JPH11104472A - Permeable membrane structural body for hydrogen refining, its manufacture and hydrogen refining apparatus using the same - Google Patents

Permeable membrane structural body for hydrogen refining, its manufacture and hydrogen refining apparatus using the same

Info

Publication number
JPH11104472A
JPH11104472A JP30632197A JP30632197A JPH11104472A JP H11104472 A JPH11104472 A JP H11104472A JP 30632197 A JP30632197 A JP 30632197A JP 30632197 A JP30632197 A JP 30632197A JP H11104472 A JPH11104472 A JP H11104472A
Authority
JP
Japan
Prior art keywords
permeable membrane
hydrogen gas
membrane structure
support frame
electrolytic plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30632197A
Other languages
Japanese (ja)
Inventor
Kiyoshizu Kinuta
精鎮 絹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTONIKUSU SEIMITSU KK
Original Assignee
OPUTONIKUSU SEIMITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTONIKUSU SEIMITSU KK filed Critical OPUTONIKUSU SEIMITSU KK
Priority to JP30632197A priority Critical patent/JPH11104472A/en
Publication of JPH11104472A publication Critical patent/JPH11104472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permeable membrane structural body of a palladium alloy having a good permeating efficiency. SOLUTION: A permeable membrane structural body 10 comprises a palladium alloy membrane 1 and a grid-like support flame 2 mechanically supporting the membrane. The membrane structural body 10 is prepared by the steps of subjecting an electrically conductive substrate to electrolytic plating so as to form a layer comprising palladium and silver which constitutes a permeable membrane, forming a desired photoresist pattern on a surface thereof by X rays or photolithography, forming a metal layer which functions as the support frame by electrolytic plating, removing the photoresist pattern and separating the electrically conductive substrate from a pemeable membrane layer. Thus, because strength of the support flame can be enhanced, area occupied by a grid window can be increased and thickness of the palladium alloy membrane 1 can be reduced so that hydrogen refining efficiency is raised. By using this permeable membrane structural body, a hydrogen refining apparatus reduced in size and having a high performance can be produced at low costs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パラジウム透過膜
を用いた水素精製装置に関し、特にパラジウム透過膜の
構造体に関する。
The present invention relates to a hydrogen purifier using a palladium permeable membrane, and more particularly to a structure of a palladium permeable membrane.

【0002】[0002]

【従来の技術】高純度の水素ガスは還元性ガスとして半
導体工業では要素ガスとして大量に使われている。ま
た、水素ガスは環境にやさしいクリーンなエネルギ源で
あり、電気自動車や蓄電池の原料ガスとして大幅な需要
が見込まれている。このために、高純度の水素ガスを安
く供給できる装置の提供が望まれている。この中で、金
属パラジウム膜が効率よく水素だけを透過させる性質を
利用して、高純度の水素ガスを取り出せる水素精製装置
が低コスト化できると画期的なことである。現在、市販
されている装置は図10のようにパラジウム合金の膜で
覆われた細管100を気密封止し、これを約500℃の
温度で加熱し、加圧した原料ガス107を細管の外側か
らいれて、水素だけを細管の内側に浸透させて高純度の
水素ガス108を得るような構成になっている。浸透で
内側に透過できない不純物ガスは水素ガスと一緒にブリ
ードガス109として外に排出される。水素精製装置に
用いられている従来のパラジウム合金の細管は粉末の焼
結体で円筒を作り、これにパラジウム合金膜をスパッタ
や蒸着によって被着した構造である。パラジウム合金膜
には約10気圧の原料水素が加り、細管の全面にわたっ
てパラジウム合金膜はピンホールがないことが必要であ
る。このため、従来構造のパラジウム合金膜厚は約60
μmが被着されていた。
2. Description of the Related Art High-purity hydrogen gas is used as a reducing gas in the semiconductor industry in large quantities as a component gas. Hydrogen gas is an environmentally friendly clean energy source, and great demand is expected as a raw material gas for electric vehicles and storage batteries. For this reason, it is desired to provide a device that can supply high-purity hydrogen gas at low cost. Among these, it is epoch-making that a hydrogen purifier capable of extracting high-purity hydrogen gas can be reduced in cost by utilizing the property of a metal palladium membrane that allows only hydrogen to pass efficiently. At present, a commercially available apparatus hermetically seals a thin tube 100 covered with a palladium alloy film as shown in FIG. 10, heats this at a temperature of about 500 ° C., and pressurizes a raw material gas 107 outside the thin tube. The configuration is such that only hydrogen is permeated into the inside of the thin tube to obtain high-purity hydrogen gas 108. The impurity gas that cannot be permeated inward by permeation is discharged outside as a bleed gas 109 together with the hydrogen gas. A conventional palladium alloy thin tube used in a hydrogen purifier has a structure in which a cylinder is formed from a sintered body of powder, and a palladium alloy film is deposited on the cylinder by sputtering or vapor deposition. About 10 atm of raw material hydrogen is added to the palladium alloy film, and it is necessary that the palladium alloy film has no pinhole over the entire surface of the thin tube. For this reason, the palladium alloy film thickness of the conventional structure is about 60
μm had been deposited.

【0003】[0003]

【発明が解決しようとする課題】従来構造のパラジウム
合金細管は上記したような構成のため成膜の製造工程が
複雑で大量生産には適さないため、コスト高の欠点があ
る。また、焼結体で形成した円筒は粒径や密度によって
水素の透過効率が変動する要因があり、品質がばらつく
欠点がある。これは、焼結体の粒径が大きい場合にピン
ホールをなくすようにパラジウム合金膜厚が厚くなり、
また小さいと水素の通過する面積が小さくなり、いずれ
も水素の透過効率が落ちる欠点がある。また、従来のパ
ラジウム合金の構造体を500℃前後の高温に加熱する
ために、従来の水素精製装置は大型の構成になってい
る。また、従来の水素精製装置は使用中に透過膜構造体
にピンホールができる故障が起こりやすく、これは焼結
体を用いているためとおもえるが、修理は新品のパラジ
ウム合金の細管に取り替えて不良品は捨てられていたの
で修理費が高額になっていた。
The conventional structure of the palladium alloy thin tube has the above-mentioned structure, so that the film forming process is complicated and unsuitable for mass production, and therefore has a disadvantage of high cost. Further, a cylinder formed of a sintered body has a drawback that the permeation efficiency of hydrogen varies depending on the particle diameter and density, and the quality varies. This is because when the particle size of the sintered body is large, the thickness of the palladium alloy is increased so as to eliminate pinholes,
On the other hand, when it is small, the area through which hydrogen passes is small, and in any case, there is a disadvantage that the hydrogen transmission efficiency is reduced. Further, in order to heat the conventional palladium alloy structure to a high temperature of about 500 ° C., the conventional hydrogen purifier has a large configuration. In addition, conventional hydrogen purifiers tend to cause pinholes in the permeable membrane structure during use, which is likely to be due to the use of a sintered body.However, repairs should be replaced with new tubes of new palladium alloy. Defective products were discarded, so repair costs were high.

【0004】本発明の第一の目的は、従来の欠点を解消
するためになされ、透過効率のよい、パラジウム合金の
透過膜構造体を低コストで提供することにある。また、
本発明の第二の目的は、上記透過膜構造体の製造方法を
低コストで提供することにある。また、本発明の第三の
目的は、上記透過膜構造体を用いて従来より小型の水素
精製装置を低コストで提供することにある。
[0004] A first object of the present invention is to provide a permeable membrane structure made of a palladium alloy at a low cost, which has been made in order to solve the conventional disadvantages and has a high permeation efficiency. Also,
A second object of the present invention is to provide a method for manufacturing the permeable membrane structure at low cost. Further, a third object of the present invention is to provide a hydrogen purifier that is smaller than the conventional one by using the above permeable membrane structure at low cost.

【0005】[0005]

【課題を解決するための手段】従来技術の課題を解決す
るための手段を以下に記す。本発明の基本とする透過膜
構造体の部分を図1に示す。この透過膜構造体は透過膜
であるパラジウム合金膜1と格子形状の支持枠2から構
成されている。支持枠2は機械的にパラジウム合金膜1
を支え、格子の窓部3のパラジウム合金膜1で水素が精
製される構造である。このため、支持枠2に比べて窓部
3の占める面積が大きいほど水素精製効率が良く、また
パラジウム合金膜1の膜厚が薄いほど水素の透過効率が
高い。この透過膜構造体は主に薄膜のシート状で形成さ
れ、水素精製装置に組み込まれる形状は平板もしくは円
筒形構造になる。格子ピッチが同じ場合、透過効率を上
げるためパラジウム合金膜1の張られた格子窓を広く、
格子枠の幅を狭くしたほうがよいが、この透過膜構造体
を機械的に強い構造にするには支持枠2である格子の厚
さを十分に厚くする必要がある。この格子構造は光また
はX線リソグラフィと電解鍍金の技術によって容易に大
面積のものを形成できる。また、この製造法は再現性が
良いので低コスト化できやすい特徴がある。また、パラ
ジウム合金膜1は支持枠2と同様に電解鍍金によって形
成するので膜質がよく、この結果、薄い膜厚でもピンホ
ールがないことがこの構成の特徴である。パラジウム合
金膜1の膜厚は使用圧力に十分耐えられるように格子構
造と関連して決められるが通常、20μm程度であり、
これは従来構造の厚さ約60μmに比べて大幅に薄くで
きるので、水素の透過効率が著しく向上する。以上、本
発明の第一の目的は、透過膜であるパラジウム合金膜と
格子形状の支持枠からなる透過膜構造体によって達成さ
れる。本発明の第二の目的は、光またはX線リソグラフ
ィと電解鍍金の技術による製造方法により達成される。
本発明の第三の目的は、透過効率のよい本発明の透過膜
構造体を用いて達成される。
Means for solving the problems of the prior art are described below. FIG. 1 shows a portion of a permeable membrane structure which is the basis of the present invention. This permeable membrane structure is composed of a palladium alloy membrane 1 as a permeable membrane and a lattice-shaped support frame 2. The support frame 2 is mechanically a palladium alloy film 1
And the hydrogen is purified by the palladium alloy film 1 in the window 3 of the lattice. Therefore, the larger the area occupied by the window portion 3 than the support frame 2, the better the hydrogen purification efficiency, and the thinner the film thickness of the palladium alloy film 1, the higher the hydrogen permeation efficiency. This permeable membrane structure is mainly formed in a thin-film sheet shape, and the shape incorporated in the hydrogen purification device is a flat plate or a cylindrical structure. When the lattice pitch is the same, the lattice window over which the palladium alloy film 1 is stretched to increase the transmission efficiency,
It is better to make the width of the grid frame narrower, but in order to make this permeable membrane structure mechanically strong, it is necessary to make the grid as the support frame 2 sufficiently thick. This lattice structure can be easily formed in a large area by the technique of light or X-ray lithography and electrolytic plating. Further, this manufacturing method has a feature that the cost can be easily reduced because of good reproducibility. Further, the palladium alloy film 1 is formed by electrolytic plating similarly to the support frame 2, so that the film quality is good. As a result, there is no pinhole even with a small film thickness. The thickness of the palladium alloy film 1 is determined in relation to the lattice structure so as to sufficiently withstand the working pressure, but is usually about 20 μm.
Since this can be made much thinner than the conventional structure having a thickness of about 60 μm, the hydrogen permeation efficiency is remarkably improved. As described above, the first object of the present invention is achieved by a permeable membrane structure including a palladium alloy membrane as a permeable membrane and a lattice-shaped support frame. The second object of the present invention is achieved by a manufacturing method using optical or X-ray lithography and electrolytic plating.
The third object of the present invention is achieved by using the permeable membrane structure of the present invention having high transmission efficiency.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施例を図1〜9
を用いて説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
This will be described with reference to FIG.

【0007】実施例1 まず、第一の実施例を図1により詳細に説明する。これ
は本発明の一実施例を示す透過膜構造体の部分の斜視図
である。透過膜構造体は透過膜であるパラジウム合金膜
1と格子形状の支持枠2から構成されている。支持枠2
は電解鍍金によって形成されたNiもしくはNiPd等
の合金である。透過膜は支持枠2と同様に電解鍍金によ
って形成されたPd層とAg層の構成を熱処理によって
合金化したパラジウム合金膜1である。この寸法は例え
ば格子の厚さ:60μmで格子枠幅:20μm、格子
窓:100μmに対してパラジウム合金膜厚:5μmで
ある。この場合、窓部の水素透過の有効面積は69%で
あり、従来の焼結体に比べて十分大きい。X線リソグラ
フィによってパターンを形成すると同様の格子の厚さに
対して、格子幅:5μm、格子窓:115μmを再現性
よく形成できるので水素透過の窓部の有効面積は92%
に向上する。なお、支持枠の窓形状は正方形や長方形に
限定されるものではない。本発明の透過膜構造体はリソ
グラフィと電解鍍金によって形成されるので大面積の板
状製品が容易に得られる。このため大量に製造できるの
でコストを大幅に下げることができる特徴がある。ま
た、本発明の如く格子状の透過膜構造体は異物などによ
るピンホールの故障を修復することが可能である。これ
は、支持枠が格子の構成のためピンホール箇所を探し、
この部分を鍍金などの金属で覆い修理することが容易に
できるためである。このシステムによって本発明による
透過膜構造体は全数が再生利用でき、大幅なコスト低減
がはかれる。
Embodiment 1 First, a first embodiment will be described in detail with reference to FIG. This is a perspective view of a portion of a permeable membrane structure showing one embodiment of the present invention. The permeable membrane structure is composed of a palladium alloy membrane 1 which is a permeable membrane and a lattice-shaped support frame 2. Support frame 2
Is an alloy such as Ni or NiPd formed by electrolytic plating. The permeable film is a palladium alloy film 1 obtained by alloying the structure of a Pd layer and an Ag layer formed by electrolytic plating with heat treatment, similarly to the support frame 2. The dimensions are, for example, a lattice thickness: 60 μm, a lattice frame width: 20 μm, a lattice window: 100 μm, and a palladium alloy film thickness: 5 μm. In this case, the effective area of the window for hydrogen permeation is 69%, which is sufficiently larger than the conventional sintered body. When a pattern is formed by X-ray lithography, a grid width: 5 μm and a grid window: 115 μm can be formed with good reproducibility with respect to the same grid thickness, so that the effective area of the hydrogen-permeable window is 92%.
To improve. The window shape of the support frame is not limited to a square or a rectangle. Since the permeable membrane structure of the present invention is formed by lithography and electrolytic plating, a large-area plate-shaped product can be easily obtained. For this reason, since it can be manufactured in large quantities, there is a feature that the cost can be greatly reduced. Further, as in the present invention, the lattice-shaped permeable membrane structure can repair a failure of a pinhole due to a foreign substance or the like. This is because the support frame looks for pinholes because of the lattice structure,
This is because this portion can be easily repaired by covering it with metal such as plating. With this system, all of the permeable membrane structures according to the present invention can be recycled, and the cost can be significantly reduced.

【0008】実施例2 次に、第二の実施例を図2により詳細に説明する。これ
は、第一の実施例で述べた透過膜構造体の別の構造であ
る。透過膜構造体は透過膜であるパラジウム合金膜21
と金属網形状の支持枠22から構成されている。この支
持枠22は通常入手可能なステンレス鋼細線やNi細線
からなる網(メッシュ)である。透過膜は電解鍍金によ
って形成されたPd層とAg層の構成を熱処理によって
合金化したパラジウム合金膜21である。この寸法は例
えばメッシュのピッチ:約100μm、細線の直径:5
0μmに対してパラジウム合金膜厚:30μmである。
水素ガスはメッシュの隙間を通ってパラジウム合金膜に
よって精製される。この実施例では、リソグラフィ技術
が不要になり市販のメッシュの支持枠に電解鍍金で透過
膜構造体を形成する構造なので大幅にコストが低減でき
る。
Embodiment 2 Next, a second embodiment will be described in detail with reference to FIG. This is another structure of the permeable membrane structure described in the first embodiment. The permeable membrane structure is a palladium alloy membrane 21 which is a permeable membrane.
And a metal net-shaped support frame 22. The support frame 22 is a mesh (mesh) made of a normally available stainless steel thin wire or Ni thin wire. The permeable film is a palladium alloy film 21 obtained by alloying a Pd layer and an Ag layer formed by electrolytic plating with heat treatment. The dimensions are, for example, mesh pitch: about 100 μm, fine wire diameter: 5
The thickness of the palladium alloy is 30 μm with respect to 0 μm.
The hydrogen gas is purified by the palladium alloy film through the gap of the mesh. In this embodiment, the lithography technique is not required, and the structure is such that the permeable membrane structure is formed by electrolytic plating on the support frame of a commercially available mesh, so that the cost can be greatly reduced.

【0009】以上、実施例1〜2では本発明の透過膜構
造体の例を述べたが、本発明の主旨は透過膜構造体に支
持枠を用いた構成を基本としているので、実施例で述べ
た支持枠の形状や製法に限定されるものではなく、例え
ばパラジウム合金膜と支持枠を接着あるいは圧着してこ
の構造を形成してもよい。
Although the examples of the permeable membrane structure of the present invention have been described in the first and second embodiments, the gist of the present invention is based on a configuration using a support frame for the permeable membrane structure. The structure and the manufacturing method of the support frame described above are not limited. For example, a palladium alloy film and the support frame may be bonded or pressed to form this structure.

【0010】実施例3 次に、第三の実施例を図3により詳細に説明する。これ
は実施例1で述べた透過膜構造体の製造方法の一実施例
である。例えばステンレス鋼板のような導電性基板35
に電解鍍金でPd−Agの構成からなる透過膜(熱処理
後パラジウム合金膜となる)31を5μmの厚さに形成
する(a)。つぎに、この表面に、ホトリソグラフィに
より所望のホトレジストパターン33を形成する。この
膜厚は60μmで、パターン形状のスペース幅は20μ
m、ピッチは120μmである(b)。続いて、電解鍍
金でニッケル製の格子の支持枠32をホトレジストパタ
ーン33と同じ厚さ(60μm)に形成する(c)。こ
の後、ホトレジストパターン33を除去し支持枠32が
得られる(d)。さらに、導電性基板35を透過膜31
より取り去り透過膜31と支持枠32からなる透過膜構
造体を製作する(e)。この透過膜構造体は製造設備に
もよるが、通常は容易に幅60cmのシート状の形成が
できる。ホトレジストパターンの形成に代わってX線リ
ソグラフィ技術を用いるとスペースパターンの高さ/幅
比が約15で加工形成でき、強度の強い格子枠と有効面
積の大きな格子窓の構造を形成できる特徴がある。
Embodiment 3 Next, a third embodiment will be described in detail with reference to FIG. This is one embodiment of the method for manufacturing the permeable membrane structure described in the first embodiment. For example, a conductive substrate 35 such as a stainless steel plate
Then, a permeable film (which becomes a palladium alloy film after heat treatment) 31 having a structure of Pd-Ag is formed to a thickness of 5 μm by electrolytic plating (a). Next, a desired photoresist pattern 33 is formed on this surface by photolithography. This film thickness is 60 μm, and the space width of the pattern shape is 20 μm.
m, pitch is 120 μm (b). Subsequently, a nickel grid support frame 32 is formed to the same thickness (60 μm) as the photoresist pattern 33 by electrolytic plating (c). Thereafter, the photoresist pattern 33 is removed to obtain the support frame 32 (d). Further, the conductive substrate 35 is connected to the permeable film 31.
Then, a permeable membrane structure including the permeable membrane 31 and the support frame 32 is manufactured (e). This permeable membrane structure can be easily formed into a sheet having a width of 60 cm, although it depends on the manufacturing equipment. When X-ray lithography is used instead of the photoresist pattern, the space pattern can be processed and formed with a height / width ratio of about 15, and has a feature that a structure of a grid frame having a strong strength and a grid window having a large effective area can be formed. .

【0011】実施例4 次に、第四の実施例を図4により詳細に説明する。これ
は実施例2で述べた透過膜構造体の製造方法の一実施例
である。ステンレス鋼板の網(メッシュ)42を導電性
基板であるステンレス鋼板45に密着し(a)、これ全
体を電解鍍金し膜厚、約50μmの銅膜43を形成する
(b)。銅は化学液で溶解しやすい金属層の一例であ
る。この銅鍍金材43をステンレス鋼板45から取り外
した後の平面に、電解鍍金でPd−Agの構成からなる
透過膜(熱処理後パラジウム合金膜となる)41を30
μmの厚さに形成する(c)。この後、鍍金した銅だけ
を化学エッチングで除去し透過膜構造体を形成する
(d)。これで機械的強度の十分な、支持枠であるステ
ンレス鋼板の網(メッシュ)42の一部と透過膜41が
密着した構造が得られる。
Embodiment 4 Next, a fourth embodiment will be described in detail with reference to FIG. This is one embodiment of the method for manufacturing the permeable membrane structure described in the second embodiment. A mesh (mesh) 42 of a stainless steel plate is closely attached to a stainless steel plate 45 as a conductive substrate (a), and the whole is electrolytically plated to form a copper film 43 having a thickness of about 50 μm (b). Copper is an example of a metal layer that is easily dissolved in a chemical solution. After the copper plating material 43 is removed from the stainless steel plate 45, a permeable film 41 (which becomes a palladium alloy film after heat treatment) 41 made of Pd-Ag by electrolytic plating is placed on the flat surface.
It is formed to a thickness of μm (c). Thereafter, only the plated copper is removed by chemical etching to form a permeable membrane structure (d). As a result, a structure in which a part of the stainless steel plate mesh (mesh) 42 as a support frame and the permeable membrane 41 have sufficient mechanical strength is obtained.

【0012】以上、実施例3〜4では本発明の透過膜構
造体の製造方法の例を述べたが、本発明の主旨は透過膜
構造体の構成の基本を透過膜と支持枠として製造方法が
なされることを特徴としているので、実施例で述べた製
造方法に限定されるものではない。
Although the examples of the method for manufacturing the permeable membrane structure according to the present invention have been described in Examples 3 and 4, the gist of the present invention is that the manufacturing method is based on the basic structure of the permeable membrane structure as a permeable membrane and a support frame. Therefore, the present invention is not limited to the manufacturing method described in the embodiment.

【0013】実施例5 次に、第五の実施例を図5により詳細に説明する。これ
は実施例1で述べた透過膜構造体を用いた水素精製装置
の構成における一実施例である。パラジウム合金膜51
と格子形状の支持枠52からなる円筒状の透過膜構造体
50はステンレス製の容器55に補強部品53や金属シ
ール54、54’を用いて機密封止される。円筒状の構
造は、シート状の透過膜構造体を円筒状に加工し、この
継ぎ部分だけを電解鍍金によって鍍金金属で接合してシ
ームレスで気密性が保てる構造に構成される。これを熱
源56によって約500℃の温度で加熱し、加圧した原
料ガス57を円筒状の透過膜構造体50の外側からいれ
て、水素だけをこの内側に浸透させて高純度の水素ガス
58を得る構成である。浸透で内側に透過できない不純
物ガスは水素ガスと一緒にブリードガス59として外に
排出される。これに用いる透過膜構造体は図2の構造で
あってもよい。
Embodiment 5 Next, a fifth embodiment will be described in detail with reference to FIG. This is an example of the configuration of the hydrogen purifier using the permeable membrane structure described in the first embodiment. Palladium alloy film 51
And the cylindrical permeable membrane structure 50 composed of the lattice-shaped support frame 52 is hermetically sealed in a stainless steel container 55 using a reinforcing component 53 and metal seals 54 and 54 '. The cylindrical structure is formed by processing a sheet-shaped permeable membrane structure into a cylindrical shape, and joining only this joint portion with a plating metal by electrolytic plating to maintain a seamless and airtight structure. This is heated by a heat source 56 at a temperature of about 500 ° C., and a pressurized raw material gas 57 is introduced from the outside of the cylindrical permeable membrane structure 50, and only hydrogen is permeated into the inside thereof to form a high-purity hydrogen gas 58. Is obtained. The impurity gas that cannot be permeated inward by permeation is discharged outside as a bleed gas 59 together with the hydrogen gas. The permeable membrane structure used for this may have the structure of FIG.

【0014】実施例6 次に、第六の実施例を図6により詳細に説明する。これ
は実施例5で述べた水素精製装置の別の実施例である。
パラジウム合金膜61と格子形状の支持枠62からなる
透過膜構造体60は膜厚が薄いにもかかわらず、格子構
造のため丈夫で扱いやすいので直径の小さな円筒状に加
工しやすい特徴がある。この長所を生かした構成が本発
明の実施例である。シームレス細管の透過膜構造体60
を多数本並べて、水素ガスの透過面積を増やしたことが
特徴である。これによって、同じ容量の装置なら小型化
できる。また、ステンレス製の容器65に透過膜構造体
60を密集させてあるので、熱源66でこれを加熱する
効率は従来のものより優れている。なお、加圧した原料
ガス67を円筒の外側からいれて、高純度の水素ガス6
8を内側から得る構成は前記と同じだが、この逆であっ
てもよい。これに用いる透過膜構造体は図2の構造であ
ってもよい。
Embodiment 6 Next, a sixth embodiment will be described in detail with reference to FIG. This is another embodiment of the hydrogen purifier described in the fifth embodiment.
The permeable membrane structure 60 composed of the palladium alloy film 61 and the lattice-shaped support frame 62 has a feature that, despite its thin film thickness, it is durable and easy to handle because of the lattice structure, so that it can be easily processed into a small-diameter cylindrical shape. A configuration utilizing this advantage is an embodiment of the present invention. Seamless capillary tube permeable membrane structure 60
Are arranged in large numbers to increase the hydrogen gas permeation area. This allows a device of the same capacity to be miniaturized. In addition, since the permeable membrane structure 60 is densely packed in the stainless steel container 65, the efficiency of heating the structure with the heat source 66 is superior to the conventional one. The pressurized raw material gas 67 is introduced from the outside of the cylinder, and high-purity hydrogen gas 6
The configuration for obtaining 8 from the inside is the same as above, but may be reversed. The permeable membrane structure used for this may have the structure of FIG.

【0015】実施例7 次に、第七の実施例を図7により詳細に説明する。これ
は実施例5と6で述べた水素精製装置とは異なる他の実
施例である。パラジウム合金膜71と格子形状の支持枠
72からなる透過膜構造体70は基本的にはシート形状
で用いることが特徴である。透過膜構造体70は膜厚が
薄いにもかかわらず、格子構造のため丈夫で扱いやすい
のでこれを2枚づつ平行に組み合わせて水素精製装置の
透過膜構造を形成する。平行板のギャップは数mm以下
で十分である。大きな面積のシートを用いるときは透過
膜構造体70が加圧に耐えるよう適当な補強構造を付加
する。この水素精製装置の特徴は容積の小さな中に透過
面積の大きな透過膜構造を配置できることで、同じ精製
能力を持つ装置なら大幅に小型化できることである。熱
源76による加熱効率は小型化できたことによって著し
く向上した。なお、加圧した原料ガス77を板の外側か
ら入れて、高純度の水素ガス78を板の内側から得る原
理は前記のものと同じで、また、この逆であってもよ
い。これに用いる透過膜構造体は図2の構造であっても
よい。
Embodiment 7 Next, a seventh embodiment will be described in detail with reference to FIG. This is another embodiment different from the hydrogen purifier described in the fifth and sixth embodiments. The permeable membrane structure 70 including the palladium alloy film 71 and the lattice-shaped support frame 72 is characterized in that it is basically used in a sheet shape. Even though the permeable membrane structure 70 is thin, it is durable and easy to handle because of the lattice structure. Therefore, two of them are combined in parallel to form the permeable membrane structure of the hydrogen purifier. A gap of several mm or less is sufficient for the parallel plate. When a sheet having a large area is used, an appropriate reinforcing structure is added so that the permeable membrane structure 70 withstands pressure. The feature of this hydrogen purification apparatus is that a permeable membrane structure having a large permeation area can be arranged in a small volume, so that an apparatus having the same purification capacity can be significantly reduced in size. The heating efficiency by the heat source 76 has been remarkably improved due to the miniaturization. The principle of supplying the pressurized source gas 77 from the outside of the plate and obtaining the high-purity hydrogen gas 78 from the inside of the plate is the same as that described above, and vice versa. The permeable membrane structure used for this may have the structure of FIG.

【0016】実施例8 次に、第八の実施例を図8と図9により詳細に説明す
る。これも実施例7で述べた水素精製装置と同様にパラ
ジウム合金膜と格子形状の支持枠からなる透過膜構造体
80c、90cをシート状で用いることが特徴である。
図8は透過膜構造体80cを単位セルとして用いた構造
図の一例である。単位セルの容器85c、85c’に上
記透過膜構造体80cを金属シール84c、84c’に
よって気密封止し、同図断面の左右の室は隔壁である透
過膜構造体80cによって完全に隔離された構造であ
る。同図断面の左室は原料ガス87cとブリードガス8
9cの配管で、また、右室は高純度の水素ガス88cの
配管で接続されている。通常、左右室とも間隙が狭いの
で隔壁は加圧に強く、また、適当に補強構造を付加して
強度をもたせてもよい。この構造は水素精製装置の単位
構成にあたり、これを多数個並列に使って容量の大きな
水素精製装置の構成となる。この一実施例を図9に示
す。これは10個のセルを用いた例で、原料ガス97は
熱源96で加熱された各々の隔壁の透過膜構造体90c
を透過して全体で大量の高純度の水素ガス98が得られ
る。この構成では単位セルが極端に小型、軽量に製作で
きるので、水素精製装置も大幅に小型、軽量化でき低廉
で製造できる特徴がある。また、単位セル毎がバルブで
開閉できるので、ピンホールの故障に対応しやすく、装
置の修理を単位セル毎に交換できるので修理代が低コス
ト化できる効果がある。また、単位セルの構造は上記の
単位セルの表面に熱源を取り付け、これを一つのユニッ
トとする構成であってもよい。これに用いる透過膜構造
体は図2の構造であってもよい。
Embodiment 8 Next, an eighth embodiment will be described in detail with reference to FIGS. This is also characterized in that the permeable membrane structures 80c and 90c composed of a palladium alloy membrane and a lattice-shaped support frame are used in the form of a sheet, similarly to the hydrogen purifier described in the seventh embodiment.
FIG. 8 is an example of a structural diagram using the permeable membrane structure 80c as a unit cell. The permeable membrane structure 80c is hermetically sealed in the unit cell containers 85c and 85c ′ by metal seals 84c and 84c ′, and the left and right chambers in the cross section in the figure are completely isolated by the permeable membrane structure 80c as a partition. Structure. The left chamber of the cross section in the figure is the source gas 87c and the bleed gas 8
The right chamber is connected by a pipe of high-purity hydrogen gas 88c. Usually, since the gap is small in both the left and right chambers, the partition walls are resistant to pressurization, and may be strengthened by appropriately adding a reinforcing structure. This structure corresponds to a unit configuration of a hydrogen purifier, and a large number of hydrogen purifiers are used in parallel to form a large-capacity hydrogen purifier. This embodiment is shown in FIG. This is an example in which ten cells are used, and the raw material gas 97 is heated by the heat source 96 and the permeable membrane structure 90 c of each partition is heated.
And a large amount of high-purity hydrogen gas 98 is obtained as a whole. In this configuration, since the unit cell can be manufactured extremely small and lightweight, the hydrogen purifier can be significantly reduced in size and weight and can be manufactured at low cost. In addition, since each unit cell can be opened and closed by a valve, it is easy to deal with a pinhole failure, and since the device can be repaired for each unit cell, the cost of repair can be reduced. Further, the structure of the unit cell may be such that a heat source is attached to the surface of the unit cell and the unit is used as one unit. The permeable membrane structure used for this may have the structure of FIG.

【0017】以上、実施例4〜8では本発明の透過膜構
造体を実装した水素精製装置の基本構成例を述べたが、
本発明の主旨は支持枠を持つ透過膜構造体を用いて高純
度の水素ガスを得る装置を提供することを特徴としてい
るので、実施例で述べた構成に限定されるものではな
い。
As described above, in Examples 4 to 8, examples of the basic structure of the hydrogen purifier equipped with the permeable membrane structure of the present invention have been described.
The gist of the present invention is to provide a device for obtaining high-purity hydrogen gas using a permeable membrane structure having a support frame, and is not limited to the configuration described in the embodiment.

【0018】[0018]

【発明の効果】【The invention's effect】

(1)水素精製装置の透過膜構造体をパラジウム合金膜
と支持枠で構成するすることにより、水素精製効率が大
幅に向上することができた。 (2)本発明の透過膜構造体は光またはX線リソグラフ
ィと電解鍍金の技術によって形成するので、製造歩留ま
りが高く、大面積の製品を量産できるようになり、この
部品を低コストで供給できるようになった。 (3)上記の透過膜構造体を水素精製装置に実装し、高
性能で小型の装置を低廉で製造できるようになった。
(1) By constructing the permeable membrane structure of the hydrogen purifier with a palladium alloy membrane and a support frame, the hydrogen purification efficiency could be greatly improved. (2) Since the permeable membrane structure of the present invention is formed by the technique of light or X-ray lithography and electrolytic plating, the production yield is high, large-area products can be mass-produced, and this part can be supplied at low cost. It became so. (3) The above-mentioned permeable membrane structure is mounted on a hydrogen purification device, and a high-performance, small-sized device can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の透過膜構造体の斜視図。FIG. 1 is a perspective view of a permeable membrane structure according to a first embodiment of the present invention.

【図2】本発明の実施例2の透過膜構造体の側断面図。FIG. 2 is a side sectional view of a permeable membrane structure according to a second embodiment of the present invention.

【図3】本発明の実施例2のラッピングキャリヤの一部
の側断面図。
FIG. 3 is a side sectional view of a part of a wrapping carrier according to a second embodiment of the present invention.

【図4】本発明の実施例1の透過膜構造体の主要製造工
程における側断面図。
FIG. 4 is a side sectional view showing a main manufacturing step of the permeable membrane structure according to the first embodiment of the present invention.

【図5】本発明の透過膜構造体を用いた実施例5の水素
精製装置の一構成図。
FIG. 5 is a configuration diagram of a hydrogen purification apparatus according to a fifth embodiment using the permeable membrane structure of the present invention.

【図6】本発明の透過膜構造体を用いた実施例6の水素
精製装置の別の構成図。
FIG. 6 is another configuration diagram of the hydrogen purification apparatus of Embodiment 6 using the permeable membrane structure of the present invention.

【図7】本発明の透過膜構造体を用いた実施例7の水素
精製装置の他の構成図。
FIG. 7 is another configuration diagram of the hydrogen purification apparatus of Embodiment 7 using the permeable membrane structure of the present invention.

【図8】本発明の透過膜構造体を用いた実施例8の水素
精製装置用単位セルの構成図。
FIG. 8 is a configuration diagram of a unit cell for a hydrogen purification apparatus according to Embodiment 8 using the permeable membrane structure of the present invention.

【図9】本発明の透過膜構造体を用いた実施例8の水素
精製装置の一構成図。
FIG. 9 is a configuration diagram of a hydrogen purification apparatus according to Embodiment 8 using the permeable membrane structure of the present invention.

【図10】従来のパラジウム合金膜の細管を用いた水素
精製装置の構成図。
FIG. 10 is a configuration diagram of a conventional hydrogen purification apparatus using a thin tube of a palladium alloy membrane.

【符号の説明】[Explanation of symbols]

10、20、30、40、50、60、70、80c、
90c、100…透過膜構造体 1、21、31、41、51、61、71…パラジウム
合金膜 2、22、32、42、52、62、72…支持枠 35、45…導電性基板 33…ホトレジストパターン 43…銅鍍金層 53…補強部品 54、54’、84c、84c’…金属シール 55、65、75、105…容器 85c、85’c…単位セル容器 56、66、76、96、106…熱源 57、67、77、87c、97、107…原料ガス 58、68、78、88c、98、108…高純度の水
素ガス 59、69、79、89c、99、109…ブリードガ
ス。
10, 20, 30, 40, 50, 60, 70, 80c,
90c, 100: permeable membrane structure 1, 21, 31, 41, 51, 61, 71: palladium alloy film 2, 22, 32, 42, 52, 62, 72 ... support frame 35, 45 ... conductive substrate 33 ... Photoresist pattern 43 Copper plating layer 53 Reinforcement parts 54, 54 ', 84c, 84c' Metal seal 55, 65, 75, 105 Container 85c, 85'c Unit cell container 56, 66, 76, 96, 106 ... Heat sources 57, 67, 77, 87c, 97, 107 ... Source gases 58, 68, 78, 88c, 98, 108 ... High-purity hydrogen gas 59, 69, 79, 89c, 99, 109 ... Bleed gas.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水素ガス精製用透過膜構造体において、
透過膜が支持枠に固定され、同支持枠の窓部が透過膜で
覆われた構造をもつことを特徴とした透過膜構造体。
1. A permeable membrane structure for hydrogen gas purification,
A permeable membrane structure having a structure in which a permeable membrane is fixed to a support frame and a window of the support frame is covered with the permeable membrane.
【請求項2】 水素ガス精製用透過膜構造体において、
支持枠の形状が格子であることを特徴とした請求項1記
載の透過膜構造体。
2. A permeable membrane structure for hydrogen gas purification,
The permeable membrane structure according to claim 1, wherein the shape of the support frame is a lattice.
【請求項3】 水素ガス精製用透過膜構造体において、
少なくとも透過膜が電解鍍金によって形成されたことを
特徴とした請求項1〜2記載の透過膜構造体。
3. A permeable membrane structure for hydrogen gas purification,
The permeable membrane structure according to claim 1, wherein at least the permeable membrane is formed by electrolytic plating.
【請求項4】 水素ガス精製用透過膜構造体において、
透過膜は電解鍍金によって形成されたパラジウムと銀の
層を含む構成であることを特徴とした請求項1〜3記載
の透過膜構造体。
4. A permeable membrane structure for hydrogen gas purification,
The permeable membrane structure according to claim 1, wherein the permeable membrane includes a palladium and silver layer formed by electrolytic plating.
【請求項5】 水素ガス精製用透過膜構造体の製造方法
において、導電性基板に電解鍍金で透過膜となるパラジ
ウムと銀の層を形成する工程と、この表面にX線もしく
はホトリソグラフィにより所望のホトレジストパターン
を形成する工程と、電解鍍金で支持枠となる金属層を形
成する工程と、ホトレジストパターンを除去する工程
と、導電性基板を透過膜層から取り去る工程、とを基本
とした透過膜構造体の製造方法。
5. A method for producing a permeable membrane structure for purifying hydrogen gas, comprising the steps of: forming a layer of palladium and silver as a permeable membrane by electroplating on a conductive substrate; and forming a desired surface on the surface by X-ray or photolithography. Forming a photoresist pattern, forming a metal layer serving as a support frame by electrolytic plating, removing the photoresist pattern, and removing the conductive substrate from the permeable film layer. The method of manufacturing the structure.
【請求項6】 水素ガス精製用透過膜構造体の製造方法
において、導電性基板に金属性メッシュを密着する工程
と、この表面に化学液で溶解しやすい金属層を電解鍍金
で被着する工程と、導電性基板を鍍金した金属メッシュ
から取り去る工程と、取り去った表面に透過膜となるパ
ラジウムと銀の層を電解鍍金で形成する工程と、化学液
で溶解しやすい金属層を取り去る工程、とを基本とした
透過膜構造体の製造方法。
6. A method for producing a permeable membrane structure for purifying hydrogen gas, comprising the steps of: adhering a metallic mesh to a conductive substrate; and applying a metal layer that is easily dissolved by a chemical solution to the surface by electrolytic plating. And a step of removing the conductive substrate from the plated metal mesh, a step of forming a layer of palladium and silver serving as a permeable film on the removed surface by electrolytic plating, and a step of removing a metal layer that is easily dissolved by a chemical solution. A method for manufacturing a permeable membrane structure based on the above.
【請求項7】 水素ガス精製装置において、請求項1〜
4記載のいずれかの透過膜構造体を用いて装置を構成し
たことを特徴とした水素ガス精製装置。
7. A hydrogen gas purifying apparatus according to claim 1, wherein
5. A hydrogen gas purifying apparatus, wherein the apparatus is constituted by using any one of the permeable membrane structures according to 4.
【請求項8】 水素ガス精製装置において、請求項1〜
4記載のいずれかの透過膜構造体により平面状に間隔を
開けて積層した構造を形成しこれを用いて装置を構成し
たことを特徴とした水素ガス精製装置。
8. A hydrogen gas purifying apparatus according to claim 1, wherein
5. A hydrogen gas purification apparatus, wherein a structure is formed by laminating two or more permeable membrane structures in a plane at intervals, and an apparatus is configured using the structure.
【請求項9】 水素ガス精製装置において、請求項1〜
4記載のいずれかの透過膜構造体を単位セルの容器内で
シート状の隔壁として用いて水素ガス精製装置の単位セ
ルを形成し、1個もしくは2個以上の上記単位セルを並
列に用いて装置を構成したことを特徴とした水素ガス精
製装置。
9. A hydrogen gas purifying apparatus according to claim 1, wherein
4. A unit cell of a hydrogen gas purification apparatus is formed by using any of the permeable membrane structures according to 4 as a sheet-shaped partition in a container of the unit cell, and using one or two or more unit cells in parallel A hydrogen gas refining device comprising a device.
JP30632197A 1997-10-02 1997-10-02 Permeable membrane structural body for hydrogen refining, its manufacture and hydrogen refining apparatus using the same Pending JPH11104472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30632197A JPH11104472A (en) 1997-10-02 1997-10-02 Permeable membrane structural body for hydrogen refining, its manufacture and hydrogen refining apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30632197A JPH11104472A (en) 1997-10-02 1997-10-02 Permeable membrane structural body for hydrogen refining, its manufacture and hydrogen refining apparatus using the same

Publications (1)

Publication Number Publication Date
JPH11104472A true JPH11104472A (en) 1999-04-20

Family

ID=17955711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30632197A Pending JPH11104472A (en) 1997-10-02 1997-10-02 Permeable membrane structural body for hydrogen refining, its manufacture and hydrogen refining apparatus using the same

Country Status (1)

Country Link
JP (1) JPH11104472A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011130A1 (en) * 2002-07-25 2004-02-05 Dai Nippon Insatsu Kabushiki Kaisha Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
JP2004057993A (en) * 2002-07-31 2004-02-26 Dainippon Printing Co Ltd Method of manufacturing hydrogen producing filter
JP2004057866A (en) * 2002-07-25 2004-02-26 Dainippon Printing Co Ltd Method of manufacturing hydrogen producing filter
JP2013126685A (en) * 2011-12-16 2013-06-27 Industrial Technology Research Inst Method of fabricating porous medium and inorganic selective membrane
KR20150085775A (en) * 2014-01-16 2015-07-24 니폰 파이오니쿠스 가부시키가이샤 Palladium alloy membrane unit, storage structure thereof, and method of purifying hydrogen by using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972373A1 (en) * 2002-07-25 2008-09-24 Dai Nippon Insatsu Kabushiki Kaisha Production method of hydrogen production filter
US7803263B2 (en) 2002-07-25 2010-09-28 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
JP2004057866A (en) * 2002-07-25 2004-02-26 Dainippon Printing Co Ltd Method of manufacturing hydrogen producing filter
US7112287B2 (en) 2002-07-25 2006-09-26 Dai Nippon Insatsu Kabushiki Kaisha Thin film supporting substrate for used in filter for hydrogen production filter and method for manufacturing filter for hydrogen production
US7241396B2 (en) 2002-07-25 2007-07-10 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US7399423B2 (en) 2002-07-25 2008-07-15 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US8562847B2 (en) 2002-07-25 2013-10-22 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US7744990B2 (en) 2002-07-25 2010-06-29 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
WO2004011130A1 (en) * 2002-07-25 2004-02-05 Dai Nippon Insatsu Kabushiki Kaisha Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
US8163157B2 (en) 2002-07-25 2012-04-24 Dai Nippon Insatsu Kabushiki Kaisha Method of producing a hydrogen production filter
US8043519B2 (en) 2002-07-25 2011-10-25 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
JP4681201B2 (en) * 2002-07-31 2011-05-11 大日本印刷株式会社 HYDROGEN PRODUCTION FILTER AND ITS MANUFACTURING METHOD
JP2004057993A (en) * 2002-07-31 2004-02-26 Dainippon Printing Co Ltd Method of manufacturing hydrogen producing filter
JP2013126685A (en) * 2011-12-16 2013-06-27 Industrial Technology Research Inst Method of fabricating porous medium and inorganic selective membrane
KR20150085775A (en) * 2014-01-16 2015-07-24 니폰 파이오니쿠스 가부시키가이샤 Palladium alloy membrane unit, storage structure thereof, and method of purifying hydrogen by using the same

Similar Documents

Publication Publication Date Title
US8226751B2 (en) Composite membrane material for hydrogen separation and element for hydrogen separation using the same
EP0796647B1 (en) Hydrogen separation member
JP4991381B2 (en) Inorganic composite membrane for fluid separation
US7125440B2 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
WO2003069705B1 (en) Tubular solid oxide fuel cell stack
JP2007007565A (en) Reinforcing structure for hydrogen-permeable film, and its manufacturing method
JPH11276866A (en) Hydrogen-permeable membrane and its manufacture
JPH11104472A (en) Permeable membrane structural body for hydrogen refining, its manufacture and hydrogen refining apparatus using the same
JP2002533577A (en) Integrated screen / frame assembly for electrochemical cells
US7749305B1 (en) Composite structure for high efficiency hydrogen separation containing preformed nano-particles in a bonded layer
US8002875B1 (en) System and method for separating hydrogen gas from a mixed gas source using composite structure tubes
JP2003146602A (en) Device for manufacturing hydrogen
JP2001162144A (en) Gas separator
JP3801838B2 (en) Hydrogen gas separation unit and manufacturing method thereof
JPH11314902A (en) Permeation membrane for refining hydrogen gas and its production
JP2014211384A (en) Apparatus and method for nuclide conversion
Asai et al. Temperature dependence of photoinduced hydrogen production and simultaneous separation in TiO2 nanotubes/palladium bilayer membrane
JPH10297905A (en) Plate type hydrogen separation membrane module
JP2011101871A (en) Hydrogen-permeable membrane structure
CN113560708B (en) Method for connecting palladium-based alloy film and porous stainless steel carrier
CN212253365U (en) Hydrogen purification equipment
KR100914653B1 (en) Hydrogen separator and fabricating method thereof
JP2003095616A (en) Hydrogen separating purifier
JP2003305346A (en) Separation film laminate and production method for component using the same
JPH0516184Y2 (en)