JPH03223167A - Production of silicon carbide-based refractory having silicon nitride bond - Google Patents

Production of silicon carbide-based refractory having silicon nitride bond

Info

Publication number
JPH03223167A
JPH03223167A JP2015855A JP1585590A JPH03223167A JP H03223167 A JPH03223167 A JP H03223167A JP 2015855 A JP2015855 A JP 2015855A JP 1585590 A JP1585590 A JP 1585590A JP H03223167 A JPH03223167 A JP H03223167A
Authority
JP
Japan
Prior art keywords
temperature
si3n4
refractory
gas
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015855A
Other languages
Japanese (ja)
Other versions
JPH0745341B2 (en
Inventor
Shigeru Hanzawa
茂 半澤
Toshiyuki Ito
敏之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N G K ADORETSUKU KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
N G K ADORETSUKU KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N G K ADORETSUKU KK, NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical N G K ADORETSUKU KK
Priority to JP2015855A priority Critical patent/JPH0745341B2/en
Publication of JPH03223167A publication Critical patent/JPH03223167A/en
Publication of JPH0745341B2 publication Critical patent/JPH0745341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a refractory having excellent oxidation resistance, high- temperature strength and spalling resistance by calcining a formed article containing a specific amount of Si and beta-Si3N4 besides SiC as a main ingredient in N2 gas atmosphere. CONSTITUTION:A formed article containing at least 5-20wt.% Si and 1-10wt.% beta-Si3N4 besides SiC as a main ingredient is burned in N2 gas atmosphere to provide the objective calcined article. The above-mentioned calcination in N2 gas atmosphere is required in order to subject the high-temperature Si to a sintering reaction with N2 gas and convert Si into Si3N4. Although higher purity of N2 gas is desirable for the above-mentioned purpose, practically Si can be effectively converted into Si3N4 by N2 gas of >=90vol.% purity. Reaction temperature of N2 and Si is set to the range between 1200 and 1450 deg.C, though the calcining temperature is varied by product size and the calcining temperature curve- retaining time, because high temperature of >=1200 deg.C is required in order to form Si3N4 and when the temperature exceeds 1450 deg.C, Si in calcined formed article is vaporized and lost from the refractory.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化珪素結合炭化珪素質耐火物の製造方法に
関するもので、匣鉢、棚板、セッター等の例えば窯道具
類の製造方法に適用される。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a silicon nitride-bonded silicon carbide refractory, and is applicable to a method for manufacturing kiln tools such as saggers, shelves, and setters. Applicable.

(従来の技術) 工業用窯炉に用いられる窯道具類は、耐火物からなり、
急熱急冷などの過酷な温度変化を与えると熱衝撃により
中心部と表層部に温度差が生じ。
(Prior art) Kiln tools used in industrial kilns are made of refractory materials.
When subjected to severe temperature changes such as rapid heating and cooling, a temperature difference occurs between the center and surface layer due to thermal shock.

熱膨張の差で歪んで破壊することがある。このスポーリ
ングと呼ばれる破壊現象が起こると、棚板やセッター等
の破損により焼成品、窯炉等が大きな損傷を受けるので
、このような損傷が起こらないよう窯道具類に使用する
耐火物材質の選択は適切に行なう必要がある。
Differences in thermal expansion can cause distortion and destruction. When this destructive phenomenon called spalling occurs, the fired product, kiln, etc. will be seriously damaged due to breakage of shelves, setters, etc. To prevent this kind of damage, the refractory materials used for kiln tools should be carefully selected. Choices need to be made appropriately.

一般に、窯道具類に使用する従来の窒化珪素結合炭化珪
素質耐火物は、その組成が、例えば窒化珪素10〜25
%、二酸化珪素10〜15%、炭化珪素60〜80%お
よび少量の残存Siとからなる。
In general, conventional silicon nitride-bonded silicon carbide refractories used for kiln tools have a composition of, for example, 10 to 25 silicon nitride.
%, silicon dioxide 10-15%, silicon carbide 60-80% and a small amount of residual Si.

(発明が解決しようとする課題) しかし、このような従来の窒化珪素結合炭化珪素質耐火
物は、高温酸化雰囲気下で使用した場合の耐酸化性が劣
り、また室温強度および高温強度ともに相対的に低いだ
けでなく、耐熱衝撃性能が劣るため、割れ、亀裂が生じ
やすいので、焼成品の損傷や窯炉の倒壊事故等の問題が
発生しやすい。
(Problems to be Solved by the Invention) However, such conventional silicon nitride-bonded silicon carbide refractories have poor oxidation resistance when used in high-temperature oxidizing atmospheres, and have relatively low room-temperature strength and high-temperature strength. Not only does it have a low thermal shock resistance, it is easily cracked and cracked, resulting in problems such as damage to the fired product and the collapse of the kiln.

本発明者はこのような問題点に着目し従来の窒化珪素結
合の炭化珪素質耐火物の組成を調べたところ、前記炭化
珪素質耐火物原料を成形しN2ガス中で焼成した耐火物
中には残留Siが多量に存在していることを確認し、こ
れが−因となって耐火物の耐スポーリング性、耐熱性お
よび高温強度等の緒特性が低下するという知見を得た。
The present inventor focused on these problems and investigated the composition of conventional silicon carbide refractories with silicon nitride bonds, and found that in refractories formed from the silicon carbide refractory raw materials and fired in N2 gas, confirmed that a large amount of residual Si was present, and found that this caused a decline in the properties of refractories such as spalling resistance, heat resistance, and high-temperature strength.

本発明が解決しようとする課題は、窒化珪素結合炭化珪
素質耐火物中に残存する残留Siをなくし、さらに、窒
化珪素による炭化珪素粒子の結合構造を変えることによ
り、耐酸化性、高温強度および耐スポーリング性の良好
な窒化珪素結合炭化珪素質耐火物が得られる製造方法を
提供することにある。
The problem to be solved by the present invention is to eliminate residual Si remaining in silicon nitride-bonded silicon carbide refractories, and to improve oxidation resistance, high-temperature strength, and It is an object of the present invention to provide a manufacturing method capable of obtaining a silicon nitride-bonded silicon carbide refractory having good spalling resistance.

(課題を解決するための手段) そのために、本発明の窒化珪素結合炭化珪素質耐火物の
製造方法は、少なくともSi・5〜2゜wt%、β−5
ix N4  : I〜10w tを含有する主成分が
SiCである成形体をN2ガス雰囲気中で焼成すること
を特徴とする。
(Means for Solving the Problems) For this purpose, the method for producing a silicon nitride-bonded silicon carbide refractory of the present invention includes at least Si.5 to 2 wt%, β-5
ix N4: It is characterized in that a molded body containing I to 10 wt and whose main component is SiC is fired in an N2 gas atmosphere.

本発明による窒化珪素結合炭化珪素質耐火物の主成分は
炭化珪素であるから、原料組成のうち主成分のSiCは
60〜90wt%にする。
Since the main component of the silicon nitride-bonded silicon carbide refractory according to the present invention is silicon carbide, the main component SiC in the raw material composition is set to 60 to 90 wt%.

SLを原料に含むのは、炭化珪素粒子間に混合、2合さ
れたSiをN2雰囲気下で焼成することにより5i=N
−化して、これを結合材とした高靭な耐火物にするため
であり、そのためにSiが5wt%以上必要であり、2
0wt%を超えるとSiが未反応状態で残留しやすくな
るのでこれを避けるためである。
SL is included in the raw material by firing Si mixed and combined between silicon carbide particles in an N2 atmosphere to form 5i=N.
- to make a high-tough refractory using this as a binder, and for this purpose, 5 wt% or more of Si is required, and 2
This is to avoid Si remaining in an unreacted state if it exceeds 0 wt%.

β−Si、N4を原料に含むことを必須とするのは耐火
物を高靭にするためβ化率を大にすることが望ましく、
β−5isN4をあらかじめ添加することにより、これ
を種結晶としてβ−5iiN4の生成を促進するためで
ある。このようにβ−3iiN4をあらかじめ添加して
焼成した場合には、耐熱衝撃性が良好な耐火物が得られ
る。そのためにはβ−8i、Nsが1wt%以上必要で
あり、このあらかじめ添加するβ−5ixN4は難焼結
性であることから10wt%以下とする。
The reason why it is essential to include β-Si and N4 in the raw materials is that it is desirable to increase the β conversion rate in order to make the refractory high in toughness.
By adding β-5isN4 in advance, this is used as a seed crystal to promote the production of β-5iiN4. When β-3iiN4 is added in advance and fired in this way, a refractory with good thermal shock resistance can be obtained. For this purpose, β-8i and Ns are required to be at least 1 wt%, and since this β-5ixN4 added in advance is difficult to sinter, the content is set at 10 wt% or less.

なお、単に未反応Siを少なくしたりβ−3ixN4化
を促進するために、β−5ixN*をあらかじめ添加す
ることなく焼成反応時間を長くしたり焼成温度を高くす
ることも考えられるが、これらの方法により得られた耐
火物では、良好な耐熱衝撃性が得られなかった。
In addition, in order to simply reduce unreacted Si or promote β-3ixN4 formation, it is possible to lengthen the firing reaction time or increase the firing temperature without adding β-5ixN* in advance, but these methods The refractories obtained by this method did not have good thermal shock resistance.

前記SiC,Siおよびβ−5txN4原料に必要に応
じて粘土を1〜10wt%添加することもある。粘土を
加えることにより成形性が良好になる。
Clay may be added in an amount of 1 to 10 wt% to the SiC, Si and β-5txN4 raw materials as necessary. Adding clay improves moldability.

これらの原料を混合して成形した後、N2ガス90vo
ff%以上の高温ガス雰囲気中で焼成する。
After mixing and molding these raw materials, N2 gas 90vo
Firing is performed in a high temperature gas atmosphere of ff% or higher.

N2ガス雰囲気としたのは、Siの高温でN2ガスと反
応焼結させ5iaN4化するためである。
The reason for the N2 gas atmosphere is to react and sinter Si with N2 gas at high temperature to form 5iaN4.

そのためにN2ガスは純度が高いほうが望ましいが、実
用的には90voρ%以上であれば効率よ<Si、N4
化することができる。焼成時の温度は製品の大きさや焼
成温度カーブ保持時間により変化させるが、N2とSi
の反応温度は1200〜1450℃の範囲に設定する。
For this reason, it is desirable for the N2 gas to have high purity, but in practice, if it is 90voρ% or higher, the efficiency is <Si, N4
can be converted into The temperature during firing varies depending on the size of the product and the firing temperature curve retention time, but N2 and Si
The reaction temperature is set in the range of 1200 to 1450°C.

これは、S i sN4化するためには1200℃以上
の高温であることが必要であり、1450℃を超えると
被焼成成形体中のSiが気化して耐火物中から消失して
しまうからである。
This is because a high temperature of 1200°C or higher is required to convert Si sN4, and if the temperature exceeds 1450°C, the Si in the compact to be fired will vaporize and disappear from the refractory. be.

この焼成方法により耐火物中に強力な窒化珪素結合が造
られるため、耐酸化性、耐熱性、室温曲げ強度および高
温曲げ強度の(!れた窒化珪素結合炭化珪素質耐火物を
得ることができる。
This firing method creates strong silicon nitride bonds in the refractory, making it possible to obtain silicon nitride bonded silicon carbide refractories with excellent oxidation resistance, heat resistance, room temperature bending strength, and high temperature bending strength. .

(発明の効果) 本発明の窒化珪素結合炭化珪素質耐火物の製造方法によ
れば、焼成後の耐火物中に残留Siをな(し、β化率を
大きくし、強力な窒化珪素結合が得られるため、耐酸化
性、耐熱性、高温曲げ強度および耐熱衝撃性の高められ
た高靭な窒化珪素結合炭化珪素質耐火物が製造できる。
(Effects of the Invention) According to the method for producing a silicon nitride-bonded silicon carbide refractory of the present invention, residual Si is formed in the refractory after firing, increasing the beta conversion rate and forming strong silicon nitride bonds. As a result, a tough silicon nitride-bonded silicon carbide refractory with improved oxidation resistance, heat resistance, high-temperature bending strength, and thermal shock resistance can be manufactured.

したがって、本発明により造られる窒化珪素結合炭化珪
素質耐火物を用いると、棚板やセッター等の焼成品の損
傷や破損、倒壊事故等の発生率を大幅に低減することが
できるという効果がある。
Therefore, the use of the silicon nitride-bonded silicon carbide refractory made according to the present invention has the effect of significantly reducing the incidence of damage, breakage, collapse accidents, etc. of fired products such as shelf boards and setters. .

(実施例) 以下、本発明の実施例について述べる。(Example) Examples of the present invention will be described below.

本発明の原料組成に該当する実施例と、この原料組成か
らはずれる原料組成をもつ比較例を用意し、これらの混
線物を成形し、N2ガス9OvO氾%以上の雰囲気中で
1200〜1450℃の温度で焼成した。この場合の本
発明の実施例と比較例のそれぞれの焼成前の原料組成は
第1表に示すとおりである。
An example corresponding to the raw material composition of the present invention and a comparative example having a raw material composition deviating from this raw material composition were prepared, and these mixed products were molded and heated at 1200 to 1450 °C in an atmosphere containing N2 gas of 9 OvO flood% or more. Baked at temperature. In this case, the raw material compositions of the examples of the present invention and the comparative examples before firing are as shown in Table 1.

(以下、余白)。(Hereafter, margin).

得られた実施例1〜7および比較例1〜7のだ成後の組
成を調査した結果は第1表に示すとおりであった。
The compositions of the obtained Examples 1 to 7 and Comparative Examples 1 to 7 after formation were investigated and the results are as shown in Table 1.

次に、実施例1〜7および比較例1〜7の焼結体(窒化
珪素結合炭化珪素質耐火物)について、■Si、N、の
β化率、■曲げ強さ(室a右よU高温)、■熱衝撃性に
ついてそれぞれ試験を行なった。
Next, regarding the sintered bodies (silicon nitride-bonded silicon carbide refractories) of Examples 1 to 7 and Comparative Examples 1 to 7, ■β conversion rate of Si and N, ■ bending strength (from room a right to U (high temperature) and (2) thermal shock resistance.

試、M3=件 ■Si、N4のβ化率 5i−N4のβ化率はX線回折のピーク高さ1しより算
出した。β化率は次式から算出した。
Trial, M3=Example ■Si, beta conversion rate of N4 5i - β conversion rate of N4 was calculated from the peak height of X-ray diffraction 1. The β conversion rate was calculated from the following formula.

〔β化率] =C+D/A+B+C+DX100(%)
・・・(1)  市 記(1)式中、Aはα−Si、N、の存在を検出する角
度35.2度のピーク高さを示し、Bは同じく角度34
.5度のピーク高さを示す。またCはβ−3iiN<の
存在を検出する角度33.5度のピーク高さを示し、D
は同じく角度35.7度のピーク高さを示す。
[Beta conversion rate] =C+D/A+B+C+DX100 (%)
... (1) In the formula (1), A indicates the peak height at an angle of 35.2 degrees at which the presence of α-Si, N is detected, and B also indicates the peak height at an angle of 34 degrees.
.. Shows a peak height of 5 degrees. Further, C indicates the peak height at an angle of 33.5 degrees at which the presence of β-3iiN< is detected, and D
also shows a peak height at an angle of 35.7 degrees.

■曲げ強さ 室温曲げ強さおよび高温曲げ強さを日本工業規格(JI
S)R2575に準する三点曲げ試験法により測定した
。試験片の大きさは140X30X10mmとした。高
温曲げ強さは、電気炉を1400℃に加熱し、前記三点
曲げ試験法で測定した。
■Bending strength The bending strength at room temperature and the bending strength at high temperature are determined by Japanese Industrial Standards (JI).
S) Measured by three-point bending test method according to R2575. The size of the test piece was 140 x 30 x 10 mm. The high temperature bending strength was measured by heating an electric furnace to 1400° C. and using the three-point bending test method described above.

■熱衝撃性 熱衝撃性の評価は140X140X30mmの大きさの
試験片を用いた。800”Cに加熱した電気炉に試験片
を入れ、炉からの出入れを繰り返し、何回の繰り返し出
入れにより試験片にクラックが入ったかどうかで評価し
た。第1表中の評価基準は、 0印:6回以上繰り返し出し入れしてもクラック発生な
し、 ○印:3〜5回でクラックが入る、 △印:2回でクラックが入る、 X印:1回でクラックが入る、 とした。
(2) Thermal Shock A test piece measuring 140 x 140 x 30 mm was used for evaluation of thermal shock. A test piece was placed in an electric furnace heated to 800"C, and the test piece was taken in and out of the furnace repeatedly, and evaluated based on how many times the test piece cracked. The evaluation criteria in Table 1 were as follows: 0 mark: No cracks occur even after repeated insertion and removal 6 times or more, ○ mark: Cracks appear after 3 to 5 times, △ mark: Cracks appear after 2 times, X mark: Cracks occur after 1 time.

試y目り來 結果は第1表に示すとおりである。The trial is coming The results are shown in Table 1.

第1表に示されるように、比較例1は原料中のSiCの
過多およびβ−31s N4無含有により室温曲げ強さ
および1400℃の高温曲げ強さともに実施例1〜7に
比べ相対的に低い、また熱衝撃性は不良であった。比較
例2および比較性3はβ−3isN4を無含有のもので
、曲げ強さおよび熱衝撃性が不良であった。比較例4は
原料中にβ−3isN4の過多が原因の一つとなって曲
げ強さおよび熱衝撃性が不良であった。比較例5につい
ても比較例4と同様の理由により曲げ強さおよび熱衝撃
性が不良であった。比較例6および比較例7は、Siの
過多により曲げ強さおよび熱衝撃性が不良であった。
As shown in Table 1, Comparative Example 1 has both room temperature bending strength and high temperature bending strength of 1400°C relatively compared to Examples 1 to 7 due to the excessive amount of SiC in the raw material and the absence of β-31s N4. The thermal shock resistance was low and poor. Comparative Example 2 and Comparative Example 3 did not contain β-3isN4 and had poor bending strength and thermal shock resistance. Comparative Example 4 had poor bending strength and thermal shock resistance, partly due to excessive β-3isN4 in the raw material. Comparative Example 5 also had poor bending strength and thermal shock resistance for the same reasons as Comparative Example 4. Comparative Examples 6 and 7 had poor bending strength and thermal shock resistance due to excessive Si content.

これに対し、本発明の実施例1〜7では、窒化珪素結合
炭化珪素質耐大物原料に適量なβ−5isN4を添加し
たので、焼成後の耐火物中に残留Sjが存在せずに窒化
珪素結合が促進されたため、室温強度および高温強度な
らびに熱衝撃性が良好なものになったものと考えられる
On the other hand, in Examples 1 to 7 of the present invention, an appropriate amount of β-5isN4 was added to the silicon nitride-bonded silicon carbide large-sized refractory raw material, so that no residual Sj existed in the fired refractory and silicon nitride It is thought that because the bonding was promoted, the room temperature strength, high temperature strength, and thermal shock resistance were improved.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくともSi:5〜20wt%、β−Si_3
N_4:1〜10wt%を含有する主成分がSiCであ
る成形体をN_2ガス雰囲気中で焼成することを特徴と
する窒化珪素結合炭化珪素質耐火物の製造方法。
(1) At least Si: 5 to 20 wt%, β-Si_3
A method for producing a silicon nitride-bonded silicon carbide refractory, which comprises firing a molded body whose main component is SiC containing 1 to 10 wt% of N_4 in an N_2 gas atmosphere.
JP2015855A 1990-01-25 1990-01-25 Method for manufacturing silicon nitride-bonded silicon carbide refractory Expired - Lifetime JPH0745341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015855A JPH0745341B2 (en) 1990-01-25 1990-01-25 Method for manufacturing silicon nitride-bonded silicon carbide refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015855A JPH0745341B2 (en) 1990-01-25 1990-01-25 Method for manufacturing silicon nitride-bonded silicon carbide refractory

Publications (2)

Publication Number Publication Date
JPH03223167A true JPH03223167A (en) 1991-10-02
JPH0745341B2 JPH0745341B2 (en) 1995-05-17

Family

ID=11900423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015855A Expired - Lifetime JPH0745341B2 (en) 1990-01-25 1990-01-25 Method for manufacturing silicon nitride-bonded silicon carbide refractory

Country Status (1)

Country Link
JP (1) JPH0745341B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094290A1 (en) * 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Plasma display panel manufacturing method and substrate supporting table used in such method
WO2009110400A1 (en) * 2008-03-05 2009-09-11 日本碍子株式会社 Kiln tool plate for firing ceramic
CN109206138A (en) * 2018-10-26 2019-01-15 武汉工程大学 A kind of preparation method of the silicon-carbide particle of high sphericity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2785666B1 (en) 2011-11-29 2019-09-18 Corning Incorporated Method of treating joint in ceramic assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888169A (en) * 1981-11-16 1983-05-26 電気化学工業株式会社 Manufacture of silicon carbide-silicon nitride formed article
JPS6330366A (en) * 1986-07-23 1988-02-09 株式会社日立製作所 Manufacture of silicon nitride-silicon carbide base composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888169A (en) * 1981-11-16 1983-05-26 電気化学工業株式会社 Manufacture of silicon carbide-silicon nitride formed article
JPS6330366A (en) * 1986-07-23 1988-02-09 株式会社日立製作所 Manufacture of silicon nitride-silicon carbide base composite material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094290A1 (en) * 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Plasma display panel manufacturing method and substrate supporting table used in such method
US7766715B2 (en) 2006-02-14 2010-08-03 Panasonic Corporation Method of manufacturing plasma display panel and setter for substrate used therein
WO2009110400A1 (en) * 2008-03-05 2009-09-11 日本碍子株式会社 Kiln tool plate for firing ceramic
EP2251628A1 (en) * 2008-03-05 2010-11-17 NGK Insulators, Ltd. Kiln tool plate for firing ceramic
CN101960245A (en) * 2008-03-05 2011-01-26 日本碍子株式会社 Kiln tool plate for firing ceramic
JP5412421B2 (en) * 2008-03-05 2014-02-12 日本碍子株式会社 Ceramic kiln tool plate
EP2251628A4 (en) * 2008-03-05 2014-07-30 Ngk Insulators Ltd Kiln tool plate for firing ceramic
CN105115304A (en) * 2008-03-05 2015-12-02 日本碍子株式会社 Kiln tool plate for firing ceramic material
US9279618B2 (en) 2008-03-05 2016-03-08 Ngk Insulators, Ltd. Kiln tool plate for firing ceramic material
CN105115304B (en) * 2008-03-05 2018-03-20 日本碍子株式会社 kiln tool plate for firing ceramic
CN109206138A (en) * 2018-10-26 2019-01-15 武汉工程大学 A kind of preparation method of the silicon-carbide particle of high sphericity

Also Published As

Publication number Publication date
JPH0745341B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
JP2007197226A (en) High-thermal conductive silicon nitride ceramic having high reliability and method of manufacturing the same
JP2781440B2 (en) Method for producing silicon nitride-bonded silicon carbide refractory
JPH03223167A (en) Production of silicon carbide-based refractory having silicon nitride bond
JPS6152110B2 (en)
JPH025711B2 (en)
JP3373312B2 (en) SiC-based kiln tool and method of manufacturing the same
JPS5823346B2 (en) Production method of α-sialon sintered body
JPS6343346B2 (en)
JPH0450171A (en) Preparation of aln sintered product
JPH0559073B2 (en)
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JPH03153574A (en) High strength sialon-based sintered body
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPH03174364A (en) Silicon nitride-based sintered body
JPH05306172A (en) Silicon nitride sintered compact excellent in strength at high temperature and oxidation resistance and its production
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH04305065A (en) Production of silicon nitride-based ceramics
JPH04224169A (en) Sic refractory material
JPH04114968A (en) Silicon nitride-based sic refractory material and production thereof
Balog et al. Distribution of sintering additives via sol-gel method in SiC based ceramics
JPS62113761A (en) High strength sintered body and manufacture
JPS6287462A (en) Silicon nitride sintered body and manufacture
JPH03228871A (en) Starting material for silicon carbide-based refractory

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 15