JPH0491436A - Formation method of mis structure electrode - Google Patents

Formation method of mis structure electrode

Info

Publication number
JPH0491436A
JPH0491436A JP2204531A JP20453190A JPH0491436A JP H0491436 A JPH0491436 A JP H0491436A JP 2204531 A JP2204531 A JP 2204531A JP 20453190 A JP20453190 A JP 20453190A JP H0491436 A JPH0491436 A JP H0491436A
Authority
JP
Japan
Prior art keywords
insulating film
ecr
substrate
electrode
mis structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2204531A
Other languages
Japanese (ja)
Inventor
Shinichi Shikada
真一 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2204531A priority Critical patent/JPH0491436A/en
Priority to US07/736,967 priority patent/US5393680A/en
Priority to CA002048206A priority patent/CA2048206A1/en
Priority to KR1019910013194A priority patent/KR950007956B1/en
Priority to EP19910112950 priority patent/EP0469604A2/en
Publication of JPH0491436A publication Critical patent/JPH0491436A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a MIS structure electrode which reduces an interface level density and whose characteristic is excellent by a method wherein, before an insulating film is formed, a sulfur passivation treatment is executed to the surface of a substrate and the insulating film is formed by an ECR-CVD method. CONSTITUTION:An insulating film 14 is formed on a substrate 11 composed of a III-V compound semiconductor; after that, an electrode material is applied to form a MIS structure electrode 15. In this method, before said insulating film 14 is formed, a sulfur passivation treatment is executed to the surface of the substrate 11, and said insulating film 14 is formed by an ECR-CVD method. For example, an n-type GaAs layer 12 and an n<+> type Gaps layer 13 are formed sequentially on a p<-> type GaAs substrate 11 by an OMVPE method, the n<+> GaAs layer 13 in a channel region is etched selectively and the n-type GaAs layer 12 is exposed. Then, a passivation treatment is executed by using an (NH4)2Sx solution; after that, an insulating film 14 such as SiN is formed by an ECR-CVD method; then, an annealing operation is executed at 380 to 520 deg.C; after that, a gate electrode 15 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS(金属−絶縁物一半導体)構造電極の形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an MIS (metal-insulator-semiconductor) structured electrode.

〔従来の技術〕[Conventional technology]

MIS構造電極は絶縁ゲート型電界効果トランジスタな
どに不可欠の要素であり、この特性の改善のため、例え
ば特開昭62−31170号、同62−94944号公
報などの技術が提案されている。このようなMIS構造
電極では、半導体と絶縁膜の界面準位密度が低いのが不
可欠であるが、Ga As系半導体では界面のダングリ
ングボンドの再構成が難しいため、一般に10 ’am
−2e V −’オーダーの界面準位密度をもっている
。これは、MOS−FETにおけるシリコンと二酸化シ
リコンの間の界面準位密度に比べて、3桁程度も高い。
The MIS structure electrode is an essential element for insulated gate field effect transistors, etc., and techniques such as Japanese Patent Application Laid-open Nos. 62-31170 and 62-94944 have been proposed to improve its characteristics. In such a MIS structure electrode, it is essential that the interface state density between the semiconductor and the insulating film is low, but in the case of GaAs-based semiconductors, it is difficult to reconfigure the dangling bonds at the interface, so it is generally
It has an interface state density on the order of −2e V −′. This is about three orders of magnitude higher than the interface state density between silicon and silicon dioxide in a MOS-FET.

そこで、最近になって(NH4)2Sxを用いた硫黄パ
ッシベーション処理が注目され、例えば下記の文献 「“Naked Reduction the 5ur
f’ace/Interf’aceStates oj
GaAs bF(NH4)2  SxTreatmen
t ”(JAPANESE JOURNAL OF A
PPLIED PIIY81C8Vo+、2B。
Therefore, recently, sulfur passivation treatment using (NH4)2Sx has attracted attention.
f'ace/Interf'ace States oj
GaAs bF(NH4)2 SxTreatmen
t”(JAPANESE JOURNAL OF A
PPLIED PIIY81C8Vo+, 2B.

No、12. (1989年12月) pp、L225
5〜L2257 ) Jでは、Ga As /Si O
2で界面準位密度が1.2X10”■−2ev−1まで
減少することが確認されている。
No, 12. (December 1989) pp, L225
5~L2257) In J, GaAs/SiO
2, it has been confirmed that the interface state density decreases to 1.2×10”−2ev−1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これによっても界面準位密度はSi系のMO8
構造に比べ一桁近く高く、良好な特性のMIS構造FE
Tは得られない。本発明者は、上記の諸点に鑑み、鋭意
研究を重ねた結果とし工、界面準位密度の大幅な低減を
可能にしたMIS構造電極の形成方法を見出した。
However, even with this, the interface state density is
MIS structure FE with good characteristics and nearly an order of magnitude higher than the structure
T cannot be obtained. In view of the above points, the inventors of the present invention have conducted extensive research and have discovered a method for forming an MIS structure electrode that makes it possible to significantly reduce the interface state density.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、硫黄バッジベージラン処理後の絶縁膜形成
において、種々の成膜法を採用して結果を検討する中で
、本発明を完成するに至った。
The present inventor has completed the present invention while employing various film forming methods and studying the results in forming an insulating film after a sulfur badge run process.

すなわち本発明は、■−V族化合物半導体からなる基板
上に、絶縁膜を形成した後、電極材料を付着してMIS
構造電極を形成する方法において、絶縁−゛の形成に先
立ち、基板表面に対して硫黄パッジベージジン処理し、
絶縁膜はECR−CVDにより形成することを特徴とす
る。
That is, in the present invention, an insulating film is formed on a substrate made of a -V group compound semiconductor, and then an electrode material is attached to the MIS.
In a method for forming a structural electrode, prior to forming an insulator, the surface of the substrate is treated with a sulfur pad,
The insulating film is characterized by being formed by ECR-CVD.

ここで、形成される絶縁膜はSiN膜とし、形成後に3
80〜520℃の熱処□理するようにしてもよい。
Here, the insulating film to be formed is a SiN film, and after formation, 3
Heat treatment at 80 to 520°C may also be performed.

〔作用〕[Effect]

本発明では、硫黄パッシベーション処理の後に、基板へ
のダメージが少ないECR−CVDで絶縁膜を堆積して
いるので、■−v族化合物半導体と絶縁膜の界面におけ
るダングリングボンド低減の効果は維持され、界面準位
密度の低減が可能になる。
In the present invention, after the sulfur passivation treatment, the insulating film is deposited by ECR-CVD, which causes less damage to the substrate, so the effect of reducing dangling bonds at the interface between the ■-V group compound semiconductor and the insulating film is maintained. , it becomes possible to reduce the interface state density.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の方法が適用され得るMI 5FETの
構造を示し、同図(a)はエピタキシャル成長方法を用
いて■−v族化合物半導体基板を形成した場合、同図(
b)はイオン注入法を用いて■−v族化合物半導体基板
を形成した場合に対応している。まず、同図(a)のF
ETでは、p型Ga As基板11が用意され、OMV
PE法などによりn型Ga As層12およびn 型G
a。
FIG. 1 shows the structure of an MI 5FET to which the method of the present invention can be applied, and FIG.
b) corresponds to the case where a ■-v group compound semiconductor substrate is formed using the ion implantation method. First, F in figure (a)
In ET, a p-type GaAs substrate 11 is prepared, and OMV
The n-type GaAs layer 12 and the n-type G
a.

As層13が順次に形成される。次に、チャネル領域の
n 型Ga As層13が選択エツチングされてn型G
a As層12が露出される。しかる後、必要に応じて
リン酸系エッチャントによる処理がされ、n型Ga A
s層12が表面が薄くエツチングされる。次に、(NH
4)2Sx溶液などを用いて硫黄パッシベーション処理
が施され、しかる後にSin、SiNのような絶縁膜1
4が形成される。この絶縁膜14の形成はECR−CV
D法により行なわれ、次いで380〜520℃のアニー
ルがされる。このような本発明の特徴に係る処理を経た
のち、ゲート電極15、ソース電極16およびドレイン
電極17が形成されると、第1図(a)のMISFET
が完成する。
As layers 13 are sequentially formed. Next, the n-type GaAs layer 13 in the channel region is selectively etched to form an n-type GaAs layer 13.
a The As layer 12 is exposed. Thereafter, treatment with a phosphoric acid-based etchant is performed as necessary, and n-type Ga A
The surface of the s-layer 12 is etched thinly. Next, (NH
4) A sulfur passivation process is performed using a 2Sx solution, and then an insulating film 1 such as Sin or SiN is formed.
4 is formed. This insulating film 14 is formed by ECR-CV.
D method is used, followed by annealing at 380 to 520°C. After the process according to the features of the present invention, the gate electrode 15, source electrode 16, and drain electrode 17 are formed, and the MISFET shown in FIG.
is completed.

同図(b)のMI 5FETでは、p−型GaAs基板
11が用意され、イオン注入法により活性層としてのn
型Ga As層18と、コシタクト層としてのn+型G
a As層19が形成される。
In the MI 5FET shown in FIG. 6(b), a p-type GaAs substrate 11 is prepared, and an n-type active layer is formed by ion implantation.
type GaAs layer 18 and n+ type G as a cositact layer
a As layer 19 is formed.

次に、必要に応じてチャネル領域をエツチングしてリセ
ス構造とした後に、硫黄バッシベ〒ジョン処理が施され
る。これについては、同図(a)の場合と同様である。
Next, after etching the channel region to form a recessed structure as required, a sulfur bashing process is performed. This is the same as in the case shown in FIG.

次に、SIO,SiNのような絶縁膜14がECR−C
VD法で形成され、380〜520℃でのアニールの後
にゲート電極15、ソース電極16およびドレイン電極
17が形成されると、第1図(b)のMISFETが完
成する。
Next, an insulating film 14 such as SIO or SiN is applied to the ECR-C.
When the gate electrode 15, source electrode 16 and drain electrode 17 are formed after being formed by the VD method and annealed at 380 to 520° C., the MISFET shown in FIG. 1(b) is completed.

まず、本発明者は、各成膜法によるPL(蛍光)強度の
比較を行なった。
First, the inventors compared the PL (fluorescence) intensity of each film forming method.

この結果を第2図に示す。図中の曲線(a)は硫黄パッ
シベーション処・理の後にECR−CVDで絶縁膜を形
成した結果であり、バンド端発光において高い強度が得
られている。図中の曲線(b)は、硫黄パッシベーショ
ン処理を施したが絶縁膜は形成しなかった場合のもので
ある。これらにより、ECR−CVD法を用いると、硫
黄パッシベーション処理の効果が全く劣化しないのがわ
かる。
The results are shown in FIG. Curve (a) in the figure is the result of forming an insulating film by ECR-CVD after sulfur passivation treatment, and high intensity is obtained in band edge emission. The curve (b) in the figure shows the case where the sulfur passivation treatment was performed but no insulating film was formed. These results show that the effect of sulfur passivation treatment does not deteriorate at all when the ECR-CVD method is used.

これは、ECR−CVD装置ではプラズマ発生室と成膜
室が異なるため、プラズマシャワーがGaAs系半導体
にダメージを与えないためと考えられる。
This is thought to be because in the ECR-CVD apparatus, the plasma generation chamber and the film formation chamber are different, so that the plasma shower does not damage the GaAs-based semiconductor.

曲線(C)はスパッタ法、(d)は熱CVD法による成
膜をしたときのものである。硫黄パッシベーション処理
の効果が、ECR−CVD法に比べて劣化しているのが
わかる。曲線(e)はRF=13.56MHzでのプラ
ズvCVD法、曲線(g)はRF=50KHzでのブラ
ズvCVD法で絶縁膜を形成したときのものである。硫
黄パッシベーション処理の効果が、大きく劣化している
のがわかる。なお、曲線(f)は何らの処理もしてなか
った場合である。
The curve (C) shows the film formed by the sputtering method, and the curve (d) shows the film formed by the thermal CVD method. It can be seen that the effect of the sulfur passivation treatment is degraded compared to the ECR-CVD method. The curve (e) shows the insulating film formed by the plasma vCVD method at RF=13.56 MHz, and the curve (g) shows the insulating film formed by the plasma vCVD method at RF=50 kHz. It can be seen that the effect of the sulfur passivation treatment has significantly deteriorated. Note that curve (f) is the case where no processing was performed.

次に、本発明者は、絶縁膜14形成後のアニルの影響を
調べた。
Next, the inventor investigated the influence of anil after forming the insulating film 14.

その結果を第3図に示す。ECR−CVD法で形成した
SiN膜は、380〜520℃の温度範囲、特に400
〜500℃でアニールしたときに、PL強度が改善され
ている。これに対し、ECR−CVD法を用いた場合で
もSt、、膜のときには、アニールによって改善が見ら
れない。なお、上記のアニールは窒素ガス雰囲気中で、
30分間おこなった。
The results are shown in FIG. The SiN film formed by the ECR-CVD method can be heated in the temperature range of 380 to 520°C, especially at 400°C.
PL strength is improved when annealed at ~500°C. On the other hand, even when the ECR-CVD method is used, no improvement is seen in the case of the St film by annealing. The above annealing was performed in a nitrogen gas atmosphere.
This was done for 30 minutes.

次に、本発明者はMISFETを試作して本発明の効果
を確認した。
Next, the inventor manufactured a prototype MISFET and confirmed the effects of the present invention.

実施例1 p−型Ga As基板を用意し、OMVPE法でn型G
a As層を100OAの厚さ、n 型GaAs層を7
0OAの厚さに成長させた。そして、レジストマスクを
形成してゲート開口部のn 型Ga As層を除去し、
マスク除去後にリン酸系エッチャントで全体を軽く処理
した。その後、(NH4)2Sx溶液に10分間浸漬し
、20秒間水洗して窒素ガスブローで除水した。次いで
、ECR−CVD法によりSiN膜を形成し、450℃
で30分間の熱処理をした。その後、ゲート電極、ソー
ス電極及びドレイン電極を形成した。このMISFET
について、高周波C−v法で界面準位密度を測定したと
ころ、3×1010cIIl−2evテあった。
Example 1 A p-type GaAs substrate was prepared, and an n-type G was formed using the OMVPE method.
a The As layer has a thickness of 100 OA, and the n-type GaAs layer has a thickness of 7
It was grown to a thickness of 0OA. Then, a resist mask is formed and the n-type GaAs layer in the gate opening is removed.
After removing the mask, the entire surface was lightly treated with a phosphoric acid etchant. Thereafter, it was immersed in a (NH4)2Sx solution for 10 minutes, washed with water for 20 seconds, and water was removed by nitrogen gas blowing. Next, a SiN film was formed by ECR-CVD method and heated at 450°C.
Heat treatment was performed for 30 minutes. After that, a gate electrode, a source electrode, and a drain electrode were formed. This MISFET
When the interface state density was measured using the high frequency CV method, it was found to be 3 x 1010cIIl-2evte.

実施例2 p−型Ga As基板を用意し、イオン注入によりn型
Ga As層およびn 型Ga As層を形成した。し
かる後、実施例1と同様に硫黄パッシベーション処理を
し、ECR−CVD法でSI N膜を形成し、次いで4
50℃、30分のアニールを行い、MISFETを得た
。このMISFETについて、高周波C−V法で界面準
位密度を測定したところ、9×101OclTl−2e
vテあツタ。実施例1に比べて界面準位密度が高いのは
、エピタキシャル成長法によれば結晶性が高く、イオン
注入法によれば注入イオンでダメージを受けるためであ
ると考えられる。
Example 2 A p-type GaAs substrate was prepared, and an n-type GaAs layer and an n-type GaAs layer were formed by ion implantation. Thereafter, a sulfur passivation treatment was performed in the same manner as in Example 1, and an SI N film was formed using the ECR-CVD method.
Annealing was performed at 50° C. for 30 minutes to obtain a MISFET. When the interface state density of this MISFET was measured using the high frequency C-V method, it was found to be 9×101OclTl-2e.
Vte attuta. The reason why the interface state density is higher than that in Example 1 is considered to be that crystallinity is high in the epitaxial growth method, and damage is caused by implanted ions in the ion implantation method.

比較例l NH4OH系エッチャントでの処理を行い、硫黄処理の
後、絶縁膜を形成した。ここで、絶縁膜は抵抗加熱によ
るSiO□で形成した。他の条件は実施例1と同様にし
た。このMISFETについて、高周波C−v法で界面
準位密度を測定したトコ口、1 、 2 X 10 ”
cm−2e V テアッt:。
Comparative Example 1 A treatment with an NH4OH-based etchant was performed, and after a sulfur treatment, an insulating film was formed. Here, the insulating film was formed of SiO□ by resistance heating. Other conditions were the same as in Example 1. For this MISFET, the interface state density was measured using the high frequency CV method.
cm-2e V teat:.

次に、本発明者は、参考のため硫黄パッシベーション処
理に先立つ各種エッチャントによる処理の効果をPL強
度で比較した。
Next, for reference, the inventors compared the effects of treatments with various etchants prior to sulfur passivation treatment in terms of PL intensity.

その結果を第4図に示す。図示の通り、H3PO4を含
むエッチャントで軽くエツチングしたときには、バンド
端に対応する波長でPL強度が高くなっている。これに
対し、アンモニア系あるいは硫酸系エッチャントのよう
な、いわゆる逆メサエッチャントで処理したときには、
大きな改善がされていないのが理解できる。ここで、逆
メサエッチャントとはエツチング面が逆メサ状及び順メ
サ状となるものを指し、リン酸系エッチャントではエツ
チング面が全方位に於て順メサ状となるので、ここでは
順メサエッチャントと呼ぶ。
The results are shown in FIG. As shown in the figure, when lightly etched with an etchant containing H3PO4, the PL intensity becomes high at the wavelength corresponding to the band edge. On the other hand, when treated with a so-called reverse mesa etchant such as an ammonia-based or sulfuric acid-based etchant,
I can understand that no major improvements have been made. Here, the term "reverse mesa etchant" refers to one in which the etching surface has an inverted mesa shape or a forward mesa shape.In the case of a phosphoric acid etchant, the etching surface has a forward mesa shape in all directions, so here it is referred to as a "forward mesa etchant". call.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り本発明では、硫黄パッシベー
ション処理後に、基板の表面にダメージを与えにくいE
CR−CVD法で絶縁膜を形成しているので、■−V族
化合物半導体と絶縁膜の界面におけるダングリングボン
ド低減の効果は維持され、界面準位密度の低減が可能に
なる。このため、特性の優れたMIS構造電極が得られ
る。
As explained in detail above, in the present invention, after the sulfur passivation treatment, E
Since the insulating film is formed by the CR-CVD method, the effect of reducing dangling bonds at the interface between the ■-V group compound semiconductor and the insulating film is maintained, and the interface state density can be reduced. Therefore, an MIS structure electrode with excellent characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法が適用可能なMISFETの断面図
、第2図は各成膜法によるPL強度の差を示す図、第3
図はアニールの効果を示す図、第4図はリン酸系エッチ
ャントによる処理の効果を示す図である。 11 ・f)−型Ga As基板1.12・・・n型G
aAs層、13−n+型Ga As層、14 ・・・絶
縁膜、15・・・ゲート電極、16・・・ソース電極、
17・・・ドレイン電極、18・・・n型Ga As層
、19・・・n+型Ga As層。 代理人弁理士   長谷用  芳  樹「OCJ
Figure 1 is a cross-sectional view of a MISFET to which the method of the present invention can be applied, Figure 2 is a diagram showing the difference in PL intensity due to each film formation method, and Figure 3
The figure shows the effect of annealing, and FIG. 4 shows the effect of treatment with a phosphoric acid etchant. 11 ・f)-type Ga As substrate 1.12...n-type G
aAs layer, 13-n+ type GaAs layer, 14... insulating film, 15... gate electrode, 16... source electrode,
17...Drain electrode, 18...n-type GaAs layer, 19...n+-type GaAs layer. Representative Patent Attorney Yoshiki Hase “OCJ

Claims (1)

【特許請求の範囲】 1、III−V族化合物半導体からなる基板上に、絶縁膜
を形成した後、電極材料を付着してMIS構造電極を形
成する方法において、 前記絶縁膜の形成に先立ち、前記基板表面に対して硫黄
パッシベーション処理をし、 前記絶縁膜の形成は、ECR−CVD法により行なうこ
とを特徴とするMIS構造電極の形成方法。 2、前記絶縁膜の形成は、ECR−CVD法でSiNを
堆積することにより行い、次いで380〜520℃の熱
処理をする請求項1記載のMIS構造電極の形成方法。 3、前記III−V族化合物半導体は、ガリウムまたは砒
素の少なくともいずれか一方を含む請求項1記載のMI
S構造電極の形成方法。
[Claims] 1. In a method of forming an insulating film on a substrate made of a III-V compound semiconductor and then depositing an electrode material to form an MIS structure electrode, prior to forming the insulating film, A method for forming an MIS structure electrode, characterized in that the substrate surface is subjected to sulfur passivation treatment, and the insulating film is formed by an ECR-CVD method. 2. The method for forming an MIS structure electrode according to claim 1, wherein the insulating film is formed by depositing SiN using an ECR-CVD method, and then subjected to heat treatment at 380 to 520°C. 3. The MI according to claim 1, wherein the III-V compound semiconductor contains at least one of gallium and arsenic.
Method for forming an S-structure electrode.
JP2204531A 1990-08-01 1990-08-01 Formation method of mis structure electrode Pending JPH0491436A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2204531A JPH0491436A (en) 1990-08-01 1990-08-01 Formation method of mis structure electrode
US07/736,967 US5393680A (en) 1990-08-01 1991-07-30 MIS electrode forming process
CA002048206A CA2048206A1 (en) 1990-08-01 1991-07-31 Mis electrodes forming process
KR1019910013194A KR950007956B1 (en) 1990-08-01 1991-07-31 Electrode forming method of mis structure
EP19910112950 EP0469604A2 (en) 1990-08-01 1991-08-01 MIS electrode forming process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2204531A JPH0491436A (en) 1990-08-01 1990-08-01 Formation method of mis structure electrode

Publications (1)

Publication Number Publication Date
JPH0491436A true JPH0491436A (en) 1992-03-24

Family

ID=16492084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2204531A Pending JPH0491436A (en) 1990-08-01 1990-08-01 Formation method of mis structure electrode

Country Status (1)

Country Link
JP (1) JPH0491436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518449A (en) * 2011-06-14 2014-07-28 サントル・ナショナル・ドゥ・ラ・レシェルシュ・サイエンティフィーク−セ・エン・エール・エス− Method of chemically passivating the surface of a product made of III-V semiconductor material and the product obtained by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518449A (en) * 2011-06-14 2014-07-28 サントル・ナショナル・ドゥ・ラ・レシェルシュ・サイエンティフィーク−セ・エン・エール・エス− Method of chemically passivating the surface of a product made of III-V semiconductor material and the product obtained by the method
US9514961B2 (en) 2011-06-14 2016-12-06 Centre National de la Recherche Scientifique—CNRS Method for chemically passivating a surface of a product made of a III-V semiconductor material and the product obtained by such a method

Similar Documents

Publication Publication Date Title
KR950007956B1 (en) Electrode forming method of mis structure
CN111916351A (en) Semiconductor device and method for manufacturing the same
CN107393959A (en) GaN hyperfrequencies device and preparation method based on sag
CN110600549B (en) Enhanced AlGaN/GaN MOS-HEMT device structure and preparation method thereof
JP3187764B2 (en) GaAs-based MOSFET and its products
JPH0491436A (en) Formation method of mis structure electrode
JPH0491435A (en) Formation method of mis structure electrode
US5539248A (en) Semiconductor device with improved insulating/passivating layer of indium gallium fluoride (InGaF)
CN115602540B (en) Manufacturing method of enhanced GaN power device
JPS6292327A (en) Semiconductor device and manufacture thereof
JPH10173036A (en) Semiconductor device and method of realizing high-resistance semiconductor
JPH0212875A (en) Manufacture of semiconductor device
JP3228979B2 (en) Semiconductor device and method of manufacturing the same
JPS59165460A (en) Semiconductor device and manufacture thereof
JP2707436B2 (en) Method for manufacturing field effect transistor
KR940004261B1 (en) Manufacturing method of misfet by processed sulfur
JP2639376B2 (en) Method of growing III-V compound semiconductor
JPH0521467A (en) Manufacture of field-effect transistor
JPH0434821B2 (en)
JPH0922892A (en) Manufacture of compound semiconductor device
JPH04256317A (en) Etching method for semiconductor substrate
JPH0373542A (en) Manufacture of ga-as field effect transistor
JPS6143443A (en) Manufacture of semiconductor device
JPH06291147A (en) Integrated circuit or discrete device and manufacture thereof
JPS6318677A (en) Iii-v compound semiconductor device