JPH03273666A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPH03273666A
JPH03273666A JP2073709A JP7370990A JPH03273666A JP H03273666 A JPH03273666 A JP H03273666A JP 2073709 A JP2073709 A JP 2073709A JP 7370990 A JP7370990 A JP 7370990A JP H03273666 A JPH03273666 A JP H03273666A
Authority
JP
Japan
Prior art keywords
insulating film
compound semiconductor
deposited
substrate
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2073709A
Other languages
Japanese (ja)
Inventor
Kazuhisa Fujimoto
和久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2073709A priority Critical patent/JPH03273666A/en
Publication of JPH03273666A publication Critical patent/JPH03273666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain sufficient insulating properties required for inter-element isolation with excellent reproducibility by depositing an insulating film on a substrate region except an element region formed onto a compound semiconductor substrate thorugh plasma CVD and positively introducing damage due to the collisions of charged quanta to the compound semiconductor substrate. CONSTITUTION:Silicon ions are implanted selectively to a semi-insulating GaAs substrate 1 while using a resist as a mask to form element regions 3. An insulating film 4 such as a silicon oxide film, a silicon nitride film or the like is deposited on the surface of the GaAs substrate 1, and impurities are activated through heat treatment while using the insulating film 4 as a cap material. A resist mask for inter-element isolation is formed with the insulating film 4 being left as it is, and the insulating film 4 is bored selectively. The resist is removed, and an insulating film 9 such as silicon nitride is deposited while element isolation regions 5 are shaped. Accordingly, the insulating film is deposited by employing plasma CVD, thus introducing physical damage due to the collisions of SiH4 excited by a high-frequency electric field and NH3 plasma to the GaAs substrate at the initial stage of the deposition of the insulating film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体装置の製造方法 特にGaAs基
板を用いた半導体装置における素子間分離方法に関する
ものであも 従来の技術 従来から化合物半導体装置 特にGaAs基板を用いた
集積回路では 選択イオン注入を行ったのち熱処理を施
して集積回路を構成する素子を形成したの板 素子間領
域に′1B゛やI60*などをイオン注入することによ
り素子間分離をおこなっていtも第2図a−dζ友 従
来のGaAsショットキ・ゲート電界効果トランジスタ
(以下MESFETと略称する)を用いた集積回路の製
造方法を説明するための各工程における断面図であも 
同図において、半絶縁性GaAs基板1にレジスト2を
マスクとしてシリコンを選択イオン注入し素子領域3を
形成する(第2図a)。GaAs基板1の表面に酸化シ
リコン膜等の絶縁膜4をCVD法等により堆積させ、こ
れをキャップ材として800℃の窒素雰囲気中で20分
間はど熱処理を行ない不純物を活性化する(第2図b)
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a compound semiconductor device, particularly a method for isolating elements in a semiconductor device using a GaAs substrate. In integrated circuits using selective ion implantation, the elements constituting the integrated circuit are formed by selective ion implantation and heat treatment.The elements are isolated by implanting ions such as '1B' or I60* into the regions between the elements. Figures 2a-d are also cross-sectional views at each step for explaining a method for manufacturing an integrated circuit using a conventional GaAs Schottky gate field effect transistor (hereinafter abbreviated as MESFET).
In the figure, silicon is selectively ion-implanted into a semi-insulating GaAs substrate 1 using a resist 2 as a mask to form an element region 3 (FIG. 2a). An insulating film 4 such as a silicon oxide film is deposited on the surface of the GaAs substrate 1 by CVD or the like, and this is used as a cap material to perform heat treatment for 20 minutes in a nitrogen atmosphere at 800° C. to activate impurities (Fig. 2). b)
.

次に絶縁膜4を除去し 素子間分離用のレジストマスク
を形成したa  ”B”を注入し素子間を電気的に分離
する(第2図C)。ここで、 5は素子間分離領域であ
ム 続いてレジストを除去り、、  Au/Ge/Ni
を通常のりフトオフ法によって被着し 熱処理を行ない
ソース電極6及びドレイン電極7を形威すも 同様にし
てTi/Pt/Auをリフトオフしてゲート電極8を形
威り、FET(電界効果トランジスタ)を作製してGa
As集積回路が製造される(第2図d)。
Next, the insulating film 4 is removed, and a "B" formed with a resist mask for isolation between elements is implanted to electrically isolate the elements (FIG. 2C). Here, 5 is an isolation region between elements.Then, the resist is removed and Au/Ge/Ni
Ti/Pt/Au is deposited by the usual lift-off method and heat treated to form the source electrode 6 and drain electrode 7. In the same way, the Ti/Pt/Au is lifted off to form the gate electrode 8, and a FET (field effect transistor) is formed. Ga
An As integrated circuit is manufactured (FIG. 2d).

発明が解決しようとする課題 しかしながらこの様な従来の方法でるよ 素子間分離に
必要な十分な絶縁性を再現性良く得ることができ哄 隣
接する素子からの影響を受けFET(電界効果トランジ
スタ)の特性が変化するという問題点を有していtら 課題を解決するための手段 上記の問題点に対し本発明G&  化合物半導体基板上
に形成された素子領域を除く基板領域にプラズマCVD
 (化学気相堆積法)により絶縁膜を堆積させ、化合物
半導体基板に荷電量子の衝突による損傷を積極的に導入
することにより良好な素子間分離をおこなうものであも 作用 このようにしてプラズマCVDを用いて絶縁膜を堆積す
ることにより、素子領域以外のGaAs基板表面に荷電
粒子の衝突による損傷が導入されもその結果 基板の比
抵抗が高くなり、素子間分離が容易にかつ確実におこな
われも 実施例 第1図a−eは本発明の一実施例を説明するための図で
、各工程における断面図を示す。まず、半絶縁性GaA
s基板1にレジスト2をマスクとしてシリコンを選択イ
オン注入し素子領域(FET形成領域)3を形成する(
第1図a)。次にGaAs基板1の表面に 酸化シリコ
ン膜あるいは窒化シリコン膜等の絶縁膜4をCVD法あ
るいはスパッタ法等により堆積させ、これをキャップ材
として800℃の窒素雰囲気中で20分間はど熱処理を
行ない不純物を活性化する(第1図b)。次に絶縁膜4
を残したままで素子間分離用のレジストマスクを形成し
フッ化水素等を用いて選択的に絶縁膜4を開口する(第
1図C)。次にレジストを除去した微 プラズマCVD
法を用いて、窒化シリコン等の絶縁膜9を堆積させると
同時に素子分離領域5を形威する(第1図d)。このよ
うにしてプラズマCVDを用いて絶縁膜を堆積すること
により、絶縁膜の堆積初期において、GaAs基板に高
周波電界によって励起された5iHaやNH$プラズマ
の衝突による物理的損傷が導入されも その結果 従来
106〜10”Ωc111程度であったGaAs基板の
比抵抗が101Ωcm以上と高くなり、容易にかつ確実
に素子間分離がおこなわれも 続いてリフトオフ法によ
りAuGe/Niを被着ヒ熱処理を行ないソース電極6
及びドレイン電極7を形威すも 同様にTi/Pt/A
uをリフトオフし ゲート電極8を形成しGaAs集積
回路が製造される(第1図e)。な叙 本実施例ではG
aAs基板を用いVESFETを製造する場合について
のみ説明した力<、MESFET以外の化合物半導体装
置 あるいはGaAs以外の化合物半導体材料を用いた
場合も同様に本発明が有効であることは言うまでもなL
〜 発明の詳細 な説明したように 本発明によればプラズマCVDによ
る絶縁膜の堆積中に 化合物半導体基板に荷電粒子の衝
突による損傷が導入されGaAs基板の比抵抗が高くな
り、容易にかつ確実に素子間分離がおこなえも また 
従来からおこなわれているB°や1・0゛なのイオン注
入をおこなう必要がなく、GaAs集積回路の製造工程
を簡素化することができも
Problems to be Solved by the Invention However, with this conventional method, sufficient insulation required for isolation between elements can be obtained with good reproducibility. Means for Solving the Problems Having the Problem that Characteristics Change, The present invention G&
In this method, an insulating film is deposited by chemical vapor deposition (chemical vapor deposition), and good isolation between elements is achieved by actively introducing damage to the compound semiconductor substrate due to the collision of charged quanta. By depositing an insulating film using this method, even if damage caused by collisions of charged particles is introduced to the surface of the GaAs substrate other than the element region, the resistivity of the substrate increases, and isolation between elements can be easily and reliably performed. Embodiment FIGS. 1 a to 1 e are diagrams for explaining an embodiment of the present invention, and show cross-sectional views at each step. First, semi-insulating GaA
Silicon is selectively ion-implanted into the s-substrate 1 using the resist 2 as a mask to form an element region (FET formation region) 3 (
Figure 1 a). Next, an insulating film 4 such as a silicon oxide film or a silicon nitride film is deposited on the surface of the GaAs substrate 1 by CVD or sputtering, and this is used as a cap material and subjected to heat treatment for 20 minutes in a nitrogen atmosphere at 800°C. Activate impurities (Figure 1b). Next, the insulating film 4
A resist mask for isolation between elements is formed while leaving a resist mask remaining, and the insulating film 4 is selectively opened using hydrogen fluoride or the like (FIG. 1C). Next, the resist was removed using micro plasma CVD.
Using a method, an insulating film 9 of silicon nitride or the like is deposited and at the same time an element isolation region 5 is formed (FIG. 1d). By depositing an insulating film using plasma CVD in this manner, physical damage may be introduced to the GaAs substrate by collisions of 5iHa and NH$ plasma excited by a high-frequency electric field at the initial stage of deposition of the insulating film. The specific resistance of the GaAs substrate, which was conventionally about 106 to 10"Ωc111, has increased to more than 101Ωcm, making it easy and reliable to separate elements. Electrode 6
Similarly, Ti/Pt/A also forms the drain electrode 7.
A GaAs integrated circuit is manufactured by lifting off the gate electrode 8 and forming a gate electrode 8 (FIG. 1e). In this example, G
It goes without saying that the present invention is equally effective when using compound semiconductor devices other than MESFETs or compound semiconductor materials other than GaAs.
~ As described in detail of the invention, according to the present invention, during the deposition of an insulating film by plasma CVD, damage is introduced to the compound semiconductor substrate due to the collision of charged particles, and the specific resistance of the GaAs substrate increases, so that the GaAs substrate can be easily and reliably deposited. Although isolation between elements can be achieved,
There is no need for conventional B° or 1.0° ion implantation, and the manufacturing process for GaAs integrated circuits can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a?”(e%友  本発明の一実施例を説明す
るための断面は 第2図ra)−(dχよ・従来のGa
AsMESFETを用いたGaAs集積回路の製造方法
を説明するための断面図であム
Fig. 1 (a?''(e% friend) The cross section for explaining one embodiment of the present invention is Fig. 2 ra) - (d
1 is a cross-sectional view for explaining a method of manufacturing a GaAs integrated circuit using AsMESFET

Claims (1)

【特許請求の範囲】[Claims]  化合物半導体基板に選択イオン注入を行う工程と、前
記化合物半導体基板上に第1の絶縁膜を形成する工程と
、前記第1の絶縁膜をキャップ材として前記化合物半導
体を熱処理し前記注入イオンを活性化して素子領域を形
成する工程と、形成された前記素子領域以外の前記第1
の絶縁膜を選択的に除去する工程と、プラズマCVDを
用いて第2の絶縁膜を形成すると同時に前記第1の絶縁
膜の除去された前記基板に荷電粒子の衝突による損傷を
導入して素子間分離領域を形成する工程とを含むことを
特徴とする化合物半導体装置の製造方法。
a step of selectively implanting ions into a compound semiconductor substrate; a step of forming a first insulating film on the compound semiconductor substrate; and a step of heat-treating the compound semiconductor using the first insulating film as a cap material to activate the implanted ions. a step of forming an element region by
a step of selectively removing an insulating film, and forming a second insulating film using plasma CVD and at the same time damaging the substrate from which the first insulating film has been removed by collisions of charged particles. A method for manufacturing a compound semiconductor device, comprising the step of forming an isolation region.
JP2073709A 1990-03-23 1990-03-23 Manufacture of compound semiconductor device Pending JPH03273666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073709A JPH03273666A (en) 1990-03-23 1990-03-23 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073709A JPH03273666A (en) 1990-03-23 1990-03-23 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH03273666A true JPH03273666A (en) 1991-12-04

Family

ID=13526016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073709A Pending JPH03273666A (en) 1990-03-23 1990-03-23 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH03273666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302388A (en) * 2008-06-16 2009-12-24 Toyota Central R&D Labs Inc Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302388A (en) * 2008-06-16 2009-12-24 Toyota Central R&D Labs Inc Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4859618A (en) Method of producing the gate electrode of a field effect transistor
JPH0260217B2 (en)
JPH10242465A (en) Mosfet on the basis of gallium arsenic and its product
JPH03273666A (en) Manufacture of compound semiconductor device
JPS6292327A (en) Semiconductor device and manufacture thereof
JPH0491435A (en) Formation method of mis structure electrode
JP2544767B2 (en) Method for manufacturing field effect transistor
KR940004261B1 (en) Manufacturing method of misfet by processed sulfur
JPH08124939A (en) Fabrication of semiconductor device
JP3176835B2 (en) Method of forming compound semiconductor device
JPS59165460A (en) Semiconductor device and manufacture thereof
JPS59181066A (en) Manufacture of semiconductor device
JPS6347982A (en) Semiconductor device
JPH02213136A (en) Gaas integrated circuit and manufacture thereof
JPS6410931B2 (en)
JPS62291070A (en) Manufacture of semiconductor device
JPH08316453A (en) Semiconductor device and manufacture thereof
JPH0245332B2 (en)
JPH03278464A (en) Manufacture of semiconductor devices
JPH04359468A (en) Compound semiconductor device and manufacture thereof
JPS607125A (en) Manufacture of semiconductor device
JPH04352333A (en) Manufacture of semiconductor device
JPH02181440A (en) Manufacture of field-effect transistor
JPS61194780A (en) Manufacture of semiconductor device
JPH04291932A (en) Semiconductor element and manufacture thereof