JPH0553527B2 - - Google Patents

Info

Publication number
JPH0553527B2
JPH0553527B2 JP62160382A JP16038287A JPH0553527B2 JP H0553527 B2 JPH0553527 B2 JP H0553527B2 JP 62160382 A JP62160382 A JP 62160382A JP 16038287 A JP16038287 A JP 16038287A JP H0553527 B2 JPH0553527 B2 JP H0553527B2
Authority
JP
Japan
Prior art keywords
palladium
plating
bath
electrolytic
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62160382A
Other languages
Japanese (ja)
Other versions
JPS644216A (en
Inventor
Naoji Ito
Kenji Haratani
Juji Shindo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16038287A priority Critical patent/JPS644216A/en
Publication of JPS644216A publication Critical patent/JPS644216A/en
Publication of JPH0553527B2 publication Critical patent/JPH0553527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/0438Physical processing only by making use of membranes
    • C01B21/0444Physical processing only by making use of membranes characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガス分離用パラジウム又はパラジウ
ム合金薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a palladium or palladium alloy thin film for gas separation.

(従来の技術及びその問題点) 従来、ガス、特に水素のみを透過させる金属の
一つとして、パラジウム及びその合金は知られて
いる。それをガス分離膜として使用する場合、圧
延・成型などを行う必要があるが、特に中空状に
加工する場合には、展延性に欠けるため加工性に
問題が生じ、100μm以下の薄膜を得ることは困
難であつた。したがつて、もしそれ以外のより薄
い膜を製造する技術が完成されれば、膜厚が小さ
くなることで透過速度をそれに反比例して大きく
することができる。加えて、パラジウムなどの貴
金属類は高価であり、より薄い膜を製造する技術
が確立されることにより、膜自体の価格をも大幅
に下げることができるであろう。
(Prior Art and its Problems) Palladium and its alloys have been known as metals that allow only gas, especially hydrogen, to pass therethrough. When using it as a gas separation membrane, it is necessary to perform rolling, molding, etc., but especially when processing it into a hollow shape, there is a problem with workability due to the lack of malleability, and it is difficult to obtain a thin film of 100 μm or less. was difficult. Therefore, if the technology to manufacture other thinner membranes is perfected, the permeation rate can be inversely increased by reducing the membrane thickness. In addition, noble metals such as palladium are expensive, and the establishment of technology for manufacturing thinner membranes could significantly reduce the price of the membrane itself.

ところで従来の水素透過膜の製造方法として通
気性多孔質金属板の細孔を金属パラジウムで閉塞
し、その金属パラジウムの表面にパラジウム黒等
を付着させる方法があるが(特開昭51−131473
号)、孔の径が大きいセラミツク多孔質には適用
できず、また基板全体を所定の厚さで完全に被覆
する緻密な被膜を形成することはできなかつた。
By the way, as a conventional method for manufacturing a hydrogen permeable membrane, there is a method in which the pores of an air-permeable porous metal plate are closed with metal palladium, and palladium black or the like is deposited on the surface of the metal palladium (Japanese Patent Laid-Open No. 51-131473).
No. 1) cannot be applied to ceramic porous materials with large pore diameters, and it is also not possible to form a dense film that completely covers the entire substrate with a predetermined thickness.

したがつて、本発明の目的は、多孔質セラミツ
ク材の表面に所定の厚さで、パラジウム又はパラ
ジウム合金の緻密な被膜を形成することができる
ガス分離薄膜の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for producing a gas separation thin film that can form a dense coating of palladium or palladium alloy on the surface of a porous ceramic material with a predetermined thickness.

(問題点を解決するための手段) 本発明者らは、以上のような観点から、より薄
いパラジウム膜を形成させる方法について、鋭意
研究を重ねた結果、支持体としてセラミツクスを
用い、その表面上に無電解めつき及び電解めつき
法の組合せによつてパラジウム又はパラジウム合
金を薄膜として形成させる方法が、極めて有効で
あることを見出し、本発明をなすに至つた。
(Means for Solving the Problems) From the above-mentioned viewpoint, the present inventors have conducted intensive research into a method for forming a thinner palladium film. The inventors have discovered that a method of forming palladium or a palladium alloy as a thin film by a combination of electroless plating and electrolytic plating is extremely effective, leading to the present invention.

すなわち本発明は、多孔質セラミツク層の表面
に無電解パラジウムめつきを施して電気伝導性を
付与した後、その上に電解パラジウムめつきによ
り、表面を完全に被覆する電解パラジウム又はパ
ラジウム合金めつき膜の被覆を形成することを特
徴とするガス分離薄膜の製造方法を提供するもの
である。
That is, the present invention provides electrolytic palladium or palladium alloy plating, in which electroless palladium plating is applied to the surface of a porous ceramic layer to impart electrical conductivity, and then electrolytic palladium is applied thereon to completely cover the surface. The present invention provides a method for producing a gas separation thin film, which comprises forming a membrane coating.

本発明方法により得られるガス分離膜の1例を
断面模式図として第1図に示した。
An example of a gas separation membrane obtained by the method of the present invention is shown in FIG. 1 as a schematic cross-sectional view.

図中1は多孔質セラミツクス層、2は該セラミ
ツクス層のセラミツク粒子であり、3は無電解め
つき層、4はその上に形成した電解めつき層であ
る。なお、矢印は通常の、ガスの流れ方向であ
り、この逆方向でもよい。
In the figure, 1 is a porous ceramic layer, 2 is ceramic particles of the ceramic layer, 3 is an electroless plating layer, and 4 is an electrolytic plating layer formed thereon. Note that the arrow indicates the normal gas flow direction, and the opposite direction may be used.

無電解めつき層3の厚さは通常、1〜3μm、
電解めつき層4は通常、厚さ10〜30μmでよい。
また支持体としての多孔質セラミツクス層の厚さ
には、特に制限はなく、使用条件に機械的に耐え
得るものであればよい。また多孔質セラミツクス
の孔径は1μm程度以下であればよい。
The thickness of the electroless plating layer 3 is usually 1 to 3 μm,
The electroplated layer 4 usually has a thickness of 10 to 30 μm.
Further, there is no particular restriction on the thickness of the porous ceramic layer as a support, as long as it can mechanically withstand the conditions of use. Further, the pore diameter of the porous ceramics may be about 1 μm or less.

本発明方法において、まず本来は電気不導体で
あるセラミツクス上に無電解パラジウムめつきを
施すことで、電気伝導性を付与する。次いで電解
パラジウムめつきを行うことで、全体としては第
1図に示したような構造となり、ガス分離膜とし
て使用に耐え得る緻密な薄膜を作ることができ
る。
In the method of the present invention, electroless palladium plating is first applied to ceramics, which are originally electrically nonconducting, to impart electrical conductivity. Next, by performing electrolytic palladium plating, the structure as a whole becomes as shown in FIG. 1, and a dense thin film that can be used as a gas separation membrane can be produced.

本発明方法において用いられる無電解パラジウ
ムめつきとは、化学的酸化還元反応を利用するも
ので、2価のパラジウムイオン(Pd2+)を還元
剤を用いて、被めつき物上に金属パラジウム
(Pd)として還元析出させるものである。無電解
めつき浴としては、次亜リン酸ナトリウム浴、ヒ
ドラジン浴などを用いることができる。
The electroless palladium plating used in the method of the present invention utilizes a chemical redox reaction, and uses divalent palladium ions (Pd 2+ ) as a reducing agent to deposit metallic palladium onto the object to be plated. (Pd) is reduced and precipitated. As the electroless plating bath, a sodium hypophosphite bath, a hydrazine bath, etc. can be used.

この無電解めつきは、下地めつきとしてセラミ
ツクス支持体に電気伝導性を付与し、また、多孔
質セラミツクスの孔を適度に封鎖する点で重要で
ある。
This electroless plating is important in that it imparts electrical conductivity to the ceramic support as a base plating and also appropriately closes the pores of the porous ceramic.

次いで電解パラジウムめつきとは、2価のパラ
ジウムイオンを電解浴中で、その陰極上に電気的
還元を行つて析出させることで行うことができ
る。電解めつき浴としてはジアミノ亜硝酸パラジ
ウム浴、テトラミンジクロロパラジウム浴及び市
販のパラジウム浴、例えばパラデツクス91(商品
名)、パラデツクスMS(商品名)を用いることが
できる。
Next, electrolytic palladium plating can be performed by electrically reducing and depositing divalent palladium ions on the cathode in an electrolytic bath. As the electrolytic plating bath, diaminonitrite palladium bath, tetramine dichloropalladium bath and commercially available palladium baths such as Paradex 91 (trade name) and Paradex MS (trade name) can be used.

この電解パラジウムめつきにより、無電解めつ
き層の上にパラジウム又はパラジウム合金の薄膜
を形成する。この場合電解めつき層の厚さは上述
の範囲が好ましいが、めつき時間・電圧・電流な
どを制御することにより、めつき厚を調整するこ
とができる。通常、めつき時間は30〜90分、浴PH
6〜10、電流密度0.5〜3A/dm2、温度40〜90℃
とするのが好ましい。その他のめつき条件は通常
の電解めつき法に準じて設定できる。
This electrolytic palladium plating forms a thin film of palladium or palladium alloy on the electroless plating layer. In this case, the thickness of the electrolytically plated layer is preferably within the above range, but the plating thickness can be adjusted by controlling the plating time, voltage, current, etc. Normally, plating time is 30 to 90 minutes, bath pH
6-10, current density 0.5-3A/ dm2 , temperature 40-90℃
It is preferable that Other plating conditions can be set according to normal electrolytic plating methods.

本発明に用いられる多孔質セラミツクスの形状
は特に制限はなく、板状、管状などが好ましく用
いられる。
The shape of the porous ceramic used in the present invention is not particularly limited, and plate-like, tubular, etc. shapes are preferably used.

(発明の効果) 本発明は、比較的大きな孔径を有する支持体を
用いても、より緻密なパラジウム又はパラジウム
合金薄膜が得られるという点に、1つの特徴を有
している。これにより、支持体部での圧力損失は
無視し得ることになるから、ガスの分離のための
操作圧を軽減することが可能になる。特に本発明
方法により得られるガス分離薄膜は水素の選択透
過性の優れるものである。また本発明方法によれ
ば100μm以下の薄膜からなるガス分離膜を形成
することができる。
(Effects of the Invention) One feature of the present invention is that a denser palladium or palladium alloy thin film can be obtained even when a support having a relatively large pore size is used. This makes it possible to ignore the pressure loss in the support section, making it possible to reduce the operating pressure for gas separation. In particular, the gas separation membrane obtained by the method of the present invention has excellent hydrogen permselectivity. Further, according to the method of the present invention, a gas separation membrane consisting of a thin film of 100 μm or less can be formed.

(実施例) 次に実施例に基づき本発明をさらに詳細に説明
する。
(Example) Next, the present invention will be described in more detail based on Examples.

実施例 (1) 無電解めつき 表1に示したような組成の無電解めつき浴
(PH10.4〜11.0)を調整し、その浴温度は35〜
45℃の範囲内になるように制御する。
Example (1) Electroless plating An electroless plating bath (PH10.4-11.0) having the composition shown in Table 1 was prepared, and the bath temperature was 35-11.0.
Control to within 45℃.

表1 無電解めつき浴の組成・操作条件 次亜リン酸ナトリウム 8〜12g/ 塩化パラジウム 1.8〜2.2g/ 塩化アンモニウム 24〜30g/ アンモニア水(28%) 280〜350ml/ 塩酸(38%) 3.2〜4.8ml/ 温 度 35〜45℃ PH 10.4〜11.0 時 間 50〜70分 浴中へ、脱脂処理及び活性化処理を施した多
孔質セラミツクス板あるいは管(孔径1μm、
セラミツクス厚1mm)を浸し、50〜70分間放置
する。その際の、液量(cm3)と被めつき物面積
(cm2)との比は、8〜10とした。こうして出来
上がつた無電解めつき被覆物を、洗浄及び封孔
処理のため、沸騰水中に15分間浸漬した。
Table 1 Composition and operating conditions of electroless plating bath Sodium hypophosphite 8-12g / Palladium chloride 1.8-2.2g / Ammonium chloride 24-30g / Aqueous ammonia (28%) 280-350ml / Hydrochloric acid (38%) 3.2 ~4.8ml/Temperature: 35~45℃ PH: 10.4~11.0 Time: 50~70 minutes Into the bath, add a porous ceramic plate or tube (pore size: 1μm,
Soak ceramics (1 mm thick) and leave for 50 to 70 minutes. At that time, the ratio of the liquid amount (cm 3 ) to the area of the covered object (cm 2 ) was set to 8 to 10. The electroless plated coating thus completed was immersed in boiling water for 15 minutes for cleaning and sealing.

こうして得られた被覆物(厚さ2.6μm)の電
気抵抗は0.03Ω/cm程度であり、以下で行う電
解めつきに必要な電気伝導性が付与されたこと
が確認された。
The electrical resistance of the thus obtained coating (thickness: 2.6 μm) was approximately 0.03 Ω/cm, and it was confirmed that the electrical conductivity required for the electrolytic plating performed below was provided.

(2) 電解めつき 電解めつき浴としては、次の3種類を用い
た。
(2) Electrolytic plating The following three types of electrolytic plating baths were used.

(イ) ジアミノ亜硝酸パラジウム浴 (ロ) テトラミンジクロロパラジウム浴 (ハ) パラデツクス浴(商品名、日本エレクトロ
プレテイングエンジニヤーズ社製) (イ)、(ロ)は、パラジウム膜を得るための浴であ
り、最適組成・操作条件を表2、表3にそれぞ
れ示した。また、(ハ)は、パラジウム合金(組
成:Pd90〜95%、Ni5〜10%)膜を得るための
浴であり、操作条件についてのみ表4に示し
た。
(a) Diaminonitrite palladium bath (b) Tetramine dichloropalladium bath (c) Paradex bath (trade name, manufactured by Nippon Electroplating Engineers) (a) and (b) are baths for obtaining a palladium film. The optimum composition and operating conditions are shown in Tables 2 and 3, respectively. Further, (c) is a bath for obtaining a palladium alloy (composition: Pd 90-95%, Ni 5-10%) film, and only the operating conditions are shown in Table 4.

表2 ジアミノ亜硝酸浴の組成・操作条件 亜鉛酸ナトリウム 8〜12g/ 硝酸アンモニウム 80〜120g/ ジアミノ亜硝酸パラジウム 20〜24g/ アンモニア水(28%) 40〜60ml/ PH 9.3〜9.7 温 度 50〜70℃ 時 間 50〜70分 電流密度 1.8〜2.2A/dm2 表3 テトラミジクロロパラジウム浴の組成・操作
条件 硝酸アンモニウム 80〜120g/ 亜硝酸ナトリウム 4〜6g/ リン酸水素第2アンモニウム 8〜12g/ テトラミンジクロロパラジウム 20〜30g/ PH 9.3〜9.7 温 度 75〜85℃ 時 間 60分 電流密度 0.8〜1.2A/dm2 表4 パラデツクス91操作条件 PH 6.5〜7.5 温 度 50〜60℃ 時 間 60分 電流密度 1.8〜2.2A/dm2 各電解めつきは、いずれも陽極として白金を
用い、表2〜表4の組成及び条件に調整した
後、定電流法によつて行つた。操作終了後、洗
浄及び封孔処理のため、沸騰水中に15分間浸漬
し、その後乾燥器中で120℃にて乾燥した。こ
のようにして(イ)、(ロ)、(ハ)の電解めつき浴から得
られた電解めつき試料をそれぞれ試料(イ)、(ロ)、
(ハ)とした。それぞれの電解めつき層の厚さは
20μm、15μm、20μmであつた。
Table 2 Composition and operating conditions of diaminonitrite bath Sodium zincate 8-12g / Ammonium nitrate 80-120g / Palladium diaminonitrite 20-24g / Ammonia water (28%) 40-60ml / PH 9.3-9.7 Temperature 50-70 °C Time 50 to 70 minutes Current density 1.8 to 2.2 A/dm 2 Table 3 Composition and operating conditions of tetramidichloropalladium bath Ammonium nitrate 80 to 120 g/ Sodium nitrite 4 to 6 g/ Second ammonium hydrogen phosphate 8 to 12 g/ Tetramine dichloropalladium 20-30g/PH 9.3-9.7 Temperature 75-85℃ Time 60 minutes Current density 0.8-1.2A/dm 2 Table 4 Paradex 91 operating conditions PH 6.5-7.5 Temperature 50-60℃ Time 60 minutes Current density: 1.8 to 2.2 A/dm 2 In each electrolytic plating, platinum was used as an anode, and after adjusting the composition and conditions as shown in Tables 2 to 4, the electrolytic plating was carried out by a constant current method. After the operation was completed, it was immersed in boiling water for 15 minutes for cleaning and sealing, and then dried in a dryer at 120°C. In this way, the electrolytic plating samples obtained from the electrolytic plating baths of (a), (b), and (c) are used as samples (a), (b), and (c), respectively.
(c). The thickness of each electroplated layer is
They were 20 μm, 15 μm, and 20 μm.

(3) 各種ガスのめつき膜中の透過速度測定 上記のようにして得られためつき膜中のアル
ゴン、ヘリウム及び水素ガス透過速度を180℃
で測定した結果を以下に示す。
(3) Measuring the permeation rate of various gases in the plated membrane The permeation rate of argon, helium, and hydrogen gas in the plated membrane obtained as above was measured at 180°C.
The results measured are shown below.

まず(イ)のジアミノ亜硝酸パラジウム浴及び(ロ)
のテトラミジクロロパラジウム浴を用いて作成
したパラジウム膜についての結果を第2図及び
第3図に示した。縦軸は各ガスの透過係数Pp
(mol/m.s.Pa)、横軸は各ガスの分子量M
(g/mol)の平方根の逆数(1/√)で表
わしたものである。両図から明らかなように、
アルゴン、ヘリウムガスについては、Ppが
1/√に比例している(クヌーセンの法則)
ということから、めつき膜中に微細孔が若干残
存していることを意味している。したがつて、
その微細孔を通り抜ける水素の量は、外挿によ
り第2図、第3図中のA点に相当することにな
る。その残りの部分がパラジウム金属中を拡散
透過することになる。一方、通常の微細孔の多
孔質膜による水素分離のアルゴンガスに対する
選択性は、透過係数比で、4.47である。これに
対して、ジアミノ亜硝酸パラジウム浴使用によ
り作成した膜のそれは11.0、テトラミンジクロ
ロパラジウム浴使用により作成した膜のそれは
12.6と、それぞれ2.5倍、2.8倍大きい性能を有
することがわかる。
First, (a) diaminonitrite palladium bath and (b)
The results for palladium membranes prepared using the tetramidichloropalladium bath are shown in FIGS. 2 and 3. The vertical axis is the permeability coefficient Pp of each gas
(mol/msPa), the horizontal axis is the molecular weight M of each gas
It is expressed as the reciprocal (1/√) of the square root of (g/mol). As is clear from both figures,
For argon and helium gas, Pp is proportional to 1/√ (Knudsen's law)
This means that some micropores remain in the plating film. Therefore,
By extrapolation, the amount of hydrogen passing through the micropores corresponds to point A in FIGS. 2 and 3. The remaining portion will diffuse through the palladium metal. On the other hand, the selectivity for hydrogen separation with respect to argon gas using a normal porous membrane with micropores is 4.47 in terms of permeability coefficient ratio. On the other hand, the value of the membrane prepared using diaminonitrite palladium bath is 11.0, and that of the membrane prepared using tetramine dichloropalladium bath is 11.0.
12.6, which is 2.5 times and 2.8 times higher in performance, respectively.

次に(ハ)のパラデツクス浴を用いて作成したパ
ラジウム−ニツケルめつき膜についての結果を
第4図に示す。アルゴン、ヘリウムガスについ
ては、透過係数はゼロ、すなわち透過が認めら
れなかつた。この場合は、水素ガスのみを透過
させる膜が得られたことがわかる。
Next, FIG. 4 shows the results for a palladium-nickel plated film prepared using the paradox bath (c). For argon and helium gas, the permeation coefficient was zero, that is, no permeation was observed. In this case, it can be seen that a membrane that allows only hydrogen gas to pass through was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により得られためつき膜の
断面模式図、第2図、第3図及び第4図は実施例
で得られたガス分離薄膜の各種ガスに対する透過
係数を示すグラフである。
FIG. 1 is a schematic cross-sectional view of a tamped membrane obtained by the method of the present invention, and FIGS. 2, 3, and 4 are graphs showing the permeability coefficients for various gases of the gas separation thin membranes obtained in Examples. .

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質セラミツク層の表面に、無電解パラジ
ウムめつきを施して電気伝導性を付与した後、そ
の上に、電解パラジウムめつきにより、表面を完
全に被覆する電解パラジウム又はパラジウム合金
めつき膜の被膜を形成することを特徴とするガス
分離薄膜の製造方法。
1. Electroless palladium plating is applied to the surface of the porous ceramic layer to impart electrical conductivity, and then an electrolytic palladium or palladium alloy plating film is applied thereon to completely cover the surface by electrolytic palladium plating. A method for producing a gas separation thin film, the method comprising forming a film.
JP16038287A 1987-06-26 1987-06-26 Production of thin membrane for separating gas Granted JPS644216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16038287A JPS644216A (en) 1987-06-26 1987-06-26 Production of thin membrane for separating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16038287A JPS644216A (en) 1987-06-26 1987-06-26 Production of thin membrane for separating gas

Publications (2)

Publication Number Publication Date
JPS644216A JPS644216A (en) 1989-01-09
JPH0553527B2 true JPH0553527B2 (en) 1993-08-10

Family

ID=15713756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16038287A Granted JPS644216A (en) 1987-06-26 1987-06-26 Production of thin membrane for separating gas

Country Status (1)

Country Link
JP (1) JPS644216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057993A (en) * 2002-07-31 2004-02-26 Dainippon Printing Co Ltd Method of manufacturing hydrogen producing filter
WO2014126027A1 (en) 2013-02-12 2014-08-21 サンデン株式会社 Showcase cooling device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2048849A1 (en) * 1990-08-10 1992-02-11 David J. Edlund Thermally stable composite hydrogen-permeable metal membranes
JPH05137979A (en) * 1991-11-25 1993-06-01 Mitsubishi Kakoki Kaisha Ltd Production of hydrogen separating membrane
JP3402515B2 (en) * 1994-05-23 2003-05-06 日本碍子株式会社 Hydrogen separator, hydrogen separator using the same, and method for producing hydrogen separator
DE19738513C1 (en) 1997-09-03 1998-11-05 Dbb Fuel Cell Engines Gmbh Palladium alloy membrane foil for hydrogen separation
JP2002531246A (en) * 1998-12-02 2002-09-24 マサチューセッツ・インスティチュート・オブ・テクノロジー Integrated palladium-based micromembrane for hydrogen separation and hydrogenation / dehydrogenation reactions
EP2128082A4 (en) * 2007-02-19 2011-09-07 Mitsubishi Gas Chemical Co Hydrogen purification method, hydrogen separation membrane, and hydrogen purification apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131473A (en) * 1975-05-12 1976-11-15 Masao Okubo A process for manufacturing hydrogen permeable film
JPS62121616A (en) * 1985-11-21 1987-06-02 Ngk Insulators Ltd Separating membrane of hydrogen gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131473A (en) * 1975-05-12 1976-11-15 Masao Okubo A process for manufacturing hydrogen permeable film
JPS62121616A (en) * 1985-11-21 1987-06-02 Ngk Insulators Ltd Separating membrane of hydrogen gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057993A (en) * 2002-07-31 2004-02-26 Dainippon Printing Co Ltd Method of manufacturing hydrogen producing filter
JP4681201B2 (en) * 2002-07-31 2011-05-11 大日本印刷株式会社 HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD
WO2014126027A1 (en) 2013-02-12 2014-08-21 サンデン株式会社 Showcase cooling device

Also Published As

Publication number Publication date
JPS644216A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
KR100247557B1 (en) Preparation of composite membranes for separation of hydrogen
EP1807185B1 (en) Preparation method of palladium alloy composite membrane for hydrogen separation
JP2829474B2 (en) Method for producing metal foam and obtained metal foam
Nam et al. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition
Ozaki et al. Preparation of palladium-coated V and V–15Ni membranes for hydrogen purification by electroless plating technique
Itoh et al. Deposition of palladium inside straight mesopores of anodic alumina tube and its hydrogen permeability
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JP4559009B2 (en) Method for forming thermally mechanically stable metal / porous substrate composite film
JPH0553527B2 (en)
US8211539B2 (en) Hydrogen separator and process for production thereof
US4500395A (en) Method of producing electrode for liquid fuel cell
CN103153447B (en) For the new kind crystal method of the selective rete of deposition of thin
US4008144A (en) Method for manufacturing of electrode having porous ceramic substrate coated with electrodeposited lead dioxide and the electrode manufactured by said method
JP4559560B2 (en) Layer system having a conductive base layer and a porous coating layer, its production method and its use
JPS6256978B2 (en)
Zahedi et al. Preparation of a Pd membrane on a WO3 modified porous stainless steel for hydrogen separation
JPH05137979A (en) Production of hydrogen separating membrane
JPH11286785A (en) Hydrogen-permeable membrane and its preparation
JP4112856B2 (en) Method for producing gas separator
JP3045329B2 (en) Method for producing hydrogen separation membrane
JP3399694B2 (en) Method for producing gas separator
JPH05123548A (en) Production of hydrogen separation membrane
JP2004122006A (en) Hydrogen separation film, its production method and separation method for hydrogen
KR100622988B1 (en) Preparation Method of Palladium Alloy Composite Membrane for Hydrogen Separation
JP4777748B2 (en) Hydrogen separator and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term