JP2005298299A - Silicon nitride-based disk - Google Patents

Silicon nitride-based disk Download PDF

Info

Publication number
JP2005298299A
JP2005298299A JP2004119573A JP2004119573A JP2005298299A JP 2005298299 A JP2005298299 A JP 2005298299A JP 2004119573 A JP2004119573 A JP 2004119573A JP 2004119573 A JP2004119573 A JP 2004119573A JP 2005298299 A JP2005298299 A JP 2005298299A
Authority
JP
Japan
Prior art keywords
silicon nitride
disk
mass
copper
sialon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004119573A
Other languages
Japanese (ja)
Other versions
JP4528016B2 (en
Inventor
Taiji Matano
泰司 俣野
Yukiko Hashimoto
由樹子 橋本
Michihiro Mishima
通洋 三嶋
Tadayuki Maruo
忠之 圓尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S SCIENCE KK
Krosaki Harima Corp
Original Assignee
S SCIENCE KK
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S SCIENCE KK, Krosaki Harima Corp filed Critical S SCIENCE KK
Priority to JP2004119573A priority Critical patent/JP4528016B2/en
Publication of JP2005298299A publication Critical patent/JP2005298299A/en
Application granted granted Critical
Publication of JP4528016B2 publication Critical patent/JP4528016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon nitride-based disk without corrosion caused by molten copper in the case of producing a copper powder by a centrifugal atomization method. <P>SOLUTION: A blended matter containing by silicon nitride of 60-80 mass%, aluminum nitride of 15-24 mass%, alumina of 2-8 mass% and yttria of 2-8 mass% is sintered and its crystal phase contains Y<SB>0.54</SB>(Si<SB>9.57</SB>Al<SB>2.43</SB>)(O<SB>0.81</SB>N<SB>15.19</SB>) and β-Si<SB>3</SB>N<SB>4</SB>or β-sialon. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、遠心噴霧法による金属粉末の製造装置に使用するディスクに関するものであり、特に銅粉末の製造に使用する窒化珪素質ディスクに関するものである。   The present invention relates to a disk used in a metal powder manufacturing apparatus by centrifugal spraying, and more particularly to a silicon nitride disk used for manufacturing copper powder.

金属粉末は、粉末冶金等さまざまな分野で使用され、例えば、銅粉末はPTA溶接用材、ロウ材用、導電ペ−スト、MIM、磁気シ−ルド材用(表面処理用)と広い用途が有る。 なかでも、サブミクロンクラスの真球の銅粉末は、(1)流動性が良い(2)充填密度が高くなる(3)比表面積が小さいためペ−スト化時の粘性が低くなる等の特性がありニーズが高まっている。   Metal powder is used in various fields such as powder metallurgy. For example, copper powder has wide usage such as PTA welding material, brazing material, conductive paste, MIM, magnetic shield material (for surface treatment). . Among them, submicron-class true sphere copper powder has the following characteristics: (1) good fluidity (2) high packing density (3) low specific surface area resulting in low viscosity during pasting There is a growing need.

金属粉末の製法は、水アトマイズ法、ガスアトマイズ法、遠心噴霧法、電解法等が一般的である。このうち遠心噴霧法は、100μm以下の粒径を容易に制御することができ、かつ真球になるというメリットがある。この方法では、溶融金属を高速で回転するディスク上へ滴下するとディスクの外周部から、水平に溶融金属が噴霧された後、凝固することで球状の金属粉末を製造することができる。   As a method for producing the metal powder, a water atomizing method, a gas atomizing method, a centrifugal spraying method, an electrolysis method and the like are generally used. Among these, the centrifugal spraying method has an advantage that the particle diameter of 100 μm or less can be easily controlled and becomes a true sphere. In this method, when molten metal is dropped onto a disk rotating at high speed, a molten metal is sprayed horizontally from the outer periphery of the disk, and then solidified to produce a spherical metal powder.

遠心噴霧法で銅粉末を製造した例としては、特許文献1があり、そこでは金属製(材質SC37)でφ80×40という大型のディスクを用いている。この場合はディスク回転数が5000rpmという低速であり、ディスク重量が大きいため、高速回転ができず、微小粉末の製造は不可能である。   As an example of producing copper powder by the centrifugal spray method, there is Patent Document 1, in which a large disk of φ80 × 40 made of metal (material SC37) is used. In this case, the rotational speed of the disk is as low as 5000 rpm, and the weight of the disk is large, so that high-speed rotation cannot be performed and it is impossible to produce fine powder.

一般的に、金属の溶融温度が低い場合には、ディスクの材質は金属でも良いが、金属の溶融温度が高い場合には、セラミックスが使用されている。また回転数の高速化のためにも比重の小さいセラミックスが適している。   In general, when the melting temperature of the metal is low, the material of the disk may be metal, but when the melting temperature of the metal is high, ceramics are used. Ceramics with a small specific gravity are also suitable for increasing the rotational speed.

例えば、特許文献2では、遠心噴霧法による熱電材料の製造方法が記載されている。ディスクの材料としてSiを94.8%含有するβサイアロン90%にYやSiOガラス等を約10%混合した窒化珪素質材料が使用されている。窒化珪素を含む材料により作製された回転ディスクを用いることにより、従来よりも平均粒径の小さい粉末熱電材料を歩留り良く製造することができると記載されている。しかしながら、この組成のディスクは溶融温度が1000℃を超える溶銅の場合には耐用性に問題がある。 For example, Patent Document 2 describes a method for producing a thermoelectric material by centrifugal spraying. As a disk material, a silicon nitride material is used in which 90% β sialon containing 94.8% Si 3 N 4 is mixed with about 10% Y 2 O 3 or SiO 2 glass. It is described that a powder thermoelectric material having an average particle size smaller than the conventional one can be manufactured with a high yield by using a rotating disk made of a material containing silicon nitride. However, the disk having this composition has a problem in durability when the molten temperature exceeds 1000 ° C.

さらに、本発明者が溶銅の遠心噴霧法のディスクとしてサイアロンを使用してみたところ、ディスクの中心部から腐食が進行しディスク表面が平滑でなくなるため噴霧が安定せず、長時間(1時間以上)の連続運転ができず、生産性が非常に低いという問題があることがわかった。この原因として、サイアロンの組織中のAl、Yを含む約10%のガラス相が、溶銅による摩耗あるいは溶銅の酸化による化学反応によって溶損するためであると推定される。
特開昭58-91101号公報 特開2002-151752号公報
Furthermore, when the present inventor used sialon as a disk for centrifugal spraying of molten copper, corrosion progressed from the center of the disk and the surface of the disk became unsmooth, so that the spray was not stable and the spray was not stable for a long time (1 hour It was found that there was a problem that the continuous operation of the above was not possible and the productivity was very low. It is estimated that this is because about 10% of the glass phase containing Al 2 O 3 and Y 2 O 3 in the sialon structure is melted by chemical reaction due to wear by molten copper or oxidation of molten copper. .
JP 58-91101 A JP 2002-151752 A

そこで、本発明が解決しようとする課題は、遠心噴霧法による銅粉末の製造において、溶銅による腐食のない窒化珪素質ディスクを提供することである。   Accordingly, the problem to be solved by the present invention is to provide a silicon nitride disk that is free from corrosion by molten copper in the production of copper powder by centrifugal spraying.

上記課題を解決するため、本発明者は、サイアロンもしくは窒化珪素の焼結時に生成されるアルミナとイットリア起因のガラス成分を極力減少させるために、Al分を添加することで、ガラス成分を結晶化させることに着目した。その結果、Al分を添加することで、ガラス相は消滅し、複数の結晶相が生成され、溶銅に対する溶損性が飛躍的に向上することがわかった。この結晶相はY0.54(Si9.57Al2.43)(O0.8115.19)、βSi、SiAl、YSi等であることがX線解析より確認された。 In order to solve the above problems, the present inventors crystallized the glass component by adding Al content in order to reduce as much as possible the glass component caused by alumina and yttria produced during sintering of sialon or silicon nitride. Focused on making it. As a result, it was found that by adding Al, the glass phase disappears, a plurality of crystal phases are generated, and the erosion resistance to the molten copper is dramatically improved. This crystal phase is Y 0.54 (Si 9.57 Al 2.43 ) (O 0.81 N 15.19 ), βSi 3 N 4 , Si 3 Al 7 O 3 N 9 , Y 2 Si 3 N 4 O It was confirmed by X-ray analysis that it was 3 mag.

ここで、Al分としては、アルミナ(Al)で添加した場合、酸素が過剰となり、ガラス相が増加するので、溶銅に対する耐溶損性は逆に低下する。一方、窒化アルミニウム(AlN)で添加した場合、サイアロン(Si−Al−O−N)組成の化合物やαタイプのサイアロンとして結晶中にAlやOが固定化されて、ガラス相は生成されにくくなる。よって溶融状態の反応活性な銅とOとの反応を抑制する。したがって、Al分としては、窒化アルミニウムを使用することが重要である。 Here, the Al component, when added with alumina (Al 2 O 3), oxygen becomes excessive, the glass phase is increased, melting loss resistance to the molten copper is reduced to the contrary. On the other hand, when aluminum nitride (AlN) is added, Al or O is immobilized in the crystal as a compound having a sialon (Si—Al—O—N) composition or an α-type sialon, and a glass phase is not easily generated. . Therefore, the reaction between the reactive active copper and O in the molten state is suppressed. Therefore, it is important to use aluminum nitride as the Al content.

また、ガラス相が結晶相になることで、熱伝導率が高くなる。このために、ディスク加熱時の表面と内部との温度分布差が解消されて、発生熱応力を軽減できるので加熱時や、溶銅を滴下したときの熱衝撃による割れを回避できる。   Moreover, thermal conductivity becomes high because a glass phase turns into a crystal phase. For this reason, the temperature distribution difference between the surface and the inside at the time of heating the disk is eliminated, and the generated thermal stress can be reduced, so that it is possible to avoid cracking due to thermal shock during heating or when molten copper is dropped.

本発明は以上の知見に基づきなされたもので、本発明の窒化珪素質ディスクは、窒化珪素60〜80質量%、窒化アルミニウム15〜24質量%、アルミナ2〜8質量%、及びイットリア2〜8質量%を含む配合物を焼結したものである。   The present invention has been made on the basis of the above knowledge, and the silicon nitride disk of the present invention has 60-80 mass% silicon nitride, 15-24 mass% aluminum nitride, 2-8 mass% alumina, and 2-8 yttria. A compound containing mass% is sintered.

また、本発明の窒化珪素質ディスクにおける結晶相は、結晶相がY0.54(Si9.57Al2.43)(O0.8115.19)およびβSiもしくはβサイアロンを含む。 The crystal phase in the silicon nitride disk of the present invention is such that the crystal phase is Y 0.54 (Si 9.57 Al 2.43 ) (O 0.81 N 15.19 ) and βSi 3 N 4 or β sialon. Including.

なお、本発明の窒化珪素質ディスクでは、サイアロンもしくは窒化珪素の単一結晶相に比較して、その中に第2の結晶相が現れることで強度が低下するが、本発明の範囲のものでは、曲げ強さが300MPa以上あり、ディスクとしての高速回転の遠心力に十分耐える強度は確保できている。   In the silicon nitride disk of the present invention, the strength is reduced by the appearance of the second crystal phase in the single crystal phase of sialon or silicon nitride, but within the scope of the present invention, The bending strength is 300 MPa or more, and the strength sufficient to withstand the centrifugal force of high-speed rotation as a disk can be secured.

本発明の窒化珪素質ディスクを、遠心噴霧法による銅粉末の製造用のディスクとして使用することにより、溶銅を滴下、噴霧させる際の溶銅による腐食がなくなるので、長時間の操業が可能となり、100μm以下の粒径で、かつ真球の銅粉末を安定して効率よく、製造することが可能となった。   By using the silicon nitride-based disk of the present invention as a disk for producing copper powder by centrifugal spraying, corrosion by molten copper is eliminated when molten copper is dropped and sprayed, enabling long-time operation. Thus, it was possible to stably and efficiently produce a true spherical copper powder having a particle size of 100 μm or less.

本発明の窒化珪素質ディスクは、窒化珪素、窒化アルミニウム、アルミナ、及びイットリアを含む配合物を焼結して得られる。   The silicon nitride disk of the present invention is obtained by sintering a composition containing silicon nitride, aluminum nitride, alumina, and yttria.

窒化珪素としては、セラミックス原料として一般に市販されているものであれば問題なく使用でき、その配合量は60〜80質量%の範囲とする。配合量が60質量%未満では、窒化珪素特有の高強度、耐熱衝撃性等の特性が損なわれ、80質量%を超えると、Al分として添加する窒化アルミニウムの量と、焼結時にガラスの液相を結晶粒界に形成しながら、窒化珪素が焼結する助剤として機能するアルミナ、イットリアの量が相対的に不足し、耐食性に優れた高強度の窒化珪素質ディスクにはならない。   Silicon nitride can be used without any problem as long as it is commercially available as a ceramic raw material, and the blending amount is in the range of 60 to 80% by mass. When the blending amount is less than 60% by mass, characteristics such as high strength and thermal shock resistance characteristic of silicon nitride are impaired. When the blending amount exceeds 80% by mass, the amount of aluminum nitride added as an Al component and the glass liquid during sintering are reduced. While the phases are formed at the crystal grain boundaries, the amount of alumina and yttria, which function as an auxiliary agent for sintering silicon nitride, is relatively insufficient, and a high-strength silicon nitride-based disk with excellent corrosion resistance cannot be obtained.

窒化アルミニウムとしては、セラミックス原料として一般に市販されているものであれば問題なく使用でき、その配合量は15〜24質量%の範囲とする。配合量が15質量%未満では、本発明の目的である窒化珪素の粒界に存在するガラス相の結晶化が十分でなく、24質量%を超えると、焼結体の強度が低下して、本来の窒化珪素の特性が損なわれるので、遠心噴霧機のディスクとしては不適である。   As aluminum nitride, any material that is generally commercially available as a ceramic raw material can be used without any problem, and the blending amount is in the range of 15 to 24% by mass. If the blending amount is less than 15% by mass, the crystallization of the glass phase present at the grain boundaries of silicon nitride, which is the object of the present invention, is not sufficient, and if it exceeds 24% by mass, the strength of the sintered body decreases, Since the characteristics of the original silicon nitride are impaired, it is not suitable as a disk for a centrifugal sprayer.

アルミナとしては、セラミックス原料として一般に市販されているものであれば問題なく使用でき、その配合量は2〜8質量%の範囲とする。配合量が2質量%未満では、窒化珪素が焼結する助剤として機能するアルミナの量が不足し、耐食性に優れた高強度の窒化珪素質ディスクにはならない。一方、配合量が8質量%を超えると、ガラス成分が多くなり、耐食性に優れた窒化珪素質ディスクにはならない。   Alumina can be used without any problem as long as it is commercially available as a ceramic raw material, and its blending amount is in the range of 2 to 8% by mass. When the blending amount is less than 2% by mass, the amount of alumina functioning as an auxiliary agent for sintering silicon nitride is insufficient, and a high-strength silicon nitride disk excellent in corrosion resistance cannot be obtained. On the other hand, when the blending amount exceeds 8% by mass, the glass component increases, and the silicon nitride disk having excellent corrosion resistance cannot be obtained.

イットリアとしては、セラミックス原料として一般に市販されているものであれば問題なく使用でき、その配合量は2〜8質量%の範囲とする。配合量が2質量%未満では窒化珪素が焼結する助剤として機能するイットリアの量が不足し、耐食性に優れた高強度の窒化珪素質ディスクにはならない。一方、配合量が8質量%を超えるとガラス成分が多くなり、耐食性に優れた窒化珪素質ディスクにはならない。   As yttria, any commercially available ceramic raw material can be used without any problem, and its blending amount is in the range of 2 to 8% by mass. If the blending amount is less than 2% by mass, the amount of yttria that functions as an auxiliary agent for sintering silicon nitride is insufficient, and a high-strength silicon nitride-based disk excellent in corrosion resistance cannot be obtained. On the other hand, when the blending amount exceeds 8% by mass, the glass component increases, and a silicon nitride disk having excellent corrosion resistance cannot be obtained.

本発明の窒化珪素質ディスクは、一般的な窒化珪素やサイアロンの製法によって製造することができる。例えば、以下の製法によって製造できる。   The silicon nitride disk of the present invention can be manufactured by a general silicon nitride or sialon manufacturing method. For example, it can be produced by the following production method.

まず、所定量の窒化珪素、窒化アルミニウム、アルミナ、及びイットリアからなる配合に水および成形助剤等を添加する。得られたスラリーをスプレードライヤー等で顆粒にしてプレス成形用の配合物を得る。次に、得られた配合物を所定寸法の円筒状のラバーに充填して、シール後、成形圧1ton/cm以上でCIP処理をする。ここで、CIP処理の代わりに所定寸法の形状の金型を用いて一軸プレスによって成形しても何ら差し支えない。得られた成形体を、所定の寸法に、グリーン加工を行った後、脱脂処理し、1650〜1800℃の窒素雰囲気中で焼成することで、窒化珪素やサイアロンの焼結体が得られる。焼結体は所定の寸法精度に研削加工した後、遠心噴霧法に用いるディスクとする。 First, water, a molding aid, and the like are added to a blend of a predetermined amount of silicon nitride, aluminum nitride, alumina, and yttria. The resulting slurry is granulated with a spray dryer or the like to obtain a compound for press molding. Next, the obtained compound is filled into a cylindrical rubber having a predetermined size, sealed, and then subjected to CIP treatment at a molding pressure of 1 ton / cm 2 or more. Here, in place of the CIP process, there is no problem even if molding is performed by uniaxial pressing using a mold having a predetermined size. The obtained molded body is green processed to a predetermined size, degreased, and fired in a nitrogen atmosphere at 1650 to 1800 ° C. to obtain a sintered body of silicon nitride or sialon. The sintered body is ground to a predetermined dimensional accuracy, and then used as a disk for centrifugal spraying.

上記の製法に代えて、鋳込成形法を適用し、石膏型や樹脂型に上記のスラリーを鋳込み、直接的にディスク形状を成形すれば、製造プロセスが簡略化され、グリーン加工を行うことなく、脱脂、焼成が可能である。また鋳込成形法に限らず射出成形法も適用可能である。   If the casting method is applied instead of the above-mentioned manufacturing method, the above slurry is cast into a plaster mold or a resin mold, and the disk shape is directly molded, the manufacturing process is simplified and without green processing. Degreasing and firing are possible. In addition to the casting method, an injection molding method is also applicable.

表1に示す配合割合で、各種の原料、水、成形助剤を加えて、ボールミルで混合し、スプレードライヤーにて顆粒を作製した。それぞれの顆粒をφ90×90のラバーモールドに充填後、CIP成形した。成形体はφ45×L40の傘型のディスク状にグリーン加工した。脱脂、焼成後、所定の寸法精度に研削加工し、図1に示すディスク形状とした。   Various raw materials, water, and molding aids were added at the blending ratios shown in Table 1, mixed with a ball mill, and granules were produced with a spray dryer. Each granule was filled in a φ90 × 90 rubber mold and then CIP molded. The molded body was green processed into an umbrella-shaped disk shape of φ45 × L40. After degreasing and firing, grinding was performed to a predetermined dimensional accuracy to obtain a disk shape shown in FIG.

また、製品の一部からサンプリングして、X線による結晶構造の同定とアルキメデス法による密度測定を行った。その結果を表1に示した。

Figure 2005298299
Further, a part of the product was sampled, and the crystal structure was identified by X-ray and the density was measured by Archimedes method. The results are shown in Table 1.
Figure 2005298299

X線解析結果において特徴的なことは、βSiもしくはβサイアロンのピーク(表中のA)Y0.54(Si9.57Al2.43)(O0.8115.19)のピーク(表中のB)の高さを比較すると、実施例の場合A<Bであり、比較例の場合A>Bとなっていたことである。このことから、Y0.54(Si9.57Al2.43)(O0.8115.19)の量が窒化珪素質ディスクの特性に有効に寄与しているといえる。また、TEM観察の結果では、ガラス相は認められなかった。 What is characteristic in the X-ray analysis results is that βSi 3 N 4 or β sialon peak (A in the table) Y 0.54 (Si 9.57 Al 2.43 ) (O 0.81 N 15.19 ) When comparing the heights of the peaks (B in the table), A <B in the example and A> B in the comparative example. From this, it can be said that the amount of Y 0.54 (Si 9.57 Al 2.43 ) (O 0.81 N 15.19 ) contributes effectively to the characteristics of the silicon nitride disk. Moreover, the glass phase was not recognized by the result of TEM observation.

なお、ディスク状の製品と同時に製造したサンプルより、JISR1601に準じて、曲げ試験片を加工、曲げ強さを測定した。その結果も表1に示した。   In addition, from the sample manufactured simultaneously with the disk-shaped product, a bending test piece was processed according to JISR1601, and the bending strength was measured. The results are also shown in Table 1.

上記の要領で作成した窒化珪素質ディスクを用いて、遠心噴霧機で溶銅を滴下しながら、噴霧安定性、耐用時間の試験をした。   Using the silicon nitride disk prepared as described above, the spray stability and the service life were tested while dropping molten copper with a centrifugal sprayer.

この試験で使用した遠心噴霧機の構成は図2に示すとおりであり、図3に示すフローで銅粉末を製造した。すなわち、銅原料を黒鉛るつぼ2に入れ、高周波誘導加熱により、コイルが巻かれている黒鉛るつぼ2および黒鉛製の出湯ノズル4を1200℃に加熱し銅原料を溶融させる。なお、測温は出湯ノズル4に接触させている熱電対8で行った。   The configuration of the centrifugal sprayer used in this test is as shown in FIG. 2, and copper powder was manufactured according to the flow shown in FIG. That is, a copper raw material is put into the graphite crucible 2, and the graphite crucible 2 around which the coil is wound and the graphite hot water nozzle 4 are heated to 1200 ° C. by high frequency induction heating to melt the copper raw material. The temperature measurement was performed with a thermocouple 8 in contact with the hot water nozzle 4.

次に、ディスク7をモーター6で回転させ、ディスク7が出湯ノズル4の輻射により加熱された時点で溶銅3を滴下する。滴下された溶銅3は、ディスク7の外周から飛散し、凝固して球状の銅粉末となり、粉末回収部5で回収される。   Next, the disk 7 is rotated by the motor 6, and the molten copper 3 is dropped when the disk 7 is heated by the radiation of the hot water nozzle 4. The dropped molten copper 3 scatters from the outer periphery of the disk 7, solidifies to become a spherical copper powder, and is recovered by the powder recovery unit 5.

本試験では、出湯ノズル4とディスク7の距離は20mm、ディスクの回転数は70000rpm、遠心噴霧機のチャンバー1内は0.5atmの窒素雰囲気とした。   In this test, the distance between the hot water nozzle 4 and the disk 7 was 20 mm, the rotation speed of the disk was 70000 rpm, and the inside of the chamber 1 of the centrifugal sprayer was a nitrogen atmosphere of 0.5 atm.

噴霧試験結果を表1に示した。比較例の試料No1,2,3は、ディスク中央部に溶銅を滴下することで、その周辺1mmが溶損しはじめて、平面でなくなり、噴霧の方向が水平方向でなく、上向きに角度がついた状態で噴霧された。この場合は、要求される球状の銅粉末が得られなかったので、その時点で「噴霧不可能」とした(図4参照)。ここで、比較例の試料No1は、先に説明した特許文献2に記載のものと同等のものである。   The spray test results are shown in Table 1. Samples Nos. 1, 2, and 3 of the comparative example dropped molten copper to the center of the disk, and the surrounding 1 mm began to melt, became flat, and the spray direction was not horizontal but angled upward. Sprayed with condition. In this case, since the required spherical copper powder was not obtained, it was determined that “no spraying” was possible at that time (see FIG. 4). Here, the sample No. 1 of the comparative example is equivalent to that described in Patent Document 2 described above.

一方、実施例の試料No4,5,6では、平均粒径52.3±30μmの真球状の銅粉末が得られた。比較例の試料No6は、強度が不足しているために、溶銅を滴下後の熱衝撃により、割れた。   On the other hand, in sample Nos. 4, 5 and 6 of the examples, true spherical copper powder having an average particle diameter of 52.3 ± 30 μm was obtained. Since sample No6 of the comparative example was insufficient in strength, it was cracked by the thermal shock after dropping the molten copper.

本発明の窒化珪素質ディスクは、遠心噴霧法による銅粉末の製造装置に使用するディスクとして利用可能である。   The silicon nitride disk of the present invention can be used as a disk used in an apparatus for producing copper powder by centrifugal spraying.

本発明の窒化珪素質ディスクの一実施例を示す正面図である。It is a front view which shows one Example of the silicon nitride disk of this invention. 遠心噴霧機の構成を示す概略図である。It is the schematic which shows the structure of a centrifugal sprayer. 図3の遠心噴霧機による銅粉末の製造プロセスを示すフロー図である。It is a flowchart which shows the manufacturing process of the copper powder by the centrifugal sprayer of FIG. 図3の遠心噴霧機における噴霧良否の判定方法を示す説明図である。It is explanatory drawing which shows the determination method of the spray quality in the centrifugal sprayer of FIG.

符号の説明Explanation of symbols

1 チャンバー
2 黒鉛るつぼ
3 溶銅
4 出湯ノズル
5 粉末回収部
6 モーター
7 ディスク
8 熱電対
DESCRIPTION OF SYMBOLS 1 Chamber 2 Graphite crucible 3 Molten copper 4 Hot spring nozzle 5 Powder recovery part 6 Motor 7 Disc 8 Thermocouple

Claims (2)

窒化珪素60〜80質量%、窒化アルミニウム15〜24質量%、アルミナ2〜8質量%、及びイットリア2〜8質量%を含む配合物を焼結してなる窒化珪素質ディスク。   A silicon nitride-based disk formed by sintering a composition containing 60 to 80% by mass of silicon nitride, 15 to 24% by mass of aluminum nitride, 2 to 8% by mass of alumina, and 2 to 8% by mass of yttria. 結晶相がY0.54(Si9.57Al2.43)(O0.8115.19)およびβSiもしくはβサイアロンを含む請求項1に記載の窒化珪素質ディスク。 The silicon nitride-based disk according to claim 1, wherein the crystalline phase contains Y 0.54 (Si 9.57 Al 2.43 ) (O 0.81 N 15.19 ) and βSi 3 N 4 or β sialon.
JP2004119573A 2004-04-14 2004-04-14 Silicon nitride disk Expired - Fee Related JP4528016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119573A JP4528016B2 (en) 2004-04-14 2004-04-14 Silicon nitride disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004119573A JP4528016B2 (en) 2004-04-14 2004-04-14 Silicon nitride disk

Publications (2)

Publication Number Publication Date
JP2005298299A true JP2005298299A (en) 2005-10-27
JP4528016B2 JP4528016B2 (en) 2010-08-18

Family

ID=35330300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119573A Expired - Fee Related JP4528016B2 (en) 2004-04-14 2004-04-14 Silicon nitride disk

Country Status (1)

Country Link
JP (1) JP4528016B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216704A (en) * 2016-10-10 2016-12-14 江西悦安超细金属有限公司 A kind of feed arrangement and plasma combination centrifugal atomizing fuel pulverizing plant
CN106238743A (en) * 2016-10-18 2016-12-21 宝鸡正微金属科技有限公司 The rotating disk centrifugal atomizatio preparation facilities of automatization's vacuum feed formula spherical metal powder
CN106513693A (en) * 2016-12-20 2017-03-22 湖南顶立科技有限公司 Vertical rotary atomization powder manufacturing equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291463A (en) * 1985-06-17 1986-12-22 日本特殊陶業株式会社 Material for high toughness ceramic tool
JPS6369759A (en) * 1986-09-11 1988-03-29 川崎製鉄株式会社 Manufacture of silicon nitride sintered body
JPH02145484A (en) * 1988-11-24 1990-06-04 Ngk Spark Plug Co Ltd Sintered silicon nitride
JPH03153574A (en) * 1989-11-10 1991-07-01 Ube Ind Ltd High strength sialon-based sintered body
JPH06116040A (en) * 1992-10-01 1994-04-26 Toshiba Corp Sialon-based ceramics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291463A (en) * 1985-06-17 1986-12-22 日本特殊陶業株式会社 Material for high toughness ceramic tool
JPS6369759A (en) * 1986-09-11 1988-03-29 川崎製鉄株式会社 Manufacture of silicon nitride sintered body
JPH02145484A (en) * 1988-11-24 1990-06-04 Ngk Spark Plug Co Ltd Sintered silicon nitride
JPH03153574A (en) * 1989-11-10 1991-07-01 Ube Ind Ltd High strength sialon-based sintered body
JPH06116040A (en) * 1992-10-01 1994-04-26 Toshiba Corp Sialon-based ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216704A (en) * 2016-10-10 2016-12-14 江西悦安超细金属有限公司 A kind of feed arrangement and plasma combination centrifugal atomizing fuel pulverizing plant
CN106216704B (en) * 2016-10-10 2018-05-04 江西悦安超细金属有限公司 A kind of feed arrangement and plasma combine centrifugal atomizing fuel pulverizing plant
CN106238743A (en) * 2016-10-18 2016-12-21 宝鸡正微金属科技有限公司 The rotating disk centrifugal atomizatio preparation facilities of automatization's vacuum feed formula spherical metal powder
CN106513693A (en) * 2016-12-20 2017-03-22 湖南顶立科技有限公司 Vertical rotary atomization powder manufacturing equipment

Also Published As

Publication number Publication date
JP4528016B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
JP2002348653A (en) Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP4528016B2 (en) Silicon nitride disk
EP3365304A1 (en) Fused spinel-zirconia grains and refractory product obtained from said grains
JP2015190038A (en) Disc for manufacturing powder by centrifugal atomization
JP4227084B2 (en) Apparatus for producing spherical fine copper powder by rotating disk method and method for producing spherical fine copper powder by rotating disk method
JP2007327125A (en) Crucible used in molecular beam source for depositing thin film
JP5661540B2 (en) Cu-Ga based alloy powder having low oxygen content, Cu-Ga based alloy target material, and method for producing target material
JP5748991B2 (en) Powder production disc
JP2012117117A (en) Disk for producing powder
JP2013119663A (en) Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device
JP4148521B2 (en) Spherical fine copper powder and method for producing spherical fine copper powder
JPH07187817A (en) Material for thermal spraying and its production
US6495212B1 (en) Functionally gradient materials and the manufacture thereof
JPH01108165A (en) Antiabrasive ceramic material for casting rare earth metal
TW200946692A (en) Sb-te alloy powder for sintering, process for production of the powder, and sintered target
KR101486057B1 (en) The Manufacturing Method Of The Product Using Yttrium Oxide and Boron Nitride In Semiconductor Chemical Vapor Process
JP4942963B2 (en) Corrosion-resistant member and manufacturing method thereof
JP2006188429A (en) Zirconia-based refractory
JPH11265930A (en) Electrostatic chuck and its producing method
CN117088686B (en) Modified zirconia coating and preparation method thereof
JP2005306652A (en) Magnesia sintered compact having excellent durability
JPH075379B2 (en) Method for manufacturing refractory for molten steel
JP2011073942A (en) Silicon nitride sintered compact and method for production thereof
JP2009259602A (en) Discharge lamp, and sealing material and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees