JPH0491435A - Formation method of mis structure electrode - Google Patents

Formation method of mis structure electrode

Info

Publication number
JPH0491435A
JPH0491435A JP2204529A JP20452990A JPH0491435A JP H0491435 A JPH0491435 A JP H0491435A JP 2204529 A JP2204529 A JP 2204529A JP 20452990 A JP20452990 A JP 20452990A JP H0491435 A JPH0491435 A JP H0491435A
Authority
JP
Japan
Prior art keywords
insulating film
electrode
substrate
type gaas
executed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2204529A
Other languages
Japanese (ja)
Inventor
Shinichi Shikada
真一 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2204529A priority Critical patent/JPH0491435A/en
Priority to US07/736,967 priority patent/US5393680A/en
Priority to KR1019910013194A priority patent/KR950007956B1/en
Priority to CA002048206A priority patent/CA2048206A1/en
Priority to EP19910112950 priority patent/EP0469604A2/en
Publication of JPH0491435A publication Critical patent/JPH0491435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain a MIS structure electrode which reduces an interface level density and whose characteristic is excellent by a method wherein, before an insulating film is formed, the surface of a substrate is treated by using a phosphoric acid-based etchant and a sulfur passivation treatment is executed. CONSTITUTION:An insulating film 14 is formed on a substrate 11 composed of a III-V compound semiconductor; after that, an electrode material is applied to form a MIS structure electrode 15. In this method, before said insulating film 14 is formed, the surface of the substrate 11 is treated by using a phosphoric acid-based etchant, and a sulfur passivation treatment is executed. For example, an n-type GaAs layer 12 and an n<+> type Gaps layer 13 are formed sequentially on a p<-> type GaAs substrate 11 by an OMVPE method; the n<+> type GaAs layer 13 in a channel region is etched selectively; the n-type Gaps layer 12 is exposed; and after that, a treatment is executed by using a phosphoric acid-based etchant. Then, a sulfur passivation treatment is executed by using an (NH4)2Sx solution; after that, an insulating film 14 is formed; an annealing operation is executed; and a gate electrode 15, a source electrode 16 and a drain electrode 17 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS(金属−絶縁物一半導体)構造電極の形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an MIS (metal-insulator-semiconductor) structured electrode.

〔従来の技術〕[Conventional technology]

MIS構造電極は電界効果トランジスタなどに不可欠の
要素であり、この特性の改善のため、例えば特開昭62
−31170号、同62−94944号公報などの技術
が提案されている。このようなMIS構造電極では、半
導体と絶縁膜の界面準位密度が低いのが不可欠であるが
、Ga As系半導体では界面のダングリングボンドの
再構成が難しいため、一般に1013am−2e V−
1オーダーの界面準位密度をもっている。これは、NH
8−FETにおけるシリコンと二酸化シリコンの間の界
面準位密度に比べて、3桁程度も高い。
MIS structure electrodes are essential elements for field effect transistors, etc., and in order to improve this characteristic, for example, Japanese Patent Laid-Open No. 62
Techniques such as No. 31170 and No. 62-94944 have been proposed. In such a MIS structure electrode, it is essential that the interface state density between the semiconductor and the insulating film is low, but in GaAs-based semiconductors, it is difficult to reconfigure the dangling bonds at the interface, so generally 1013 am-2e V-
It has an interface state density of 1 order. This is NH
This is about three orders of magnitude higher than the interface state density between silicon and silicon dioxide in an 8-FET.

ところが、最近になって(NH4)2Sxを用いた硫黄
パッシベーション処理が注目され、例えば下記の文献 r ’Naked Reduction the 5u
rf’ace/Lnterf’aceStates o
[’ GaAs by(NH4)2sxTreata+
ent ’(JAPANESE JOURNAL OF
 APPLIED PHYSIC8Vol、28No、
12. (1989年12月)  pp、L2255〜
L2257 )Jでは、G a A s / S 10
2で界面準位密度が1 、 2 X 10 ”cm−2
e V−’まで減少すルコとが確認されている。
However, recently, sulfur passivation treatment using (NH4)2Sx has attracted attention, and for example, the following document r'Naked Reduction the 5u
rf'ace/Lnterf'aceStates o
['GaAs by (NH4)2sxTreat+
ent '(JAPANESE JOURNAL OF
APPLIED PHYSIC8Vol, 28No,
12. (December 1989) pp, L2255~
L2257) In J, G a A s / S 10
2, the interface state density is 1, 2 x 10”cm-2
It has been confirmed that the value decreases to V-'.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これによっても界面準位密度はSi系のMOS
に比べ一桁近く高く、良好な特性のMIS構造FETは
得られない。本発明者は、上記の諸点に鑑み、鋭意研究
を重ねた結果として、界面準位密度の大幅な低減を可能
にしたMIS構造電極の形成方法を見出した。
However, even with this, the interface state density is
It is nearly an order of magnitude higher than that, and a MIS structure FET with good characteristics cannot be obtained. In view of the above points, as a result of extensive research, the present inventors have discovered a method for forming an MIS structure electrode that makes it possible to significantly reduce the interface state density.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、硫黄パッシベーション処理の前段階におい
て、■−V族化合物半導体からなる基板表面を、種々の
エッチャントで処理して結果を検討する中で、本発明を
完成するに至った。
The present inventor completed the present invention while treating the surface of a substrate made of a ■-V group compound semiconductor with various etchants in a pre-sulfur passivation process and studying the results.

すなわち本発明は、■−V族化合物半導体からなる基板
上に、絶縁膜を形成した後、電極材料を付着してMIS
構造電極を形成する方法において、絶縁膜の形成に先立
ち、基板表面をリン酸系エッチャントで処理して硫黄パ
ッジベージジン処理することを特徴とする。
That is, in the present invention, an insulating film is formed on a substrate made of a -V group compound semiconductor, and then an electrode material is attached to the MIS.
The method for forming a structural electrode is characterized in that, prior to forming an insulating film, the surface of the substrate is treated with a phosphoric acid-based etchant to perform a sulfur purge treatment.

ここで、■−v族化合物半導体は、ガリウムまたは砒素
の少なくともいずれか一方を含むようにしてもよい。
Here, the ■-v group compound semiconductor may contain at least one of gallium and arsenic.

〔作用〕[Effect]

本発明では、硫黄パッシベーション処理に先立ち、リン
酸系エッチャントのような順メサエッチャントで基板の
表面層を除去しているので、■−■族化合物半導体と絶
縁膜の界面は、ダングリングボンドを減らすように再構
成され、界面準位密度の低減が可能になる。
In the present invention, the surface layer of the substrate is removed using a normal mesa etchant such as a phosphoric acid-based etchant prior to sulfur passivation treatment, so that the interface between the ■-■ group compound semiconductor and the insulating film reduces dangling bonds. As a result, the interface state density can be reduced.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の方法が適用され得るMI 5FETの
構造を示し、同図(a)はエピタキシャル成長方法を用
いて■−v族化合物半導体基板を形成した場合、同図(
b)はイオン注入法を用いて■−V族化合物半導体基板
を形成した場合に対応している。まず、同図(a)のF
ETでは、p型Ga As基板11が用意され、OMV
PE法などによりn型Ga As層12およびn+型G
aAs層13が順次に形成される。次に、チャネル領域
のn+型Ga As層13が選択エツチングされてn型
Ga As層12が露出される。しかる後、本発明の特
徴に係るリン酸系エッチャントによる処理がされ、n型
Ga As層12が表面が薄くエツチングされる。この
とき、n 型Ga As層13も軽くエツチングされる
が、特に問題はない。
FIG. 1 shows the structure of an MI 5FET to which the method of the present invention can be applied, and FIG.
b) corresponds to the case where a ■-V group compound semiconductor substrate is formed using the ion implantation method. First, F in figure (a)
In ET, a p-type GaAs substrate 11 is prepared, and OMV
The n-type GaAs layer 12 and the n+-type G are formed by PE method etc.
The aAs layers 13 are sequentially formed. Next, the n+ type GaAs layer 13 in the channel region is selectively etched to expose the n type GaAs layer 12. Thereafter, the surface of the n-type GaAs layer 12 is etched thinly by treatment with a phosphoric acid etchant according to a feature of the present invention. At this time, the n-type GaAs layer 13 is also lightly etched, but there is no particular problem.

次に、(NH4)2S、溶液などを用いて硫黄パッシベ
ーション処理が施され、しかる後に絶縁膜14が形成さ
れる。アニールののち、ゲート電極15、ソース電極1
6およびドレイン電極17が形成されると、第1図(a
)のMISFETが完成する。
Next, a sulfur passivation process is performed using (NH4)2S, a solution, etc., and then an insulating film 14 is formed. After annealing, gate electrode 15, source electrode 1
6 and the drain electrode 17 are formed, as shown in FIG.
) MISFET is completed.

同図(b)(QMI 5FETでは、p−型GaAs基
板11が用意され、イオン注入法により活性層としての
n型Ga As層18と、コンタクト層としてのn 型
Ga As層19が形成される。
(b) (In the QMI 5FET, a p-type GaAs substrate 11 is prepared, and an n-type GaAs layer 18 as an active layer and an n-type GaAs layer 19 as a contact layer are formed by ion implantation. .

次に、必要に応じてチャネル領域をエツチングしてリセ
ス構造とした後に、本発明の特徴に係るリン酸系エッチ
ャントによる処理と、硫黄パッシベーション処理が施さ
れる。これについては、同図(a)の場合と同様である
。次に、絶縁膜14が形成され、アニールの後にゲート
電極15、ソース電極16およびドレイン電極17が形
成されると、第1図(b)のMISFETが完成する。
Next, after etching the channel region to form a recessed structure as necessary, treatment with a phosphoric acid-based etchant and sulfur passivation treatment according to the features of the present invention are performed. This is the same as in the case shown in FIG. Next, an insulating film 14 is formed, and after annealing, a gate electrode 15, a source electrode 16, and a drain electrode 17 are formed, thereby completing the MISFET shown in FIG. 1(b).

本発明者は、硫黄パッシベーション処理に先立つ各種エ
ッチャントによる処理の効果をPL(螢光)強度で比較
した。
The present inventor compared the effects of treatments with various etchants prior to sulfur passivation treatment in terms of PL (fluorescence) intensity.

その結果を第2図に示す。図示の通り、H3PO4を含
むエッチャントで軽くエツチングしたときには、バンド
端に対応する波長でPL強度が高くなっている。これに
対し、アンモニア系あるいは硫酸系エッチャントのよう
な、いわゆる逆メサエッチャントで処理したときには、
大きな改善がされていないのが理解できる。ここで、逆
メサエッチャントとはエツチング面が逆メサ状及び順メ
サ状となるものを指し、リン酸系エッチャントではエツ
チング面が全方向で順メサ状となるので、ここでは順メ
サエッチャントと呼ぶ。
The results are shown in FIG. As shown in the figure, when lightly etched with an etchant containing H3PO4, the PL intensity becomes high at the wavelength corresponding to the band edge. On the other hand, when treated with a so-called reverse mesa etchant such as an ammonia-based or sulfuric acid-based etchant,
I can understand that no major improvements have been made. Here, the term "reverse mesa etchant" refers to one in which the etched surface has an inverted mesa shape or a forward mesa shape, and in the case of a phosphoric acid-based etchant, the etched surface has a forward mesa shape in all directions, so it is referred to here as a forward mesa etchant.

次に、本発明者はMISFETを試作して本発明の効果
を確認した。
Next, the inventor manufactured a prototype MISFET and confirmed the effects of the present invention.

実施例1 p−型Ga As基板を用意し、OMVPE法でn型G
a As層を100OAの厚さ、n 型GaAs層を7
00Aの厚さに成長させた。そして、ゲート開口部のn
+型Ga As層を除去し、マスク除去後に HPO:HO:H0 −4:1:100 のリン酸系エッチャントで全体を軽く処理した。
Example 1 A p-type GaAs substrate was prepared, and an n-type G was formed using the OMVPE method.
a The As layer has a thickness of 100 OA, and the n-type GaAs layer has a thickness of 7
It was grown to a thickness of 00A. And n of the gate opening
After removing the + type GaAs layer and removing the mask, the entire structure was lightly treated with a phosphoric acid etchant of HPO:HO:H0 -4:1:100.

その後、(NH4)2 Sx溶液に10分間浸漬し、2
0秒間水洗して窒素ガスブローで除水した。次イテ、E
CR−CVD法ニヨリSiN膜を形成し、450℃で3
0分間の熱処理をした。その後、ゲート電極、ソース電
極及びドレイン電極を形成した。このMISFETにつ
いて、高周波C−V法で界面準位密度を測定したところ
、3X10”cnI−2evテあツタ。
After that, it was immersed in (NH4)2Sx solution for 10 minutes, and
It was washed with water for 0 seconds and water was removed by nitrogen gas blowing. Next item, E
A SiN film is formed using the CR-CVD method and heated at 450°C for 30 minutes.
Heat treatment was performed for 0 minutes. After that, a gate electrode, a source electrode, and a drain electrode were formed. When the interface state density of this MISFET was measured using the high frequency CV method, it was found to be 3X10"cnI-2ev.

実施例2 p−型Ga As基板を用意し、イオン注入によりn型
Ga As層およびn+型Ga As層を形成した。し
かる後、実施例1と同様に、リン酸系エッチャントによ
る処理と硫黄バッジベージジン処理を行い、MISFE
Tを得た。このMISFETについて、高周波C−V法
で界面準位密度を測定したところ、9 X 10 ”c
m−2e Vであった。実施例1に比べて界面準位密度
が高いのは、エピタキシャル成長法によれば結晶性が高
くなるためであると考えられる。
Example 2 A p-type GaAs substrate was prepared, and an n-type GaAs layer and an n+-type GaAs layer were formed by ion implantation. Thereafter, in the same manner as in Example 1, treatment with a phosphoric acid etchant and sulfur badge treatment were performed, and MISFE
I got a T. When the interface state density of this MISFET was measured using the high frequency C-V method, it was found to be 9 x 10"c
m-2eV. The reason why the interface state density is higher than that in Example 1 is considered to be because the epitaxial growth method increases crystallinity.

比較例1 リン酸系エッチャントによる処理に代えてNH4OH系
エッチャントでの処理を行い、絶縁膜は抵抗加熱による
SiO3で形成した。他の条件は実施例1と同様にした
。このMISFETについて、高周波C−■法で界面準
位密度を測定したとコロ、1.2×1011m−2ev
であった。
Comparative Example 1 A treatment with an NH4OH-based etchant was performed instead of a treatment with a phosphoric acid-based etchant, and an insulating film was formed of SiO3 by resistance heating. Other conditions were the same as in Example 1. Regarding this MISFET, the interface state density was measured using the high frequency C-■ method and was found to be 1.2 x 1011 m-2ev.
Met.

なお、本発明者は参考のため、各成膜法によるPL(蛍
光)強度の比較を行なった。
For reference, the inventors compared the PL (fluorescence) intensity of each film forming method.

この結果を第3図に示す。図中の曲線(a)は硫黄パッ
シベーション処理の後にECR−CVDで絶縁膜を形成
した結果であり、バンド端において高いPL強度が得ら
れている。図中の曲線(b)は、硫黄パッシベーション
処理を施したが絶縁膜は形成しなかった場合のものであ
る。これらに・より、ECR−CVD法を用いると、硫
黄パッシベーション処理の効果が全く劣化しないのがわ
かる。
The results are shown in FIG. Curve (a) in the figure is the result of forming an insulating film by ECR-CVD after sulfur passivation treatment, and high PL intensity is obtained at the band edge. The curve (b) in the figure shows the case where the sulfur passivation treatment was performed but no insulating film was formed. These results show that the effect of sulfur passivation treatment does not deteriorate at all when the ECR-CVD method is used.

これは、ECR−CVD装置ではプラズマ発生室と成膜
室が異なるため、プラズマシャワーがGaAs系半導体
にダメージを与えないためと考えられる。
This is thought to be because in the ECR-CVD apparatus, the plasma generation chamber and the film formation chamber are different, so that the plasma shower does not damage the GaAs-based semiconductor.

曲線(C)はスパッタ法、(d)は熱CVD法による成
膜をしたときのものである。硫黄パッシベーション処理
の効果が、ECR−CVD法に比べて劣化しているのが
わかる。曲線(e)はRF=13.56MHzでのブラ
ズvCVD法、曲線(g)はRF = 50 K Hz
でのブラズvCVD法で絶縁膜を形成したときのもので
ある。硫黄パッシベーション処理の効果が、大きく劣化
しているのがわかる。なお、曲線(f)は何らの処理も
してなかった場合である。
The curve (C) shows the film formed by the sputtering method, and the curve (d) shows the film formed by the thermal CVD method. It can be seen that the effect of the sulfur passivation treatment is degraded compared to the ECR-CVD method. Curve (e) is Braz vCVD method at RF = 13.56 MHz, curve (g) is RF = 50 K Hz
This is when an insulating film was formed using the plasma CVD method. It can be seen that the effect of the sulfur passivation treatment has significantly deteriorated. Note that curve (f) is the case where no processing was performed.

次に、本発明者は、参考のため絶縁膜14形成後のアニ
ールの影響を調べた。
Next, the inventor investigated the influence of annealing after forming the insulating film 14 for reference.

その結果を第4図に示す。ECR−CVD法で形成した
SIN膜は、380〜520℃特に400〜500℃で
アニールしたときに、PL強度が改善されている。これ
に対し、ECR−CVD法を用いた場合でもSiO2膜
のときには、アニールによって改善が見られない。なお
、上記のアニールは窒素ガス雰囲気中で、30分間おこ
なった。
The results are shown in FIG. The SIN film formed by the ECR-CVD method has improved PL strength when annealed at 380 to 520°C, particularly 400 to 500°C. On the other hand, even when ECR-CVD is used, no improvement is seen in the case of SiO2 film by annealing. Note that the above-mentioned annealing was performed for 30 minutes in a nitrogen gas atmosphere.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り本発明では、硫黄パッシベー
ション処理に先立ち、リン酸系エッチャントのような順
メサエッチャントで基板の表面層を除去しているので、
■−V族化合物半導体と絶縁膜の界面は、ダングリング
ボンドを減らすように再構成され、界面準位密度の低減
が可能になる。
As explained in detail above, in the present invention, the surface layer of the substrate is removed using a normal mesa etchant such as a phosphoric acid etchant prior to the sulfur passivation treatment.
(2) The interface between the V group compound semiconductor and the insulating film is reconfigured to reduce dangling bonds, making it possible to reduce the interface state density.

このため、特性の優れたMIS構造電極が得られる。Therefore, an MIS structure electrode with excellent characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法が適用可能なMISFETの断面図
、第2図はリン酸系エッチャントによる処理の効果を示
す図、第3図は各成膜法によるPL強度の差を示す図、
第4図はアニールの効果を示す図である。 11−1)−型Ga As基板1.12−n m G 
aAs層、13−n+型Ga As層、14−・・絶縁
膜、15・・・ゲート電極、16・・・ソース電極、1
7・・・ドレイン電極、18・・・n型Ga As層、
19・・・n+型Ga As層。 代理人弁理士   長谷用  芳  樹に’)CJ ニール温度の効果
FIG. 1 is a cross-sectional view of a MISFET to which the method of the present invention can be applied, FIG. 2 is a diagram showing the effect of treatment with a phosphoric acid etchant, and FIG. 3 is a diagram showing the difference in PL intensity due to each film formation method.
FIG. 4 is a diagram showing the effect of annealing. 11-1)-type GaAs substrate 1.12-nm G
aAs layer, 13-n+ type GaAs layer, 14-... insulating film, 15... gate electrode, 16... source electrode, 1
7...Drain electrode, 18...n-type GaAs layer,
19...n+ type Ga As layer. Agent Patent Attorney Yoshiki Hase') CJ Effect of Neil Temperature

Claims (1)

【特許請求の範囲】 1、III−V族化合物半導体からなる基板上に、絶縁膜
を形成した後、電極材料を付着してMIS構造電極を形
成する方法において、 前記絶縁膜の形成に先立ち、前記基板表面をリン酸系エ
ッチャントで処理して硫黄パッシベーション処理するこ
とを特徴とするMIS構造電極の形成方法。 2、前記III−V族化合物半導体は、ガリウムまたは砒
素の少なくともいずれか一方を含む請求項1記載のMI
S構造電極の形成方法。
[Claims] 1. In a method of forming an insulating film on a substrate made of a III-V compound semiconductor and then depositing an electrode material to form an MIS structure electrode, prior to forming the insulating film, A method for forming an MIS structure electrode, characterized in that the surface of the substrate is treated with a phosphoric acid-based etchant to perform sulfur passivation treatment. 2. The MI according to claim 1, wherein the III-V compound semiconductor contains at least one of gallium and arsenic.
Method for forming an S-structure electrode.
JP2204529A 1990-08-01 1990-08-01 Formation method of mis structure electrode Pending JPH0491435A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2204529A JPH0491435A (en) 1990-08-01 1990-08-01 Formation method of mis structure electrode
US07/736,967 US5393680A (en) 1990-08-01 1991-07-30 MIS electrode forming process
KR1019910013194A KR950007956B1 (en) 1990-08-01 1991-07-31 Electrode forming method of mis structure
CA002048206A CA2048206A1 (en) 1990-08-01 1991-07-31 Mis electrodes forming process
EP19910112950 EP0469604A2 (en) 1990-08-01 1991-08-01 MIS electrode forming process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2204529A JPH0491435A (en) 1990-08-01 1990-08-01 Formation method of mis structure electrode

Publications (1)

Publication Number Publication Date
JPH0491435A true JPH0491435A (en) 1992-03-24

Family

ID=16492050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2204529A Pending JPH0491435A (en) 1990-08-01 1990-08-01 Formation method of mis structure electrode

Country Status (1)

Country Link
JP (1) JPH0491435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260325A (en) * 2008-03-26 2009-11-05 Univ Of Tokyo Semiconductor substrate, method for manufacturing semiconductor substrate and semiconductor device
WO2011027871A1 (en) * 2009-09-04 2011-03-10 住友化学株式会社 Semiconductor substrate, field effect transistor, integrated circuit, and method for producing semiconductor substrate
CN103578957A (en) * 2013-11-01 2014-02-12 清华大学 Substrate surface passivating method and semiconductor structure forming method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260325A (en) * 2008-03-26 2009-11-05 Univ Of Tokyo Semiconductor substrate, method for manufacturing semiconductor substrate and semiconductor device
CN101978503A (en) * 2008-03-26 2011-02-16 国立大学法人东京大学 Semiconductor wafer, method of manufacturing a semiconductor wafer, and semiconductor device
WO2011027871A1 (en) * 2009-09-04 2011-03-10 住友化学株式会社 Semiconductor substrate, field effect transistor, integrated circuit, and method for producing semiconductor substrate
JP2012023326A (en) * 2009-09-04 2012-02-02 Sumitomo Chemical Co Ltd Semiconductor substrate, field effect transistor, integrated circuit and method for manufacturing semiconductor substrate
US9112035B2 (en) 2009-09-04 2015-08-18 Sumitomo Chemical Company, Limited Semiconductor substrate, field-effect transistor, integrated circuit, and method for fabricating semiconductor substrate
CN103578957A (en) * 2013-11-01 2014-02-12 清华大学 Substrate surface passivating method and semiconductor structure forming method

Similar Documents

Publication Publication Date Title
KR950007956B1 (en) Electrode forming method of mis structure
JP3187764B2 (en) GaAs-based MOSFET and its products
JP2006351762A (en) Semiconductor device and its manufacturing method
JPH0491435A (en) Formation method of mis structure electrode
US6274512B1 (en) Method for manufacturing a semiconductor device
JP4541489B2 (en) Semiconductor device and manufacturing method thereof
JPH0491436A (en) Formation method of mis structure electrode
JPH0212875A (en) Manufacture of semiconductor device
JPH10173036A (en) Semiconductor device and method of realizing high-resistance semiconductor
EP0773579A2 (en) Semiconductor device with improved insulating/passivating layer
JP3228979B2 (en) Semiconductor device and method of manufacturing the same
JPH0969611A (en) Semiconductor device and its manufacturing method
JPS62272571A (en) Semiconductor device
KR940004261B1 (en) Manufacturing method of misfet by processed sulfur
JP2639376B2 (en) Method of growing III-V compound semiconductor
JPH09321041A (en) Protective film for semiconductor device and method for forming the same
JPS60213032A (en) Semiconductor device and manufacture thereof
JPH0922892A (en) Manufacture of compound semiconductor device
JPH01108772A (en) Manufacture of bipolar transistor
KR0142782B1 (en) Manufacture of semiconductor
KR100282339B1 (en) Device isolation method of semiconductor device
JPH0521467A (en) Manufacture of field-effect transistor
JPH06291147A (en) Integrated circuit or discrete device and manufacture thereof
JPS6223175A (en) Manufacture of semiconductor device
KR20050053992A (en) Method for manufacturing high electron mobility transistor having hetero junction