure atmosphere of I A metal hydride film was deposited on a substrate.

上で得た各積層膜を第2図に示すように相互に基板を接
合して本発明による水素ガス透過膜を製作した。
Each of the laminated films obtained above was bonded to a substrate as shown in FIG. 2 to fabricate a hydrogen gas permeable film according to the present invention.

この透過膜の金属酸化物膜を原料側に位置させて原料側
に室温で圧力10kg/cutの水素ガスを供給し、透
過側を真空排気して金属水素化物に水素を吸蔵させる活
性化処理を20回繰返して本発明の水素ガス透過膜を得
た。
The metal oxide film of this permeable membrane is placed on the raw material side, hydrogen gas is supplied to the raw material side at a pressure of 10 kg/cut at room temperature, and the permeated side is evacuated to carry out an activation treatment in which the metal hydride absorbs hydrogen. The process was repeated 20 times to obtain a hydrogen gas permeable membrane of the present invention.

次に、この膜の原料側に純度99.9%の工業用水素ガ
ス(露点−60℃)を加圧下に供給し、膜を透過した水
素ガスを分析したところ、露点−75℃であった。また
、ガスクロマトグラフ(検出器TcD、TiD)による
分析によっては不純物ガスば検出されなかった。
Next, 99.9% pure industrial hydrogen gas (dew point -60°C) was supplied under pressure to the raw material side of this membrane, and when the hydrogen gas that permeated through the membrane was analyzed, the dew point was -75°C. . Moreover, no impurity gas was detected by analysis using a gas chromatograph (detectors TcD, TiD).

上記の操作を繰り返したとき、上記本発明の透過膜によ
れば、透過水素の露点は100サイクル後及び1000
サイクル後にも一75℃であったが、比較のために基板
」二に金属水素化物膜のみを形成した水素透過膜を用い
た場合は、100サイクル後には透過水素ガスの露点は
一75℃であったが、1oooサイクル後には一65℃
となり、比較のための水素ガス透過膜は水素の選択的透
過性能が殆ど発揮されなかった。
When the above operation is repeated, according to the permeable membrane of the present invention, the dew point of the permeated hydrogen changes after 100 cycles and after 1000 cycles.
The dew point of the permeated hydrogen gas was -75°C after 100 cycles, but for comparison, when a hydrogen permeable membrane with only a metal hydride film formed on the substrate was used, the dew point of the permeated hydrogen gas was -75°C after 100 cycles. However, after 1ooo cycle, the temperature was -65℃
Therefore, the comparative hydrogen gas permeable membrane hardly exhibited hydrogen selective permeation performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図はいずれも本発明の水素ガス透過膜の
実施例を示す断面図である。 1・・・原料側、2・・・金属酸化物膜、3・・・透過
側、4・・・金属水素化物膜、5・・・高分子重合体膜
(基板)特許出願人 積水化学工業株式会社 代表者 藤 沼 基 利 1 第2図 第1N 第 4 g でz−「 3 f−−) 第 55″ 6゛ [4゜
1 to 5 are sectional views showing examples of the hydrogen gas permeable membrane of the present invention. 1... Raw material side, 2... Metal oxide film, 3... Permeation side, 4... Metal hydride film, 5... High molecular weight membrane (substrate) Patent applicant Sekisui Chemical Co., Ltd. Co., Ltd. Representative Mototoshi Fujinuma 1 Fig. 2 Fig. 1N 4th g z-" 3 f--) 55th" 6゛[4゜

Claims (1)

【特許請求の範囲】[Claims] (1) 原料側より透過側へ選択的に水素ガスを透過さ
せる透過膜において、この透過膜が水素透過性を有する
高分子重合体膜と、水素透過性と共に防湿性を有する金
属酸化物膜と、水素を選択的に吸蔵し得る金属水素化物
膜とからなる積層膜であって、上記金属水素化物膜より
も原料側に上記金属酸化物膜が設けられていることを特
徴とする水素ガス透過膜。
(1) In a permeable membrane that selectively permeates hydrogen gas from the raw material side to the permeate side, this permeable membrane is composed of a polymer membrane that has hydrogen permeability and a metal oxide membrane that has hydrogen permeability and moisture resistance. , a laminated film comprising a metal hydride film capable of selectively absorbing hydrogen, wherein the metal oxide film is provided closer to the raw material than the metal hydride film. film.
JP18140183A 1983-09-28 1983-09-28 Hydrogen gas permeable membrane Granted JPS6071003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18140183A JPS6071003A (en) 1983-09-28 1983-09-28 Hydrogen gas permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18140183A JPS6071003A (en) 1983-09-28 1983-09-28 Hydrogen gas permeable membrane

Publications (2)

Publication Number Publication Date
JPS6071003A true JPS6071003A (en) 1985-04-22
JPS642407B2 JPS642407B2 (en) 1989-01-17

Family

ID=16100101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18140183A Granted JPS6071003A (en) 1983-09-28 1983-09-28 Hydrogen gas permeable membrane

Country Status (1)

Country Link
JP (1) JPS6071003A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259870A (en) * 1990-08-10 1993-11-09 Bend Research, Inc. Hydrogen-permeable composite metal membrane
JPH06312035A (en) * 1993-04-30 1994-11-08 Somar Corp Golf club shaft set and manufacture thereof
JP2002253919A (en) * 2001-02-27 2002-09-10 Kyocera Corp Gas separation filter
JP2007260628A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Water vapor detection membrane
JP2007260630A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Hydrogen separation unit
JP2007260631A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Preliminary membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259870A (en) * 1990-08-10 1993-11-09 Bend Research, Inc. Hydrogen-permeable composite metal membrane
JPH06312035A (en) * 1993-04-30 1994-11-08 Somar Corp Golf club shaft set and manufacture thereof
JP2002253919A (en) * 2001-02-27 2002-09-10 Kyocera Corp Gas separation filter
JP4605920B2 (en) * 2001-02-27 2011-01-05 京セラ株式会社 Gas separation filter
JP2007260628A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Water vapor detection membrane
JP2007260630A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Hydrogen separation unit
JP2007260631A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Preliminary membrane

Also Published As

Publication number Publication date
JPS642407B2 (en) 1989-01-17

Similar Documents

Publication Publication Date Title
US3350846A (en) Separation of hydrogen by permeation
EP0470822B1 (en) Hydrogen-permeable composite metal membrane
US4857080A (en) Ultrathin composite metal membranes
US5393325A (en) Composite hydrogen separation metal membrane
Uemiya et al. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics
Moss et al. Multilayer metal membranes for hydrogen separation
Roa et al. The influence of alloy composition on the H2 flux of composite Pd Cu membranes
US5980989A (en) Gas separator and method for preparing it
US5215729A (en) Composite metal membrane for hydrogen extraction
US7468093B2 (en) Multiple phase alloys and metal membranes for hydrogen separation-purification and method for preparing the alloys and the metal membranes
EP0354514B1 (en) Fluoro-oxidized polymeric membranes for gas separation and process for preparing them
US6572683B2 (en) Substance separation structure and method of preparing the same
CA2048849A1 (en) Thermally stable composite hydrogen-permeable metal membranes
US3344582A (en) Irreversible hydrogen membrane
Morooka et al. Palladium membrane formed in macropores of support tube by chemical vapor deposition with crossflow through a porous wall
EP0570185A2 (en) Hydrogen-permeable composite metal membrane and uses thereof
JPS6071003A (en) Hydrogen gas permeable membrane
Klette et al. Sputtering of very thin palladium-alloy hydrogen separation membranes
US5912048A (en) Passivation carbonaceous adsorptive membranes
JPH01262924A (en) Hydrogen separating membrane
US20130171442A1 (en) Method for modifying porous substrate and modified porous substrate
US5354469A (en) Layered plasma polymer composite membranes
CA2552961C (en) Hydrogen or helium permeation membrane and storage membrane and process for producing the same
JPH0724743B2 (en) Method for producing molecular sieve carbon membrane
JP3359954B2 (en) Hydrogen permeable membrane