JPH03250707A - Magnetic alloy - Google Patents

Magnetic alloy

Info

Publication number
JPH03250707A
JPH03250707A JP2048117A JP4811790A JPH03250707A JP H03250707 A JPH03250707 A JP H03250707A JP 2048117 A JP2048117 A JP 2048117A JP 4811790 A JP4811790 A JP 4811790A JP H03250707 A JPH03250707 A JP H03250707A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
magnetic alloy
coercive force
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2048117A
Other languages
Japanese (ja)
Other versions
JP2668590B2 (en
Inventor
Yasushi Watanabe
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2048117A priority Critical patent/JP2668590B2/en
Publication of JPH03250707A publication Critical patent/JPH03250707A/en
Application granted granted Critical
Publication of JP2668590B2 publication Critical patent/JP2668590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic alloy which has a high-saturation magnetic flux density, small coercive force, and large magnetic permeability and is excellent in thermostability and corrosion resistance by specifying the composition of the alloy. CONSTITUTION:This magnetic alloy is formed so that atomic percentages represented by v, w, x, and y satisfy relations of 1<=w<=20, 0.1<=x<=10, and 0.5<=y<=6 and v+w+x+y=100 (H is at least one or more elements selected out of the group of B, A, Ga, C, and Ge). Therefore, a magnetic alloy which has a high saturation magnetic flux density and small coercive force and is excellent in thermostability and suitable for a glass mold process can be obtained without making the alloy to have a multilayered structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高密度磁気記録用の磁気ヘッドに適する磁性
合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic alloy suitable for a magnetic head for high-density magnetic recording.

(従来の技術) 近年、磁気記録の高密度化や広帯域化の必要性が高まり
、磁気記録媒体に高い抗磁力を有する磁性材料を使用し
て記録トラック幅を狭くすることにより、高密度磁気記
録再生を実現している。そして、この高い抗磁力をもつ
磁気記録媒体に記録再生するための磁気ヘッド材料とし
て、飽和磁束密度Bsの高い磁性合金が必要とされてお
り、センダスト合金やCo−Zr系非晶質合金等をコア
の一部または全部に使用した磁気ヘッドが提案されてい
る。
(Prior art) In recent years, the need for higher density and wider band magnetic recording has increased, and high-density magnetic recording has been achieved by narrowing the recording track width by using magnetic materials with high coercive force in magnetic recording media. Achieving regeneration. Magnetic alloys with high saturation magnetic flux density Bs are required as magnetic head materials for recording and reproducing on magnetic recording media with high coercive force, and Sendust alloys, Co-Zr amorphous alloys, etc. A magnetic head using part or all of the core has been proposed.

然しなから、磁気記録媒体の高抗磁力化か一段と進み、
磁気記録媒体の抗磁力か20000 e以上になるとセ
ンダスト合金やCo−Zr系非晶質合金を使用した磁気
ヘッドでは良好な磁気記録再生か困難になった。
However, progress has been made in increasing the coercive force of magnetic recording media.
When the coercive force of a magnetic recording medium exceeds 20,000 e, it becomes difficult to perform good magnetic recording and reproduction with a magnetic head using a Sendust alloy or a Co--Zr amorphous alloy.

又、磁気記録媒体の長手方向ではなく、厚さ方向に磁化
して記録する垂直磁化記録方式も提案されているが、こ
の垂直磁化記録方式を良好に行うには、磁気ヘッドの主
磁極の先端部の厚さを0,5μm以下にする必要があり
、比較的抗磁力の低い磁気記録媒体に記録するにも、高
い飽和磁束密度を持つ磁気ヘッド用磁性合金が必要にな
る。
Also, a perpendicular magnetization recording method has been proposed in which the magnetic recording medium is magnetized in the thickness direction rather than in the longitudinal direction, but in order to perform well with this perpendicular magnetization recording method, the tip of the main pole of the magnetic head must be The thickness of the magnetic head must be 0.5 μm or less, and a magnetic alloy for a magnetic head with a high saturation magnetic flux density is required even for recording on a magnetic recording medium with relatively low coercive force.

そして、センダスト合金やCo−Zr系非晶質合金より
も飽和磁束密度の高い磁性合金として、窒化鉄やFe−
5i系合金等の鉄を主成分とした磁性合金が知られてい
る。
Iron nitride and Fe-
Magnetic alloys containing iron as a main component, such as 5i-based alloys, are known.

(発明が解決しようとする課題) ところが、従来より知られている、これらの高Bs磁性
合金は保磁力Hcか大きく、そのままでは磁気ヘッドの
材料としては不十分であるのでセンダスト合金やパーマ
ロイ等の保磁力の小さい磁性材料か、或いは5iOz等
の非磁性材事」を中間層とした多層構造の磁気ヘッドが
提案されている。
(Problem to be Solved by the Invention) However, these conventionally known high Bs magnetic alloys have a large coercive force Hc and are not sufficient as materials for magnetic heads as they are, so sendust alloys, permalloy, etc. A multilayer magnetic head has been proposed in which the intermediate layer is made of a magnetic material with a low coercive force or a non-magnetic material such as 5iOz.

然しなから、このように異なる系の物質を多層化するに
は工数やコストかかかり、信頼性を保つのも難しいとい
う問題点があった。特に数11 m以上の膜厚にする為
には、場合によっては100層以上の多層構造とする必
要があり、使用範囲も限られていた。
However, creating multiple layers of different types of materials in this way requires a lot of man-hours and costs, and it is difficult to maintain reliability. In particular, in order to obtain a film thickness of several 11 m or more, it is necessary to have a multilayer structure of 100 or more layers depending on the case, and the range of use has been limited.

これらの問題点を解決するために、不発四人等はFe−
N−0合金によって、多層構造にしない単層でも高飽和
磁束密度を有し、さらに低保磁力である磁性合金を提案
したが熱安定性の面からガラスモールド工程には適さな
いというff71題点があった。そこで、本発明は多層
構造にしなくても高飽和磁束密度を持ち、保磁力が小さ
く、熱安定性に優れた磁性合金を提供することをL1的
とする。
In order to solve these problems, the four unexploded people etc.
We proposed a magnetic alloy using N-0 alloy that has a high saturation magnetic flux density even in a single layer without a multilayer structure, and also has a low coercive force, but the problem with ff71 was that it was not suitable for the glass molding process due to thermal stability. was there. Therefore, the L1 objective of the present invention is to provide a magnetic alloy that has a high saturation magnetic flux density without having a multilayer structure, has a small coercive force, and has excellent thermal stability.

(課題を解決するための手段) 本発明は上記の課題を解決するためになされたされ、v
、w、x、yて示される原子96が1≦W≦20  0
.1≦x≦10 0.5≦y≦6 v +w+ x 十y =100 なる関係を有する磁性合金(但しMはB,Al,Ga、
C,Ge、からなる群の中から選ばれた少なくとも1種
類以上の元素)または、 F eV NW OX MY LZなる組成式で表され
、v、w、)c、y、zて示される原子%か1≦w≦2
0  0.1≦x≦1.0 0.5≦y≦60.3≦2≦6 v+w+x+y+z=1.00 なる関係を有する磁性合金(但しMはB、AlGa、C
,Geからなる群の中から選ばれた少なくとも1種類以
上の元素であり、LはTi、V。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and v
, w, x, y atoms 96 are 1≦W≦20 0
.. A magnetic alloy having the following relationships: 1≦x≦10 0.5≦y≦6 v +w+
At least one element selected from the group consisting of C, Ge, or F eV NW OX MY LZ, represented by v, w,) c, y, z atomic % or1≦w≦2
0 0.1≦x≦1.0 0.5≦y≦60.3≦2≦6 v+w+x+y+z=1.00 Magnetic alloy (where M is B, AlGa, C
, Ge, and L is Ti or V.

Cr、Co、Ni、Cu、Y、Zr、Nb、Mo。Cr, Co, Ni, Cu, Y, Zr, Nb, Mo.

Ru、Rh、Pd、Ag、Sn、Sb、Hf。Ru, Rh, Pd, Ag, Sn, Sb, Hf.

Ta、W、Re、Os、I r、Pt、Au、Pbから
なる群の中から選ばれた少なくとも1種類以上の元素)
をそれぞれ提供するものである。
At least one element selected from the group consisting of Ta, W, Re, Os, Ir, Pt, Au, and Pb)
Each of these will provide the following:

(実施例) 本発明になる磁性合金の製造装置の一実施例を第1図に
示す。
(Example) An example of the magnetic alloy manufacturing apparatus according to the present invention is shown in FIG.

一対のターゲット5.5は鉄(F e)とBAl、Ga
等の添加元素の合金ターゲットか、或いは適当な凹部を
設けた純鉄のターゲットの四部にチップ状のB、AI等
をはめ込んだ複合ターゲットである。このターゲット5
.5はターゲットホルダ9によって支えられており、こ
のターゲット5とターゲットホルダ9には、直流電源1
3よりマイナス電位が印加され、更にこのターケ・ノド
ホルダ9の周囲にはシールド4が取り付けである。
A pair of targets 5.5 are iron (Fe), BAl, and Ga.
It is either an alloy target with additive elements such as, or a composite target in which chip-shaped B, AI, etc. are inserted into the four parts of a pure iron target with appropriate recesses. This target 5
.. 5 is supported by a target holder 9, and the target 5 and target holder 9 are connected to a DC power source 1.
A negative potential is applied from 3, and a shield 4 is attached around this tube holder 9.

又、このターゲットホルダ9の内部には、両ターゲット
5.5間にプラズマ14を集束するための磁石6.6が
挿入され、かつターゲット5の表面の加熱を防ぐために
冷却水8が流入している。
Further, inside this target holder 9, a magnet 6.6 for focusing the plasma 14 is inserted between both targets 5.5, and cooling water 8 flows in to prevent the surface of the target 5 from being heated. There is.

そして、接地された真空槽15の左右に、2個のターゲ
ットホルダ9が絶縁体7によって絶縁されて設けられて
いる。
Two target holders 9 are provided on the left and right sides of the grounded vacuum chamber 15 and are insulated by an insulator 7.

又、この真空槽15の上部より、窒素(N2)又、この
真空槽15の上部より、窒素(N2)酸素(02)アル
ゴン(Ar)かそれぞれ流量計1〜3により、所定の流
量に調節されて導入されている。
Further, nitrogen (N2) is supplied from the upper part of this vacuum chamber 15, and nitrogen (N2), oxygen (02), and argon (Ar) are supplied from the upper part of this vacuum chamber 15, each of which is adjusted to a predetermined flow rate using flowmeters 1 to 3. has been introduced.

なお、アルゴンはターゲット5をスパッタすると同時に
成膜する磁性合金膜中の酸素と窒素の量を調節するため
のものである。
Note that argon is used to adjust the amount of oxygen and nitrogen in the magnetic alloy film formed at the same time as sputtering the target 5.

そして、真空槽15の下部には基板ホルダ12上に基板
11が置かれ、不純物を防くためのシャッタ10が基板
1コを覆っている。
A substrate 11 is placed on a substrate holder 12 at the bottom of the vacuum chamber 15, and a shutter 10 for preventing impurities covers the substrate 1.

このようなスパッタ装置において、直流電源13により
、左右のターケラトホルダ9に支えられたターゲット5
.5の間にプラズマ14を発生させると、ターゲット5
はマイナス電位であるので、プラズマ14中のアルゴン
イオン(Ar’)がターゲット5に衝突し、ターゲット
5の鉄原子及びB、AI、Ga等の原子が飛び出す。
In such a sputtering apparatus, the target 5 supported by the left and right turbo holders 9 is powered by the DC power supply 13.
.. When the plasma 14 is generated between 5 and 5, the target 5
Since is at a negative potential, argon ions (Ar') in the plasma 14 collide with the target 5, and iron atoms and atoms of B, AI, Ga, etc. of the target 5 fly out.

そして、ターゲット5から飛び出した鉄とB。Then, Tetsu and B jumped out from Target 5.

AI、Ga等の原子とプラズマ中の窒素および酸素の原
子または分子が結合して基板11の上に成なお、スパッ
タ開始後の数分間は、シャッタ10を閉じて基板11を
覆うことにより、ターゲット5の表面の不純物が基板1
1の上に付かないようにし、その後でシャッタ10を開
けるようにする。
Atoms of AI, Ga, etc. and atoms or molecules of nitrogen and oxygen in the plasma combine and form on the substrate 11. For several minutes after the start of sputtering, the shutter 10 is closed to cover the substrate 11 to protect the target. Impurities on the surface of substrate 1
1, and then open the shutter 10.

そして、流量計1〜3にて窒素、酸素、アルゴンの導入
量を調整することにより、所望の窒素及び酸素を含んだ
F ev NwOX My金合金得ることができる。
Then, by adjusting the amounts of nitrogen, oxygen, and argon introduced using the flow meters 1 to 3, a F ev NwOX My gold alloy containing desired nitrogen and oxygen can be obtained.

このようにして得たFevNWOXMY合金の窒素・酸
素及びB、AI、Ga等の含有量と飽和磁束密度BS、
保磁力Hc、関係を表1に示す。
Contents of nitrogen, oxygen, B, AI, Ga, etc. and saturation magnetic flux density BS of the FevNWOXMY alloy thus obtained,
Table 1 shows the relationship between coercive force Hc.

(以下余白) 表 表1は窒素・酸素及びB、AI、Ga等の含有量と飽和
磁束密度(Bs)、保磁力(He)との関係を示す表で
あり、含有量はESCA(X線光電子分光分析法) 、
EPMA (X線マイクロアナライザ法)等による定量
分析で原子%て表しているか、±20%程度の誤差が見
込まれる。保磁力は真空中での熱処理を行った時の値で
あり、熱処理温度はここでは400°Cである。この内
、試料番号1はFeに窒素のみを含有させた時の結果で
ある。試料番号2〜IOは本発明の磁性合金である。
(Leaving space below) Table 1 shows the relationship between the content of nitrogen/oxygen, B, AI, Ga, etc., saturation magnetic flux density (Bs), and coercive force (He). photoelectron spectroscopy),
Quantitative analysis using EPMA (X-ray microanalyzer method) or the like is expressed as atomic %, and an error of about ±20% is expected. The coercive force is the value when heat treatment is performed in vacuum, and the heat treatment temperature is 400°C here. Among these, sample number 1 is the result when only nitrogen is contained in Fe. Sample numbers 2 to IO are magnetic alloys of the present invention.

窒素の含有量が1原子96未満であると、顕著な窒素の
効果が見られずHcはほとんど低下しない。
When the nitrogen content is less than 1 atom, 96 atoms, no significant effect of nitrogen is observed and Hc hardly decreases.

また第4図に示したように、窒素の含有量が20原子%
以下であるとBsか1OkG以上の磁性合金が得られる
。従って、窒素の含有量が1〜20原子96さらに好ま
しくは1〜10原子%である時、高Bsで低Hcの磁性
合金が得られる。窒素含有量が1〜lO原子%の時はB
sか15kG以上の磁性合金が得られる。
In addition, as shown in Figure 4, the nitrogen content is 20 at%
If it is below, a magnetic alloy with Bs of 1 OkG or more can be obtained. Therefore, when the nitrogen content is 1 to 20 atoms,96 and more preferably 1 to 10 at%, a high Bs and low Hc magnetic alloy can be obtained. B when the nitrogen content is 1 to 10 atom%
A magnetic alloy with a tensile strength of 15 kG or more can be obtained.

酸素の含有量が0.1原子%未満であると、顕著な酸素
の効果が見られず磁気特性の改善かほとんど見られない
。また、酸素の含有量が10原子%を越えるとHcが増
大する。従って、酸素の含有量が0.1〜IO原子%で
ある時、高Bsで低Hcで特に透磁率の高い磁性合金が
得られる。
When the oxygen content is less than 0.1 atomic %, no significant oxygen effect is observed and almost no improvement in magnetic properties is observed. Furthermore, when the oxygen content exceeds 10 atomic %, Hc increases. Therefore, when the oxygen content is between 0.1 and IO atomic %, a magnetic alloy with high Bs, low Hc and particularly high magnetic permeability can be obtained.

第2図には本発明になる磁性合金と従来例である窒化鉄
(FeN)合金の、熱処理温度による保磁力(Hc)の
変化を示す。窒化鉄は熱処理温度300°Cの時は比較
的Hcは低いが300’c以上にすると急激にHcが増
大する。これに対し本発明になる磁性合金は、Hcが小
さく熱安定性にも優れていることが解る。ここで、B、
AI、Ga等の元素の合計の含有量が0.5原子%未満
であると、熱安定性の向上に対する顕著な効果は見られ
ず、6原子%を越えるとBsの低下とHcの増大が生じ
る。従って、B、AI、Ga、C,Geからなる群の中
から選ばれた少くとも1種類以上の元素の合計の含有量
が0.5〜6原子%の時、高BS・低Hcて熱安定性に
も優れた磁性合金を得ることができる。また第3図には
膜厚を2μmとした時の本発明になる磁性合金の透磁率
μと周波数の関係を示す。比較例としてFe−N−Al
合金のμを示す。本発明になる磁性合金は、透磁率μが
Fe−N−A1合金の3000よりも高< 5000以
上であるので、より高性能の磁気デバイスに適した磁性
合金が得られる。
FIG. 2 shows the change in coercive force (Hc) of the magnetic alloy according to the present invention and a conventional iron nitride (FeN) alloy depending on the heat treatment temperature. Iron nitride has a relatively low Hc when the heat treatment temperature is 300°C, but when the heat treatment temperature exceeds 300°C, the Hc increases rapidly. In contrast, it can be seen that the magnetic alloy of the present invention has a small Hc and excellent thermal stability. Here, B,
When the total content of elements such as AI and Ga is less than 0.5 at%, no significant effect on improving thermal stability is observed, and when it exceeds 6 at%, Bs decreases and Hc increases. arise. Therefore, when the total content of at least one element selected from the group consisting of B, AI, Ga, C, and Ge is 0.5 to 6 at%, high BS and low Hc result in high heat. A magnetic alloy with excellent stability can also be obtained. Further, FIG. 3 shows the relationship between the magnetic permeability μ and frequency of the magnetic alloy according to the present invention when the film thickness is 2 μm. As a comparative example, Fe-N-Al
Indicates the μ of the alloy. Since the magnetic alloy according to the present invention has a magnetic permeability μ of 5000 or more, which is higher than 3000 of the Fe-N-A1 alloy, a magnetic alloy suitable for higher performance magnetic devices can be obtained.

(以下余白) 表 表2はTi、Cr等の元素が耐蝕性の向上に寄与するこ
とを示したものである。実験は試料を60’c−90%
の高温高湿中に放置し、1000時間経過後に腐蝕痕が
見られないものを○腐蝕痕が生じたものを×として耐蝕
性を示した。試料番号21は比較例であるFeN合金、
試料番号22〜44はFe−N−0−A I合金にTi
、Cr等の元素を添加した合金であり、試料番号22〜
44が本発明になる磁性合金である。
(Left below) Table 2 shows that elements such as Ti and Cr contribute to improving corrosion resistance. In the experiment, the sample was 60'c-90%
The samples were left in a high temperature and high humidity environment for 1,000 hours, and after 1000 hours, the samples with no corrosion marks were rated as ○, and the samples with corrosion marks were graded as x, indicating corrosion resistance. Sample number 21 is a comparative example of FeN alloy,
Sample numbers 22 to 44 are Fe-N-0-A I alloy with Ti
It is an alloy to which elements such as , Cr, etc. are added, and sample numbers 22~
44 is a magnetic alloy according to the present invention.

ここで、Ti、Cr等の合計の含有量が0.3原子%未
満であると、耐蝕性に対する顕著な効果が見られず、6
原子96を越えると磁気特性の劣化が生じる。従って、
Ti、V、Cr、Co、Ni。
Here, if the total content of Ti, Cr, etc. is less than 0.3 at%, no significant effect on corrosion resistance is observed, and 6
When the number exceeds 96 atoms, deterioration of magnetic properties occurs. Therefore,
Ti, V, Cr, Co, Ni.

Cu、Y、Zr、Nb、Mo、Ru、Rh、Pd。Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd.

Ag、Sn、Sb、Hf、Ta、W、Re、0sIr、
Pt、Au、Pbからなる群の中から選ばれた少なくと
も1種類以上の元素の合計の含有量が0.3〜6原子9
6である時、磁気特性と耐蝕性に優れた磁性合金が得ら
れる。
Ag, Sn, Sb, Hf, Ta, W, Re, 0sIr,
The total content of at least one element selected from the group consisting of Pt, Au, and Pb is 0.3 to 6 atoms9
6, a magnetic alloy with excellent magnetic properties and corrosion resistance can be obtained.

また、磁歪制御等を目的としてTa、Nbを合計で6原
子%以下含有させることかできる。
Further, for the purpose of controlling magnetostriction, etc., Ta and Nb can be contained in a total of 6 atomic % or less.

(発明の効果) 本発明は、以上のような組成の磁性合金とすることによ
り、高飽和磁束密度を有し、保磁力が小さく、透磁率が
大きく、更に熱安定性と耐蝕性に優れた磁気ヘッド等の
磁気デバイス用磁性合金が得られる。従って、本発明の
磁性合金を用いれば、高保磁力媒体への良好な記録再生
が行える他、高性能の薄膜磁気ヘッド等を作成すること
ができ、高密度な磁気記録再生が実現できる。
(Effects of the Invention) The present invention provides a magnetic alloy having the composition described above, which has high saturation magnetic flux density, low coercive force, high magnetic permeability, and excellent thermal stability and corrosion resistance. A magnetic alloy for magnetic devices such as magnetic heads is obtained. Therefore, by using the magnetic alloy of the present invention, it is possible to perform good recording and reproducing on a high coercive force medium, and also to create a high-performance thin film magnetic head and the like, and realize high-density magnetic recording and reproducing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明になる磁性合金膜を製造する装置の一
実施例であるスパッタ装置の概略図、第2図は、熱処理
温度によるHcの変化を表わす図、第3図は透磁率μと
周波数の関係を示す図、第4図は窒素含有量と飽和磁束
密度(Bs)の関係を示す図である。
FIG. 1 is a schematic diagram of a sputtering apparatus which is an embodiment of the apparatus for manufacturing a magnetic alloy film according to the present invention, FIG. 2 is a diagram showing changes in Hc depending on heat treatment temperature, and FIG. 3 is a diagram showing magnetic permeability μ FIG. 4 is a diagram showing the relationship between nitrogen content and saturation magnetic flux density (Bs).

Claims (1)

【特許請求の範囲】 (1)Fe_vN_wO_xM_Yなる組成式で表され
v,w,x,yで示される原子%が 1≦w≦20 0.1≦x≦10 0.5≦y≦6 v+w+x+y=100 なる関係を有する磁性合金。(但しMはB,Al,Ga
,C,Geからなる群の中から選ばれた少なくとも1種
類以上の元素) (2)Fe_vN_wO_xM_YL_zなる組成式で
表され、v,w,x,y,zで示される原子%が1≦w
≦20 0.1≦x≦10 0.5≦y≦6 0.3≦z≦6 v+w+x+y+z=100 なる関係を有する磁性合金。(但しMはB,Al,Ga
,C,Geからなる群の中から選ばれた少なくとも1種
類以上の元素であり、LはTi,V,Cr,Co,Ni
,Cu,Y,Zr,Nb,Mo,Ru,Rh,Pd,A
g,Sn,Sb,Hf,Ta,W,Re,Os,Ir,
Pt,Au,Pbからなる群の中から選ばれた少なくと
も1種類以上の元素)
[Claims] (1) It is expressed by the compositional formula Fe_vN_wO_xM_Y, and the atomic % represented by v, w, x, and y is 1≦w≦20 0.1≦x≦10 0.5≦y≦6 v+w+x+y= A magnetic alloy having a relationship of 100. (However, M is B, Al, Ga
, C, Ge) (2) It is represented by the composition formula Fe_vN_wO_xM_YL_z, and the atomic % represented by v, w, x, y, z is 1≦w
≦20 0.1≦x≦10 0.5≦y≦6 0.3≦z≦6 v+w+x+y+z=100 A magnetic alloy having the following relationships. (However, M is B, Al, Ga
, C, and Ge, and L is Ti, V, Cr, Co, and Ni.
, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, A
g, Sn, Sb, Hf, Ta, W, Re, Os, Ir,
At least one element selected from the group consisting of Pt, Au, and Pb)
JP2048117A 1990-02-28 1990-02-28 Magnetic alloy for magnetic head Expired - Lifetime JP2668590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048117A JP2668590B2 (en) 1990-02-28 1990-02-28 Magnetic alloy for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048117A JP2668590B2 (en) 1990-02-28 1990-02-28 Magnetic alloy for magnetic head

Publications (2)

Publication Number Publication Date
JPH03250707A true JPH03250707A (en) 1991-11-08
JP2668590B2 JP2668590B2 (en) 1997-10-27

Family

ID=12794380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048117A Expired - Lifetime JP2668590B2 (en) 1990-02-28 1990-02-28 Magnetic alloy for magnetic head

Country Status (1)

Country Link
JP (1) JP2668590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617275A (en) * 1994-05-02 1997-04-01 Sanyo Electric Co., Ltd. Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199203A (en) * 1987-10-13 1989-04-18 Sony Corp Soft magnetic laminated layer film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199203A (en) * 1987-10-13 1989-04-18 Sony Corp Soft magnetic laminated layer film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617275A (en) * 1994-05-02 1997-04-01 Sanyo Electric Co., Ltd. Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio

Also Published As

Publication number Publication date
JP2668590B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JPS60220913A (en) Magnetic thin film
US4748000A (en) Soft magnetic thin film
US5154983A (en) Magnetic alloy
JPH03250706A (en) Magnetic alloy
JPH03250707A (en) Magnetic alloy
JPH03270203A (en) Magnetic alloy
JPH03288410A (en) Magnetic alloy
JPH02199027A (en) Magnetic alloy
JPH02298238A (en) Magnetic alloy
JPH03270202A (en) Magnetic alloy
JPH03270204A (en) Magnetic alloy
JP2569828B2 (en) Magnetic alloys for magnetic devices
JP2689512B2 (en) Magnetic alloy for magnetic head
JPH03240209A (en) Magnetic alloy
JPH04187745A (en) Magnetic alloy
JPH03116910A (en) Magnetic alloy film
JP3087265B2 (en) Magnetic alloy
JPH03239312A (en) Magnetic alloy
JPH03134138A (en) Magnetic alloy
JPS633406A (en) Magnetically soft thin film
JPH02175618A (en) Magnetic alloy
JPS63146417A (en) Soft magnetic thin film
JPH06240417A (en) Magnetic alloy
JPH03129805A (en) Magnetic alloy film
JPH03166704A (en) Magnetic alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 13