JPH03153574A - High strength sialon-based sintered body - Google Patents

High strength sialon-based sintered body

Info

Publication number
JPH03153574A
JPH03153574A JP1291247A JP29124789A JPH03153574A JP H03153574 A JPH03153574 A JP H03153574A JP 1291247 A JP1291247 A JP 1291247A JP 29124789 A JP29124789 A JP 29124789A JP H03153574 A JPH03153574 A JP H03153574A
Authority
JP
Japan
Prior art keywords
sialon
powder
sintered body
based sintered
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1291247A
Other languages
Japanese (ja)
Other versions
JPH0559074B2 (en
Inventor
Tetsuo Yamada
哲夫 山田
Atsuhiko Tanaka
敦彦 田中
Tetsuo Nakayasu
中安 哲夫
Yasuhiko Kamitoku
神徳 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP1291247A priority Critical patent/JPH03153574A/en
Publication of JPH03153574A publication Critical patent/JPH03153574A/en
Publication of JPH0559074B2 publication Critical patent/JPH0559074B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve strength by forming microcrystals of Y2Hf2O7, crystals of Yalpha-sialon having a specified compsn., crystals of beta-sialon and a Y-contg. glass phase is constituents. CONSTITUTION:Powdery starting material consisting of <=50wt.% Yalpha-sialon powder contg. 8wt.% excess of O2 over the theoretical amt. of O2 defined by Yalpha-sialon represented by formula I (where 0<x<=2), <=15wt.% HfO2 powder and the balance alpha-Si3N4 powder is mixed and sintered by heating at 1,600-2,100 deg.C in an N2 atmosphere to obtain a high strength sialon-based sintered body consisting of 1-20wt.% microcrystal phase of Y2Hf2O7, 5-50wt.% crystal phase of Yalpha-sialon, 30-90wt.% crystal phase of p-sialon represented by formula II (where 0<z<=4.2) and 1-10wt.% Y-contg. glass phase.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温高強度、高硬度及び高靭性を有する各種
エンジニアリングセラミックスを製造するために有用な
高強度サイアロン基焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-strength sialon-based sintered body useful for producing various engineering ceramics having high temperature and high strength, high hardness, and high toughness.

(従来技術及びその問題点) Yα−サイアロンは、α型窒化珪素のSi位置にA!が
、N位置にOが置換固溶すると同時に、Yが侵入固溶し
た物質であり、 式Y、 (S i、 Allり 、t (0,N) I
b (I)(式中、Xは0<x≦2を満足する数である
。)で表される。このYα−サイアロンは、高硬度、低
熱膨張率、優れた耐蝕性等のエンジニアリングセラミッ
クスとしての特性を有している。
(Prior art and its problems) Yα-Sialon has A! at the Si position of α-type silicon nitride. is a substance in which O substitutes at the N position and at the same time Y enters into a solid solution, and has the formula Y, (S i, All , t (0, N) I
b (I) (wherein, X is a number satisfying 0<x≦2). This Yα-sialon has characteristics as an engineering ceramic, such as high hardness, low coefficient of thermal expansion, and excellent corrosion resistance.

しかし、Yα−サイアロン相単体の焼結体は、結晶形状
が粒状であるため、エンジニアリングセラミックスとし
ての強度、破壊靭性等の特性が充分ではない。そこで、
この欠点を改良するために、特開昭58−185484
号公報には、Yα−サイアロン結晶と、β型窒化珪素の
Si位置にA!が、N位置に0が置換固溶した 式S i a−gA 1xozNIl−t   (I[
)(式中、2はO<z≦4.2を満足する数である。)
で表される針状のβ−サイアロン結晶とを複合化させた
サイアロン基焼結体が提案されている。
However, since the sintered body of the single Yα-sialon phase has a granular crystal shape, it does not have sufficient properties such as strength and fracture toughness as an engineering ceramic. Therefore,
In order to improve this drawback, Japanese Patent Application Laid-Open No. 58-185484
The publication describes Yα-sialon crystal and A! at the Si position of β-type silicon nitride! is the formula Si a-gA 1xozNIl-t (I[
) (In the formula, 2 is a number that satisfies O<z≦4.2.)
A sialon-based sintered body has been proposed which is a composite of acicular β-sialon crystals represented by:

しかしながら、このサイアロン基焼結体の機械的特性も
実用上十分なものではない。
However, the mechanical properties of this sialon-based sintered body are not sufficient for practical use.

(発明の目的) 本発明の目的は、前記問題点を解決し、高温強度及び靭
性の高い新規なサイアロン基焼結体を提供することであ
る。
(Object of the Invention) An object of the present invention is to solve the above-mentioned problems and provide a novel sialon-based sintered body having high high-temperature strength and toughness.

(発明の要旨) 本発明によれば、蛍石型結晶構造のYtHfzO7の微
結晶、in記式(1)で表されるYα〜サイアロンの結
晶、前記式(U)で表されるβ−サイアロンの結晶及び
Yを含むガラス相からなる高強度サイアロン基焼結体が
提供される。
(Summary of the Invention) According to the present invention, microcrystals of YtHfzO7 having a fluorite crystal structure, crystals of Yα-sialon represented by the in formula (1), and β-sialon represented by the formula (U) A high-strength sialon-based sintered body consisting of a glass phase containing crystals and Y is provided.

(発明の詳細な説明) 本発明のサイアロン基焼結体における各相の含有割合は
、通常以下に示す範囲である。
(Detailed Description of the Invention) The content ratio of each phase in the sialon-based sintered body of the present invention is usually within the range shown below.

1 < Y z Hf z O7の微結晶相 く20重
量%5<Yα−サイアロンの結晶相〈50重全量30く
β−サイアロンの結晶相 〈90重量%i<yを含むガ
ラス相    〈10重量%Y2Hf2O7の微結晶相
の割合が前記範囲を外れると、得られるサイアロン基焼
結体の機械的強度が低下するので好ましくない。
1 < Y z Hf z Microcrystalline phase of O7 20% by weight 5 < Y If the proportion of the microcrystalline phase of Y2Hf2O7 is outside the above range, the mechanical strength of the obtained sialon-based sintered body will decrease, which is not preferable.

また、本発明のサイアロン基焼結体において、Yα−サ
イアロンの結晶の長径が0.05〜10μm、β−サイ
アロンの結晶の長径が1〜100μmであることが好ま
しい。
Further, in the sialon-based sintered body of the present invention, it is preferable that the major axis of the Yα-sialon crystal is 0.05 to 10 μm, and the major axis of the β-sialon crystal is 1 to 100 μm.

本発明のサイアロン基焼結体中には、Yα−サイアロン
とα−窒化珪素との反応によって生成すると考えられる
、β−サイアロンの結晶、Yを含むガラス相及び粒界で
結晶化した蛍石型結晶構造のY2Hf2O7の微粒結晶
が、原料のYα−サイアロンの組成より式CI)のXが
若干低いYα−サイアロンの結晶と共に存在する。
The sialon-based sintered body of the present invention contains β-sialon crystals, a glass phase containing Y, and a fluorite type crystallized at grain boundaries, which are thought to be produced by the reaction between Yα-sialon and α-silicon nitride. Fine grain crystals having a crystal structure of Y2Hf2O7 exist together with crystals of Yα-sialon having a slightly lower X of formula CI) than the composition of the raw material Yα-sialon.

この様なYzHf、o、の微粒結晶により粒界相(Yz
HfgotとYを含むガラス相)の強度特性が向上し、
また焼結体中には組成、結晶形及び熱膨張率の異なる4
種類の相が存在し、焼結後に焼結体中に微小歪に基づく
微小クランクが発生することにより、得られるサイアロ
ン基焼結体の破壊靭性等の機械的特性が向上するもとの
考えられる。
Such fine crystals of YzHf, o form a grain boundary phase (Yz
The strength properties of the glass phase (containing Hfgot and Y) are improved,
In addition, there are four types of sintered bodies with different compositions, crystal shapes, and coefficients of thermal expansion.
It is thought that the presence of different types of phases and the generation of microcranks based on microstrains in the sintered body after sintering improve the mechanical properties such as fracture toughness of the resulting sialon-based sintered body. .

本発明のサイアロン基焼結体を製造する方法としては、
前記構造の焼結体が得られれば、どのような方法を用い
てもよい。
The method for producing the sialon-based sintered body of the present invention includes:
Any method may be used as long as a sintered body having the above structure can be obtained.

以下に、本発明のサイアロン基焼結体を製造する方法の
一例を示す。
An example of a method for manufacturing the sialon-based sintered body of the present invention is shown below.

本発明のサイアロン基焼結体は、前記式(1)で表され
るYα−サイアロンを主たる相とし、かつ式(1)で規
定される理論酸素量に対して8重量%以下の過剰酸素を
含有するYα−サイアロン粉末50重量%以下、酸化ハ
フニウム粉末15重量%以下、及び残部がα−窒化珪素
粉末からなる原料粉末を、最高温度1600〜2100
°Cの範囲に加熱、焼結することにより得られる。
The sialon-based sintered body of the present invention has Yα-sialon represented by the formula (1) as a main phase, and contains 8% by weight or less of excess oxygen with respect to the theoretical oxygen amount defined by the formula (1). The raw material powder containing 50% by weight or less of Yα-sialon powder, 15% by weight or less of hafnium oxide powder, and the balance consisting of α-silicon nitride powder is heated to a maximum temperature of 1600 to 2100.
It is obtained by heating and sintering in the range of °C.

Yα−サイアロン粉末としては、式(1)で表されるY
α−サイアロンを主たる相とする粉末であればいかなる
粉末でも良いが、本出願人が先に提案した特開昭62−
223009号の発明に従って調製した粉末が好適であ
る。この提案の方法は、 (a)非晶質窒化珪素粉末、 (b)金属アルミニウム又は窒化アルミニウム、(c)
Yα−サイアロンの格子間に侵入型固溶するYの酸化物
を生成する金属塩類、及び必要に応じて、 (d)アルミニウム又は珪素の酸素含有化合物を所望の
Yα−サイアロン組成になるように混合し、混合物を窒
素含有雰囲気下で1300〜1900°Cの範囲の温度
に加熱することにより、Yα−サイアロン粉末を製造す
る方法である。この方法で得られるYα−サイアロン粉
末は、−成粒子の大きさが0.2〜2μmの微細かつ均
一粒度の粉末であって、遊離炭素及び金属不純物を殆ど
含有しないので、気孔及び異常粒成長のない焼結体を与
えることができる。
As Yα-sialon powder, Y expressed by formula (1)
Any powder may be used as long as it has α-sialon as its main phase.
Powders prepared according to the invention of No. 223009 are preferred. This proposed method consists of (a) amorphous silicon nitride powder, (b) metallic aluminum or aluminum nitride, (c)
A metal salt that forms an oxide of Y that forms an interstitial solid solution between the lattices of Yα-sialon, and (d) an oxygen-containing compound of aluminum or silicon, if necessary, is mixed to obtain a desired Yα-sialon composition. This is a method for producing Yα-sialon powder by heating the mixture to a temperature in the range of 1300 to 1900°C under a nitrogen-containing atmosphere. The Yα-sialon powder obtained by this method is a fine and uniform powder with a particle size of 0.2 to 2 μm, and contains almost no free carbon and metal impurities, so it does not have pores or abnormal grain growth. It is possible to provide a sintered body without

Yα−サイアロン粉末の焼結性を高めると同時に高強度
のサイアロン基焼結体を得るためには、焼結原料のYα
−サイアロン粉末が式CI)で規定される理論酸素量に
対して8重量%以下の過剰酸素を含有していることが必
要である。
In order to improve the sinterability of the Yα-sialon powder and at the same time obtain a high-strength sialon-based sintered body, it is necessary to increase the sintering raw material Yα.
- It is necessary that the Sialon powder contains not more than 8% by weight of excess oxygen relative to the theoretical oxygen amount defined by formula CI).

Yα−サイアロン粉末に過剰の酸素を含有させる方法と
しては、例えば、Yα−サイアロン粉末の調製段階で非
晶質窒化珪素に珪素、アルミニウム又はイツトリウムの
酸素含有化合物を過剰量添加する方法、Yα−サイアロ
ン粉末を酸素含有雰囲気中で加熱する方法が採用される
。後者の一例としては、Yα−サイアロン粉末を酸素含
有雰囲気中で800〜1200°Cの範囲の温度に加熱
して、理論量より過剰の酸素をYα−サイアロン粉末に
含有させる方法が挙げられる。加熱時間は通常0.5〜
5時間である。この処理は、例えばYαサイアロン粉末
を保持板上に薄く乗せて酸素含有雰囲気中に放置する方
法、α−サイアロン粉末を酸素含有雰囲気中で流動化さ
せる方法によって行うことができる。
Examples of methods for containing excess oxygen in the Yα-sialon powder include a method of adding an excessive amount of an oxygen-containing compound of silicon, aluminum, or yttrium to amorphous silicon nitride in the preparation stage of the Yα-sialon powder; A method is employed in which the powder is heated in an oxygen-containing atmosphere. An example of the latter is a method in which Yα-sialon powder is heated to a temperature in the range of 800 to 1200° C. in an oxygen-containing atmosphere to cause the Yα-sialon powder to contain oxygen in excess of the stoichiometric amount. Heating time is usually 0.5~
It is 5 hours. This treatment can be carried out, for example, by placing Yα-sialon powder thinly on a holding plate and leaving it in an oxygen-containing atmosphere, or by fluidizing α-sialon powder in an oxygen-containing atmosphere.

過剰酸素量は8重量%以下、好ましくは1〜6.5重量
%、特に好ましくは2〜4重量%である。
The amount of excess oxygen is 8% by weight or less, preferably 1 to 6.5% by weight, particularly preferably 2 to 4% by weight.

過剰酸素量が過度に多いと焼結体中に融点の低い相が多
く残留し、高温での機械的特性が損なわれるようになる
If the amount of excess oxygen is too large, many phases with a low melting point remain in the sintered body, which impairs the mechanical properties at high temperatures.

α−窒化珪素粉末としては、焼結性の面で1μm以下の
粒径を有していることが好ましく、さらに得られる焼結
体の高温での強度、耐蝕性、耐酸化性を損なう不純物の
含有量が1重量%以下であることが好ましい。
The α-silicon nitride powder preferably has a particle size of 1 μm or less in terms of sinterability, and further contains impurities that impair the strength, corrosion resistance, and oxidation resistance of the resulting sintered body at high temperatures. It is preferable that the content is 1% by weight or less.

Yα−サイアロン粉末、α−窒化珪素粉末、及び酸化ハ
フニウム粉末の混合物中のα−窒化珪素粉末の配合割合
は30重量%以上、好ましくは50〜90重量%、さら
に好ましくは60〜80重量%である。上記範囲内にお
いて窒化珪素粉末の配合割合を高めるに従って生成サイ
アロン基焼結体中のβ−サイアロン相の割合が増大する
。α−窒化珪素粉末の配合割合が90重量%を超えると
、混合物の焼結性が低下し焼結体の緻密化が進行しなく
なる。また、必要に応じて、10重量%以下の酸化イツ
トリウム粉末を添加することもできる。
The blending ratio of α-silicon nitride powder in the mixture of Yα-sialon powder, α-silicon nitride powder, and hafnium oxide powder is 30% by weight or more, preferably 50 to 90% by weight, and more preferably 60 to 80% by weight. be. Within the above range, as the blending ratio of silicon nitride powder increases, the ratio of the β-sialon phase in the produced sialon-based sintered body increases. When the blending ratio of the α-silicon nitride powder exceeds 90% by weight, the sinterability of the mixture decreases and the densification of the sintered body does not proceed. Further, if necessary, 10% by weight or less of yttrium oxide powder can be added.

Yα−サイアロン粉末、α−窒化珪素粉末、及び酸化ハ
フニウム粉末の混合方法については特に制限はなく、そ
れ自体公知の方法、例えば、両者を乾式混合する方法、
不活性液体中で両者を湿式混合した後不活性液体を除去
する方法等を適宜採用することができる。混合装置とし
てはV型混合機、ボールミル等が便利に使用される。
There are no particular restrictions on the method of mixing Yα-sialon powder, α-silicon nitride powder, and hafnium oxide powder, and methods known per se, such as a method of dry mixing the two,
A method of wet-mixing both in an inert liquid and then removing the inert liquid can be appropriately adopted. As a mixing device, a V-type mixer, a ball mill, etc. are conveniently used.

混合粉末の加熱焼結は、例えば、混合粉末をそのまま乾
式あるいは湿式で所定の形状に成形し、湿式で成形した
場合は乾燥処理を行った後に、常圧又は加圧した窒素含
有非酸化性ガス雰囲気下で焼結する方法、原料粉末を所
定の形状のダイスに充填し、ホットプレスする方法等を
採用することができる。また上記方法で得られた焼結体
をさらに熱間静水圧プレスすることにより、焼結体の物
理的特性を一層高めることもできる。
For heating and sintering of mixed powder, for example, the mixed powder is directly shaped into a predetermined shape using a dry or wet method, and if it is formed using a wet method, it is dried and then heated with a nitrogen-containing non-oxidizing gas under normal pressure or pressurized. A method of sintering in an atmosphere, a method of filling a die of a predetermined shape with raw material powder and hot pressing, etc. can be adopted. Moreover, by further subjecting the sintered body obtained by the above method to hot isostatic pressing, the physical properties of the sintered body can be further improved.

常圧又は雰囲気加圧焼結に先立つ混合粉末の成形は公知
の方法、例えばラバープレス法、−軸成形法、鋳込成形
法、射出成形法、爆発圧縮成形法等によって行うことが
できる。
Molding of the mixed powder prior to normal pressure or atmospheric pressure sintering can be performed by a known method, such as a rubber press method, a -axial molding method, a cast molding method, an injection molding method, an explosive compression molding method, and the like.

焼結温度は通常1600〜2100°Cであり、焼結時
間は通常0.5〜10時間である。焼結温度が過度に低
いと焼結が進行せず、また焼結温度が過度に高いと焼結
体に熱分解による組成変化が生じるようになる。
The sintering temperature is usually 1600 to 2100°C, and the sintering time is usually 0.5 to 10 hours. If the sintering temperature is too low, sintering will not proceed, and if the sintering temperature is too high, a compositional change will occur in the sintered body due to thermal decomposition.

(発明の効果) 本発明で得られるサイアロン基焼結体は、従来のサイア
ロン基焼結体に比較して、高温強度、破壊靭性等の機械
的特性が向上しているので、信顛性の高い構造材料、特
にガスタービン部品、切削チップ、ロール、ダイス、ノ
ズル等の耐摩耗、耐熱材料として好適に使用することが
できる。
(Effects of the Invention) The sialon-based sintered body obtained by the present invention has improved mechanical properties such as high temperature strength and fracture toughness compared to conventional sialon-based sintered bodies, so it has improved reliability. It can be suitably used as a highly structural material, especially as a wear-resistant and heat-resistant material for gas turbine parts, cutting chips, rolls, dies, nozzles, etc.

(実施例) 以下に実施例及び比較例を示す。(Example) Examples and comparative examples are shown below.

実施例1〜5及び比較例1 非晶質窒化珪素粉末500 g、YtOx粉末62g及
び金属Al粉末65.7 gを窒素ガス雰囲気下に振動
ミルで1時間混合した。混合粉末をカーボン製ルツボに
充填して抵抗加熱式高温炉にセットし、窒素ガス雰囲気
下、室温から1200°C迄を1時間、1200°Cか
ら1400’C迄を4時間、さらに1400″Cから1
600 ’C迄を2時間の昇温スケジュールで加熱する
ことにより結晶化させ、Yα−サイアロン粉末を得た。
Examples 1 to 5 and Comparative Example 1 500 g of amorphous silicon nitride powder, 62 g of YtOx powder, and 65.7 g of metal Al powder were mixed for 1 hour in a vibration mill under a nitrogen gas atmosphere. The mixed powder was filled into a carbon crucible, set in a resistance heating high temperature furnace, and heated under a nitrogen gas atmosphere from room temperature to 1200°C for 1 hour, from 1200°C to 1400'C for 4 hours, and then at 1400'C. from 1
It was crystallized by heating up to 600'C on a 2 hour heating schedule to obtain Yα-Sialon powder.

得られたYα−サイアロン粉末の特性を以下に示す。The properties of the obtained Yα-sialon powder are shown below.

理論組成 Yo、 5siv、 ysAlz、 zsO
o、 ?SNI S、 zs比表面積 2.5ボ/g 粒子形状 等軸結晶 生成相  α相290% 生成物組成(wtχ) Yニア、2  Si:44.2  Al:9.8 0:
4.9  N:33.9過剰酸素量 2.9重量% 上記Yα−サイアロン粉末、α−窒化珪素粉末(宇部興
産■製5N−EIO;比表面積:11ボ/g、酸素含有
量:1.3wt%)、及び酸化ハフニウム粉末(ヘルマ
ン・シー・スタルク■製)を第1表に示す割合で、媒体
としてエタノールを用い48時間湿式ボールミリングし
た後、80°Cで真空乾燥した。得られた原料粉末40
gを表面が窒化硼素で被覆された内径100印の黒鉛製
ダイスに充填し、ホットプレス焼結装置にセットした後
、250 kg/ciの加圧下に室温から1750°C
まで200°C/時で昇温し、同温度に1時間保持した
Theoretical composition Yo, 5siv, ysAlz, zsO
o, ? SNI S, zs specific surface area 2.5bo/g Particle shape Equiaxed crystallization phase α phase 290% Product composition (wtχ) Ynia, 2 Si: 44.2 Al: 9.8 0:
4.9 N: 33.9 Excess oxygen amount 2.9% by weight The above Yα-sialon powder, α-silicon nitride powder (5N-EIO manufactured by Ube Industries, Ltd.; specific surface area: 11 bo/g, oxygen content: 1. 3 wt %) and hafnium oxide powder (manufactured by Hermann C. Starck ■) in the proportions shown in Table 1 were wet ball milled for 48 hours using ethanol as a medium, and then vacuum dried at 80°C. Obtained raw material powder 40
After filling a graphite die with an inner diameter of 100 marks and whose surface is coated with boron nitride and setting it in a hot press sintering device, the die was heated from room temperature to 1750°C under a pressure of 250 kg/ci.
The temperature was raised at a rate of 200°C/hour until the temperature reached 200°C, and the temperature was maintained at the same temperature for 1 hour.

作製した焼結体から3X4X50mmのテストピース5
0本を切り出し、これを外スパン30M11、内スパン
10+maの4点曲げ強度試験を行い(室温及び140
0℃)強度及びワイブル係数を求めた。
Test piece 5 of 3X4X50mm from the produced sintered body
0 was cut out and subjected to a 4-point bending strength test with an outer span of 30M11 and an inner span of 10+ma (at room temperature and at 140mA).
(0°C) strength and Weibull coefficient were determined.

また、5EPB法によりKICを測定した。結果を第1
表に示す。
Further, KIC was measured by the 5EPB method. Results first
Shown in the table.

実施例6〜13及び比較例2 実施例1〜5で使用したYα−サイアロン粉末、α−窒
化珪素粉末及び酸化ハフニウム粉末を第2表に示す割合
で、媒体としてエタノールを用い48時間湿式ボールミ
リングした後、80℃で真空乾燥した。
Examples 6 to 13 and Comparative Example 2 The Yα-sialon powder, α-silicon nitride powder, and hafnium oxide powder used in Examples 1 to 5 were wet ball milled for 48 hours using ethanol as a medium in the proportions shown in Table 2. After that, it was vacuum dried at 80°C.

粉末混合物を、断面が50X80rM1角の金型を用い
て予備成形した後、圧力1.5ton/dでラバープレ
スした。得られた成形品を電気炉を用いて、第2表に記
載の温度−雰囲気ガス圧力条件下に昇温し、同温度に2
時間保持して、常圧焼結又は雰囲気加圧焼結を行った。
The powder mixture was preformed using a mold with a cross section of 50 x 80 rM, and then rubber pressed at a pressure of 1.5 ton/d. The obtained molded product was heated in an electric furnace under the temperature and atmospheric gas pressure conditions listed in Table 2, and then heated to the same temperature for 2 hours.
Pressureless sintering or atmospheric pressure sintering was performed by holding for a certain time.

得られた焼結体の特性を実施例1と同様にして測定した
。結果を第2表に示す。
The properties of the obtained sintered body were measured in the same manner as in Example 1. The results are shown in Table 2.

Claims (1)

【特許請求の範囲】  蛍石型結晶構造のY_2Hf_2O_7の微結晶、式
Y_x(Si,Al)_1_2(O,N)_1_6(式
中、xは0<x≦2を満足する数である。)で表される
Yα−サイアロンの結晶、 式Si_6_−_zAl_zO_2N_8_−_z(式
中、zは0<z≦4.2を満足する数である。)で表さ
れるβ−サイアロンの結晶及びYを含むガラス相からな
る高強度サイアロン基焼結体。
[Claims] Microcrystals of Y_2Hf_2O_7 with a fluorite crystal structure, formula Y_x(Si,Al)_1_2(O,N)_1_6 (where x is a number satisfying 0<x≦2.) Yα-Sialon crystal represented by the formula Si_6_-_zAl_zO_2N_8_-_z (wherein, z is a number satisfying 0<z≦4.2); A high-strength sialon-based sintered body consisting of a glass phase.
JP1291247A 1989-11-10 1989-11-10 High strength sialon-based sintered body Granted JPH03153574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291247A JPH03153574A (en) 1989-11-10 1989-11-10 High strength sialon-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291247A JPH03153574A (en) 1989-11-10 1989-11-10 High strength sialon-based sintered body

Publications (2)

Publication Number Publication Date
JPH03153574A true JPH03153574A (en) 1991-07-01
JPH0559074B2 JPH0559074B2 (en) 1993-08-30

Family

ID=17766391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291247A Granted JPH03153574A (en) 1989-11-10 1989-11-10 High strength sialon-based sintered body

Country Status (1)

Country Link
JP (1) JPH03153574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298299A (en) * 2004-04-14 2005-10-27 Kurosaki Harima Corp Silicon nitride-based disk
WO2008068283A2 (en) * 2006-12-06 2008-06-12 Ceramtec Ag Material based on sialons

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654964B1 (en) * 2013-04-11 2016-09-08 배건택 Portable treatment machine of periodontitis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298299A (en) * 2004-04-14 2005-10-27 Kurosaki Harima Corp Silicon nitride-based disk
WO2008068283A2 (en) * 2006-12-06 2008-06-12 Ceramtec Ag Material based on sialons
WO2008068283A3 (en) * 2006-12-06 2008-09-12 Ceramtec Ag MATERIAL BASED ON SiAlONS
US9637417B2 (en) 2006-12-06 2017-05-02 Ceramtec Gmbh Material based on SiAlONs

Also Published As

Publication number Publication date
JPH0559074B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JPH06135771A (en) High heat conductivity silicon nitride sintered compact and its production
JPH03153574A (en) High strength sialon-based sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPH0772108B2 (en) Method for manufacturing β-sialon sintered body
JPH03177361A (en) Production of beta-sialon-boron nitride-based conjugate sintered compact
JPH02233560A (en) High-strength calcined sialon-based compact
JP2662863B2 (en) Method for producing silicon nitride based sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JPH0559075B2 (en)
JPH042664A (en) High-strength sialon based sintered compact
JPH06287066A (en) Silicon nitride sintered compact and its production
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JPH0559077B2 (en)
JP3008415B2 (en) Sialon-boron nitride-based composite sintered body and method for producing the same
JP3124864B2 (en) Silicon nitride sintered body and method for producing the same
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPS63319269A (en) Production of sialon based sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH03242380A (en) Sintered body of sialon base and production thereof
JPH06287065A (en) Silicon nitride sintered compact and its production
JPH0442864A (en) Highly strong sialon sintered product