JP2013119663A - Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device - Google Patents

Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device Download PDF

Info

Publication number
JP2013119663A
JP2013119663A JP2011269513A JP2011269513A JP2013119663A JP 2013119663 A JP2013119663 A JP 2013119663A JP 2011269513 A JP2011269513 A JP 2011269513A JP 2011269513 A JP2011269513 A JP 2011269513A JP 2013119663 A JP2013119663 A JP 2013119663A
Authority
JP
Japan
Prior art keywords
rotating disk
silver
centrifugal
powder
silver powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011269513A
Other languages
Japanese (ja)
Inventor
Kuniaki Yamamoto
邦明 山本
Takao Hamamoto
高郎 濱本
Junichiro Shimomura
淳一郎 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ducol Kk
Original Assignee
Ducol Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ducol Kk filed Critical Ducol Kk
Priority to JP2011269513A priority Critical patent/JP2013119663A/en
Publication of JP2013119663A publication Critical patent/JP2013119663A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of efficiently producing silver powder having high sphericity by a centrifugal atomization process.SOLUTION: A rotary disk 4 used for a centrifugal atomization process, in which molten silver is dropped and the molten silver is made into the shape of fine powder by the centrifugal force, is composed of a carbide-dispersed type molybdenum alloy, thus silver powder having high sphericity can be efficiently obtained. The carbide-dispersed type molybdenum alloy preferably has a composition of, by mass, 0.3 to 0.7% Ti, 0.05 to 0.12% Zr, 0.01 to 0.04% C, and the balance Mo with inevitable impurities. Further, the tapping temperature of the molten silver is preferably controlled to 1,250 to 1,500°C.

Description

本発明は、銀粉末を遠心噴霧法により製造するのに好適な回転ディスクに関する。   The present invention relates to a rotating disk suitable for producing silver powder by centrifugal spraying.

近年、はんだ用の粉末や精密金属粉末射出成型(MIM)部品などの用途向けに微粉末のニーズが高まっている。この粉末の製造としては、水噴霧法(水アトマイズ法)、ガス噴霧法(ガスアトマイズ法)が知られているが、その中の遠心噴霧法は不純物が少なく、かつ真球度の高い粉末が得られる特徴があり、他の粉末製造方法と比較して優位性がある。遠心噴霧法は、溶湯を下部に設置してある回転ディスクに滴下し、回転ディスク表面に溶湯膜を形成させ回転ディスク先端から微細液滴を飛散させて製造するものである。
遠心噴霧法により金属粉末を製造する場合の鍵となるのが、回転ディスクである。回転ディスクは、溶湯金属が滴下されるため、耐熱性を有する素材で作製される。そしてこの回転ディスクは、耐熱性に加えて、溶湯との濡れ性が要求される。濡れ性が劣ると、目的とする粒度の微粉末を得ることが困難である。
In recent years, there has been a growing need for fine powders for applications such as solder powder and precision metal powder injection molding (MIM) parts. As for the production of this powder, the water spray method (water atomization method) and the gas spray method (gas atomization method) are known. Among them, the centrifugal spray method produces a powder with few impurities and high sphericity. And has advantages over other powder manufacturing methods. Centrifugal spraying is a method in which molten metal is dropped onto a rotating disk installed at the bottom, a molten film is formed on the surface of the rotating disk, and fine droplets are scattered from the tip of the rotating disk.
The key to producing metal powder by centrifugal spraying is a rotating disk. Since the molten metal is dropped, the rotating disk is made of a heat-resistant material. The rotating disk is required to have wettability with the molten metal in addition to heat resistance. If the wettability is inferior, it is difficult to obtain a fine powder having a target particle size.

耐熱性を備えた回転ディスクとして、例えば特許文献1には窒化珪素質の回転ディスクが開示されている。この回転ディスクは、銅粉末の製造に適するとされている。
また、特許文献2には、耐熱性で且つ熱伝導性がセラミックスよりも良好な基材の表面がセラミックス薄膜で被覆されている回転ディスクが開示されている。このディスクの基材としては、グラファイト、ボロンナイトライド(BN)を、また、セラミック薄膜としては、ジルコニア(ZrO)、チタンナノライド(TiN)、アルミナ(Al)、シリコンカーバイト(SiC)を適用できる、としている。
As a rotating disk having heat resistance, for example, Patent Document 1 discloses a silicon nitride rotating disk. This rotating disk is said to be suitable for the production of copper powder.
Patent Document 2 discloses a rotating disk in which the surface of a base material having heat resistance and thermal conductivity better than that of ceramics is coated with a ceramic thin film. The base material of this disk is graphite and boron nitride (BN), and the ceramic thin film is zirconia (ZrO 2 ), titanium nanoride (TiN), alumina (Al 2 O 3 ), silicon carbide (SiC). ) Can be applied.

特開2005−298299号公報JP 2005-298299 A 特開2009−62573公報JP 2009-62573 A

以上説明した回転ディスクが提案されることで、錫合金を代表とする低融点材料以外にも遠心噴霧法により微細な金属粉末の実用化が期待されている。しかし、溶湯の種類によっては実際に遠心噴霧した場合にディスク上での濡れ拡がりが充分ではなく、微粉末を効率よく得ることができないことがある。例えば、銀(Ag)の粉末はコンデンサ、電池をはじめとする電子部品・機器に対する需要は大きいが、これまで遠心噴霧法も含め、高い歩留まりで球形度の高い製造することが困難であった。そのために、この程度の粒径を有する銀粉末は高価である。
本発明は、このような課題に基づいてなされたもので、遠心噴霧法により球形度の高い銀粉末を効率よく製造することのできる技術を提供することを目的とする。
By proposing the rotating disk described above, it is expected that fine metal powders can be put to practical use by centrifugal spraying in addition to low melting point materials typified by tin alloys. However, depending on the type of molten metal, when it is actually subjected to centrifugal spraying, wetting and spreading on the disk is not sufficient, and fine powder may not be obtained efficiently. For example, although silver (Ag) powder has a great demand for electronic parts and devices such as capacitors and batteries, it has been difficult to produce high yield and high sphericity, including centrifugal spraying. Therefore, silver powder having such a particle size is expensive.
This invention is made | formed based on such a subject, and it aims at providing the technique which can manufacture silver powder with high sphericity efficiently by a centrifugal spraying method.

本発明者等は上記目的を達成するために、回転ディスクを構成する材質について検討を行なったところ、炭化物で強化されたモリブデン(Mo)合金で回転ディスクを構成することにより、球形度の高い銀粉末を極めて高い歩留まりで作製できることを知見した。すなわち本発明は、溶融した原材料を回転ディスク上に滴下し、その遠心力にて、原料を微粉状にする遠心噴霧法に用いる回転ディスクであって、炭化物分散型のモリブデン合金からなることを特徴とする回転ディスクである。
この炭化物分散型のモリブデン合金としては、Ti:0.3〜0.7質量%、Zr:0.05〜0.12質量%、C:0.01〜.04質量%、残部:Mo及び不可避不純物の組成有するものが好適である。
また、本発明はこの回転ディスクを用いて銀粉末を製造する遠心噴霧法を提供する。すなわち本発明は、溶融した銀を回転ディスク上に滴下し、その遠心力にて、溶融した銀を微粉状にする銀粉末の製造方法において、炭化物分散型のモリブデン合金からなる回転ディスクを用いる。
この銀粉末の製造方法においては、銀の出湯温度を1250〜1350℃とすることが好ましい。
さらに本発明は、溶融した原材料を回転ディスク上に滴下し、その遠心力にて、原料を微粉状にする遠心噴霧装置であって、炭化物分散型のモリブデン合金からなる回転ディスクを用いる遠心噴霧装置が提供される。
In order to achieve the above object, the present inventors have studied the material that constitutes the rotating disk. By constructing the rotating disk with a molybdenum (Mo) alloy reinforced with carbide, silver having a high sphericity is obtained. It has been found that powders can be produced with extremely high yield. That is, the present invention is a rotating disk used in a centrifugal spraying method in which a molten raw material is dropped onto a rotating disk and the raw material is made into a fine powder by the centrifugal force, and is made of a carbide dispersion type molybdenum alloy. This is a rotating disk.
As this carbide dispersion type molybdenum alloy, Ti: 0.3-0.7 mass%, Zr: 0.05-0.12 mass%, C: 0.01-. A material having a composition of 04% by mass, the balance: Mo and inevitable impurities is suitable.
The present invention also provides a centrifugal spray method for producing silver powder using this rotating disk. That is, the present invention uses a rotating disk made of a carbide-dispersed molybdenum alloy in a method for producing silver powder in which molten silver is dropped onto a rotating disk and the molten silver is made into a fine powder by the centrifugal force.
In this method for producing silver powder, it is preferable that the temperature of the hot water for silver is 1250 to 1350 ° C.
Furthermore, the present invention relates to a centrifugal spraying apparatus that drops molten raw material onto a rotating disk and makes the raw material into a fine powder by the centrifugal force, and uses the rotating disk made of carbide-dispersed molybdenum alloy. Is provided.

本発明によれば、遠心噴霧法により球形度の高い銀粉末を効率よく製造することのできる。   According to the present invention, silver powder having a high sphericity can be efficiently produced by centrifugal spraying.

本実施の形態における遠心噴霧装置の構成を示す図である。It is a figure which shows the structure of the centrifugal spray apparatus in this Embodiment. 本試験で得られた銀粉末を示すSEM写真である。It is a SEM photograph which shows the silver powder obtained by this test. 本試験で得られた銀粉末の粒度分布測定結果を示すグラフである。It is a graph which shows the particle size distribution measurement result of the silver powder obtained by this test. 本発明が適用された銀粉末の製造方法におけるDN値と平均粒径の関係を示すグラフである。It is a graph which shows the relationship between DN value and average particle diameter in the manufacturing method of the silver powder to which this invention was applied.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
はじめに、耐熱性を有する材料に対する銀の濡れ性を接触角θで評価した。結果は以下の通りである。
また、(1)はプランゼー社(オーストリア)製のTZM合金(商品名)であり、Ti:0.3〜0.7質量%、Zr:0.05〜0.12質量%、C:0.01〜.04質量%、残部:Mo及び不可避不純物の組成を有しており、典型的にはTi:0.5質量%、Zr:0.08質量%、C:0.03質量%、残部:Mo及び不可避不純物の組成を有している。この合金は、再結晶温度が1400℃程度であり、この付近の温度での機械的強度に優れる。また、(4)は黒鉛の表面に窒化チタン膜を形成したものである。
(1)炭化物分散型モリブデン合金:θ=◎
(2)窒化ホウ素(BN):θ=×
(3)黒鉛:θ=×
(4)窒化チタン(TiN)+黒鉛:θ=△
(5)窒化珪素系セラミックス(サイアロン,Si3N4・Al2O3):θ=×
接触角θの評価基準 ◎=50°以下、△=50°〜90°、×=90°超
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
First, the wettability of silver with respect to a material having heat resistance was evaluated by a contact angle θ. The results are as follows.
Further, (1) is a TZM alloy (trade name) manufactured by Plansee (Austria), Ti: 0.3 to 0.7 mass%, Zr: 0.05 to 0.12 mass%, C: 0.00. 01-. It has a composition of 04% by mass, the balance: Mo and inevitable impurities, typically Ti: 0.5% by mass, Zr: 0.08% by mass, C: 0.03% by mass, the balance: Mo and It has an inevitable impurity composition. This alloy has a recrystallization temperature of about 1400 ° C. and is excellent in mechanical strength at a temperature in the vicinity thereof. (4) shows a titanium nitride film formed on the surface of graphite.
(1) Carbide-dispersed molybdenum alloy: θ = ◎
(2) Boron nitride (BN): θ = ×
(3) Graphite: θ = ×
(4) Titanium nitride (TiN) + graphite: θ = Δ
(5) Silicon nitride ceramics (Sialon, Si 3 N 4 · Al 2 O 3 ): θ = ×
Evaluation standard of contact angle θ ◎ = 50 ° or less, Δ = 50 ° to 90 °, x = over 90 °

以上の濡れ性の評価結果に基づいて、(1)、(4)の材料で回転ディスクを作製し、遠心噴霧法により銀粉末を作製する試験を行った。
この試験で使用した遠心噴霧装置10の概略構成を図1に示す。
遠心噴霧装置10は、銀原料を溶解する黒鉛製の坩堝1を備える。坩堝1は、高周波誘導加熱により原料を加熱、溶融するものであり、周囲に電磁コイル2が巻き回されている。図示しない電源から電磁コイル2に通電することで、坩堝1内に置かれた銀原料が誘導過熱される。坩堝1の下部には黒鉛製の出湯ノズル3が設けられており、溶解された銀は出湯ノズル3を通って滴下される。
坩堝1の下方には、出湯ノズル3から距離をあけて回転ディスク4が設けられている。回転ディスク4は、モータ5の出力軸に固定されており、モータ5の回転に伴って回転する。
遠心噴霧装置10は、以上の坩堝1、回転ディスク4などを収容するチャンバ6を備えている。チャンバ6の内壁には、受け板7が張り付けられており、噴霧された粉末はこの受け板7に当たった後に、受け板7に案内されながら下方に移送される。チャンバ6の底には、回収容器8が設けられており、受け板7を案内されてきた粉末が落下して収容される。
Based on the evaluation results of the above wettability, a test was carried out in which a rotating disk was produced from the materials (1) and (4) and silver powder was produced by centrifugal spraying.
A schematic configuration of the centrifugal spray device 10 used in this test is shown in FIG.
The centrifugal spray apparatus 10 includes a graphite crucible 1 for dissolving a silver raw material. The crucible 1 heats and melts a raw material by high-frequency induction heating, and an electromagnetic coil 2 is wound around it. By energizing the electromagnetic coil 2 from a power source (not shown), the silver raw material placed in the crucible 1 is induction-heated. A graphite hot water nozzle 3 is provided at the lower part of the crucible 1, and the dissolved silver is dropped through the hot water nozzle 3.
A rotating disk 4 is provided below the crucible 1 at a distance from the hot water nozzle 3. The rotary disk 4 is fixed to the output shaft of the motor 5 and rotates with the rotation of the motor 5.
The centrifugal spray device 10 includes a chamber 6 that accommodates the crucible 1, the rotating disk 4, and the like. A receiving plate 7 is attached to the inner wall of the chamber 6, and the sprayed powder hits the receiving plate 7 and is then transferred downward while being guided by the receiving plate 7. A recovery container 8 is provided at the bottom of the chamber 6, and the powder guided through the receiving plate 7 is dropped and stored.

本試験では、上記(1)及び(4)で示す材料を用い、異なる材質の回転ディスク4を作製して遠心噴霧試験を行った。なお、回転ディスク4以外の条件は以下の通りである。
ディスク径:φ40mm
ディスク回転数:30000min−1
溶湯温度:1300℃
出湯ノズル径:φ1.2mm
チャンバ内雰囲気:N
出湯ノズル−回転ディスク間距離:65mm
In this test, the materials shown in the above (1) and (4) were used, and a rotating disk 4 made of a different material was produced and a centrifugal spray test was performed. The conditions other than the rotating disk 4 are as follows.
Disc diameter: φ40mm
Disk rotation speed: 30000 min -1
Molten metal temperature: 1300 ° C
Hot water nozzle diameter: φ1.2mm
Chamber atmosphere: N 2
Distance between hot water nozzle and rotating disk: 65mm

(1)の材料、つまり炭化物分散型モリブデン合金で作製された回転ディスク4を用いた試験では、回転ディスク4の表面に銀溶湯が均一に濡れながら、回転ディスク4から放射状に遠心噴霧されたことが観察された。得られた銀粉末を回収して、SEM(scanning electron microscope)により外観を観察した。その一例を図2に示すが、球形度の高い銀粉末が得られたことが確認された。また、得られた銀粉末の粒度分布を測定した結果を図3に示す。なお、各粒径は以下の通りである。
10%粒径(d10):22.1μm
50%粒径(d50):45.7μm
90%粒径(d90):80.6μm
平均粒径:48.9μm
In the test using the rotating disk 4 made of the material (1), that is, the carbide-dispersed molybdenum alloy, the molten silver was uniformly sprayed on the surface of the rotating disk 4 while being radially sprayed from the rotating disk 4. Was observed. The obtained silver powder was collected and the appearance was observed with a scanning electron microscope (SEM). An example thereof is shown in FIG. 2, and it was confirmed that a silver powder having a high sphericity was obtained. Moreover, the result of having measured the particle size distribution of the obtained silver powder is shown in FIG. Each particle size is as follows.
10% particle size (d10): 22.1 μm
50% particle size (d50): 45.7 μm
90% particle size (d90): 80.6 μm
Average particle size: 48.9 μm

以上に対して、(4)の材料(窒化チタン+黒鉛)で作製された回転ディスク4を用いた試験では、回転ディスク4と銀溶湯との濡れ性が悪く、球状の銀粉末を得ることができなかった。   On the other hand, in the test using the rotating disk 4 made of the material (4) (titanium nitride + graphite), the wettability between the rotating disk 4 and the molten silver is poor, and a spherical silver powder can be obtained. could not.

以上の試験はあくまで一例である。遠心噴霧法においては、DN値を調整することにより得られる粉末の粒径を調整することができる。なお、DN値とは、回転ディスク4の直径(D(mm))と回転数(N(rpm))との積である。本発明者の知見によると、本発明の回転ディスク4を用いることにより、表1及び図4に示すように、DN値を調整することで、任意の粒径の銀粉末を得ることができる。   The above test is merely an example. In the centrifugal spraying method, the particle diameter of the powder obtained can be adjusted by adjusting the DN value. The DN value is a product of the diameter (D (mm)) of the rotating disk 4 and the rotational speed (N (rpm)). According to the knowledge of the present inventor, by using the rotating disk 4 of the present invention, a silver powder having an arbitrary particle diameter can be obtained by adjusting the DN value as shown in Table 1 and FIG.

Figure 2013119663
Figure 2013119663

次に、本発明により銀粉末を製造する場合、遠心噴霧される溶湯の温度(出湯温度)を調整することが望まれる。銀の融点が962℃近傍にあるため、この融点以上に坩堝1内で加熱する必要があるが、回転ディスク4との濡れ性を確保するためには、融点よりも300℃程度高く出湯温度を設定することが望まれる。つまり、出湯温度は1250℃以上に調整することが望ましい。本発明者等が行なった他の試験では、出湯温度を1150℃とした場合には、以上の試験に比べて粒度分布の劣る結果となった。一方で、必要以上の温度に加熱する必要はないし、溶湯の温度をあまり高くすると、回転ディスク4の耐久性に悪影響を及ぼすので、溶湯温度の上限は1500℃、より好ましくは1350℃とするのがよい。   Next, when producing silver powder according to the present invention, it is desired to adjust the temperature of the molten metal sprayed (centrifuged temperature). Since the melting point of silver is in the vicinity of 962 ° C., it is necessary to heat the crucible 1 to a temperature higher than the melting point. It is desirable to set. That is, it is desirable to adjust the tapping temperature to 1250 ° C. or higher. In other tests conducted by the present inventors, when the tapping temperature was 1150 ° C., the particle size distribution was inferior compared to the above test. On the other hand, it is not necessary to heat to a temperature higher than necessary, and if the temperature of the molten metal is too high, the durability of the rotating disk 4 is adversely affected. Is good.

また、実際に遠心噴霧法により粉末を製造する場合、回転ディスク4の温度が低いと素性のよい粉末を得ることができない。したがって、出湯直後からしばらくの間は、滴下した溶湯で回転ディスク4を必要な温度まで暖める期間として捉えることが好ましい。つまり、回転ディスク4が必要な温度まで昇温された後に、定常的な遠心噴霧法による粉末の製造に移行する。一方で、坩堝1内の溶湯の量が少なくなり、出湯ノズル3からの溶湯の吐出圧力が低下すると、やはり素性のよい粉末が得られなくなる。したがって、溶湯の量が所定値よりも少なくなった後は、定常的な粉末製造を終えたものと捉えることが好ましい。   In addition, when the powder is actually produced by the centrifugal spraying method, a powder with good characteristics cannot be obtained if the temperature of the rotating disk 4 is low. Therefore, it is preferable to grasp as a period in which the rotating disk 4 is warmed to a necessary temperature with the dropped molten metal for a while from immediately after the hot water. That is, after the rotating disk 4 is heated to a necessary temperature, the process proceeds to powder production by a steady centrifugal spray method. On the other hand, when the amount of the molten metal in the crucible 1 is reduced and the discharge pressure of the molten metal from the hot water nozzle 3 is lowered, it is impossible to obtain a powder with good characteristics. Therefore, after the amount of the molten metal is less than a predetermined value, it is preferable that the steady powder production is finished.

本発明における回転ディスク4、その全体が炭化物分散型のモリブデン合金からなる必要はなく、溶湯が滴下される面が当該合金から構成されていればよい。したがって、他の部分は他の材料で構成した複合材料からなる回転ディスクとすることを本発明は許容する。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択し、あるいは他の構成に適宜変更することが可能である。
The entire rotating disk 4 in the present invention need not be made of a carbide dispersion type molybdenum alloy, and the surface onto which the molten metal is dropped may be made of the alloy. Therefore, the present invention allows the other part to be a rotating disk made of a composite material made of other materials.
Other than this, as long as the gist of the present invention is not deviated, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.

1 坩堝
2 電磁コイル
3 出湯ノズル
4 回転ディスク
5 モータ
6 チャンバ
7 板
8 回収容器
10 遠心噴霧装置
1 crucible 2 electromagnetic coil 3 hot water nozzle 4 rotating disk 5 motor 6 chamber 7 plate 8 recovery container 10 centrifugal spraying device

Claims (5)

溶融した原材料を回転ディスク上に滴下し、その遠心力にて、前記原料を微粉状にする遠心噴霧法に用いる回転ディスクであって、
前記炭化物分散型のモリブデン合金からなることを特徴とする回転ディスク。
A rotating disk used in a centrifugal spraying method in which molten raw material is dropped onto a rotating disk and the raw material is finely powdered by centrifugal force,
A rotating disk comprising the carbide-dispersed molybdenum alloy.
前記炭化物分散型のモリブデン合金は、Ti:0.3〜0.7質量%、Zr:0.05〜0.12質量%、C:0.01〜.04質量%、残部:Mo及び不可避不純物の組成を有する、
請求項1に記載の回転ディスク。
The carbide dispersion type molybdenum alloy has Ti: 0.3-0.7 mass%, Zr: 0.05-0.12 mass%, C: 0.01-. 04% by mass, balance: Mo and inevitable impurities
The rotating disk according to claim 1.
溶融した銀を回転ディスク上に滴下し、その遠心力にて、溶融した銀を微粉状にする遠心噴霧法による銀粉末の製造方法であって、
前記回転ディスクが、前記炭化物分散型のモリブデン合金からなることを特徴とする銀粉末の製造方法。
A method for producing silver powder by centrifugal spraying, in which molten silver is dropped on a rotating disk and the molten silver is finely powdered by centrifugal force,
The method for producing silver powder, wherein the rotating disk is made of the carbide dispersion type molybdenum alloy.
前記回転ディスクに滴下される前記溶融した銀の出湯温度が1250〜1500℃である、
請求項3に記載の銀粉末の製造方法。
The molten silver tapping temperature dropped onto the rotating disk is 1250-1500 ° C.,
The manufacturing method of the silver powder of Claim 3.
溶融した原材料を回転ディスク上に滴下し、その遠心力にて、前記原料を微粉状にする遠心噴霧装置であって、
前記回転ディスクが、前記請求項1又は請求項2に記載の回転ディスクである特徴とする遠心噴霧装置。
A centrifugal spraying apparatus that drops molten material onto a rotating disk and makes the raw material into a fine powder form by centrifugal force,
The centrifugal spray device, wherein the rotating disk is the rotating disk according to claim 1 or 2.
JP2011269513A 2011-12-09 2011-12-09 Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device Pending JP2013119663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011269513A JP2013119663A (en) 2011-12-09 2011-12-09 Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269513A JP2013119663A (en) 2011-12-09 2011-12-09 Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device

Publications (1)

Publication Number Publication Date
JP2013119663A true JP2013119663A (en) 2013-06-17

Family

ID=48772460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269513A Pending JP2013119663A (en) 2011-12-09 2011-12-09 Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device

Country Status (1)

Country Link
JP (1) JP2013119663A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128778A (en) * 2016-01-22 2017-07-27 山陽特殊製鋼株式会社 Disk for centrifugal atomization method powder production
CN109047786A (en) * 2018-09-25 2018-12-21 大连理工大学 The device and method of 3D printing globular metallic powder is efficiently prepared under a kind of threadiness schizotype
JP2019108581A (en) * 2017-12-18 2019-07-04 株式会社大阪真空機器製作所 Rotary disk apparatus for centrifugal atomizer, centrifugal atomizer, and method for producing metal powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133303A (en) * 1982-12-27 1984-07-31 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Metal powder manufacturing method and device
JPS63169341A (en) * 1987-01-06 1988-07-13 Nippon Mining Co Ltd Production of morybdenum based alloy dispersed with carbide and strengthened thereby
JPH07145408A (en) * 1993-03-30 1995-06-06 Agency Of Ind Science & Technol Production of rapidly solidified powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133303A (en) * 1982-12-27 1984-07-31 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Metal powder manufacturing method and device
JPS63169341A (en) * 1987-01-06 1988-07-13 Nippon Mining Co Ltd Production of morybdenum based alloy dispersed with carbide and strengthened thereby
JPH07145408A (en) * 1993-03-30 1995-06-06 Agency Of Ind Science & Technol Production of rapidly solidified powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128778A (en) * 2016-01-22 2017-07-27 山陽特殊製鋼株式会社 Disk for centrifugal atomization method powder production
JP2019108581A (en) * 2017-12-18 2019-07-04 株式会社大阪真空機器製作所 Rotary disk apparatus for centrifugal atomizer, centrifugal atomizer, and method for producing metal powder
JP7012350B2 (en) 2017-12-18 2022-01-28 株式会社大阪真空機器製作所 Rotating disk device for centrifugal atomizer, centrifugal atomizer, and method for manufacturing metal powder
CN109047786A (en) * 2018-09-25 2018-12-21 大连理工大学 The device and method of 3D printing globular metallic powder is efficiently prepared under a kind of threadiness schizotype
US11420257B2 (en) 2018-09-25 2022-08-23 Dalian University Of Technology Device and method for high-efficiency preparation of spherical metal powder for 3D printing employing separation into fibers

Similar Documents

Publication Publication Date Title
KR101376074B1 (en) Polycrystalline alloy having glass forming ability, method of fabricating the same, alloy target for sputtering and method of fabricating the same
JP2013166982A (en) Method for producing functionally gradient material by using both sintering method and casting method
CN108409330B (en) Method for preparing compact silicon carbide ceramic through 3D forming
JP2009013062A5 (en)
JP2016003392A (en) Functionally graded metal ceramic composite material and method for producing the same
CN111014706A (en) Cobalt-chromium-tungsten-molybdenum alloy powder for biomedical 3D printing and preparation method thereof
CN108971507A (en) The method and apparatus of the spherical titanium alloy fine powder of system based on special centrifugal atomizing disk
WO2014038459A1 (en) Metal-carbon composite material, method for producing metal-carbon composite material and sliding member
CN112828298A (en) Preparation method of high-temperature molybdenum alloy spherical powder
JP6343161B2 (en) Centrifugal spray powder manufacturing disc
JP2013119663A (en) Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device
JP6706502B2 (en) Centrifugal atomization powder production disk
JP2015137384A (en) Metallic film, and film deposition method therefor
Lu et al. Effect of particle size and sintering temperature on densification during coupled multifield-activated microforming
JP2007332406A (en) Method for forming fine powder by using rotary crucible, and apparatus therefor
JP5748991B2 (en) Powder production disc
JP2012117117A (en) Disk for producing powder
JP6169566B2 (en) Cermet covering material, alloy powder for producing cermet covering material, and method for producing cermet covering material
JP2012112012A (en) Powder for hvaf thermal spraying, and method for forming thermal-sprayed film
KR101452879B1 (en) Polycrystalline alloy having glass forming ability, method of fabricating the same, alloy target for sputtering and method of fabricating the same
WO2010010627A1 (en) Device and method for manufacturing fine powder by using rotary crucible
TWI703228B (en) Sputtering target and method of manufacturing the same
CN105215365B (en) A kind of metal-cermic coating and preparation method thereof
JP6975602B2 (en) Centrifugal spraying powder manufacturing disc
JPS6352084B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150924