JPS63169341A - Production of morybdenum based alloy dispersed with carbide and strengthened thereby - Google Patents

Production of morybdenum based alloy dispersed with carbide and strengthened thereby

Info

Publication number
JPS63169341A
JPS63169341A JP19087A JP19087A JPS63169341A JP S63169341 A JPS63169341 A JP S63169341A JP 19087 A JP19087 A JP 19087A JP 19087 A JP19087 A JP 19087A JP S63169341 A JPS63169341 A JP S63169341A
Authority
JP
Japan
Prior art keywords
carbide
powder
molybdenum
carbon
strengthened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19087A
Other languages
Japanese (ja)
Inventor
Taro Kimura
太郎 木村
Satoru Suzuki
了 鈴木
Toshiyuki Ono
俊之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP19087A priority Critical patent/JPS63169341A/en
Publication of JPS63169341A publication Critical patent/JPS63169341A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a Mo based alloy having the low amount of oxidation, high density and excellent mechanical strength by mixing carbide forming elements and a source of carbon for deoxidation each in the form of carbide into a Mo material, then executing compacting and executing vacuum sintering. CONSTITUTION:The carbide forming elements are added into Mo or Mo alloy powder of matrix components in the form of TiC, ZrC, etc., and furthermore the source of carbon for deoxidation is added therein to mix with. Said mixed powder is subjected to compacting and sintered in a vacuum. The Mo group alloy dispersed with the carbide and strengthened thereby, and having the low amount of oxidation and the mechanical strength is thus obtd.

Description

【発明の詳細な説明】 既に述べた通り、本発明の対象は、炭化物分散強化型モ
リブデン基合金であり、モリブデン或いはモリブデン合
金マトリックス中に炭化物が分散したMi織を特徴とす
る。マトリックスとしてのモリブデン合金としては、M
oとW、 Co、 Ta、 Nb、Re等の高融点金属
のうちの少くとも一種との合金のような耐熱合金が使用
されつる。炭化物としては、TI%Zr、Hf%Nb等
の炭化物形成元素の炭化物の一種乃至複数種が含まれる
DETAILED DESCRIPTION OF THE INVENTION As already mentioned, the object of the present invention is a carbide dispersion strengthened molybdenum-based alloy, which is characterized by a Mi weave in which carbides are dispersed in a molybdenum or molybdenum alloy matrix. As a molybdenum alloy as a matrix, M
A heat-resistant alloy such as an alloy of O and at least one of high melting point metals such as W, Co, Ta, Nb, and Re is used. The carbide includes one or more carbides of carbide-forming elements such as TI%Zr and Hf%Nb.

本発明は、モリブデン乃至モリブデン合金マトリックス
成分用原料粉(即ちマトリックスがモリブデンの場合に
はモリブデン粉であり、マトリックスがモリブデン合金
の場合にはモリブデン粉十合金元素粉若しくは当該合金
粉)に、Ti、Zr等の炭化物形成元素をTic、Zr
C等の炭化物の形でそして主としてMo中に含まれる酸
素の脱酸用炭素源をマトリックス成分、一般にはモリブ
デンの炭化物の形で添加する点を骨子とする。マトリッ
クスがモリブデン合金の場合にはそれをfiする合全元
素を炭化物の形で添加し、その炭素の′一部若しくは全
量を脱酸用炭素源として利用することもできる。
The present invention provides raw material powder for molybdenum or a molybdenum alloy matrix component (i.e., molybdenum powder when the matrix is molybdenum, molybdenum powder, ten-alloy element powder, or the alloy powder when the matrix is a molybdenum alloy), Ti, Tic, Zr and other carbide-forming elements such as Zr
The main point is to add a carbon source for deoxidizing oxygen contained in the form of a carbide such as C and mainly in Mo as a matrix component, generally in the form of a carbide of molybdenum. When the matrix is a molybdenum alloy, it is also possible to add a total element that makes it fi in the form of a carbide, and use part or all of the carbon as a carbon source for deoxidation.

以下の説明においては、本発明に係るモリブデン合金の
代表例としてT Z M (M o−α4〜α55vt
%Ti−0,06〜0.12vt%Zr−αo1〜α0
4vt%C)を例にとって話を進める。
In the following description, TZM (Mo-α4~α55vt
%Ti-0.06~0.12vt%Zr-αo1~α0
Let's proceed by taking 4vt%C) as an example.

Mo原料粉に、TiC及びZrC粉並びにMo炭化物(
M o C、M o z C)を添加し、V形ミキサ等
で混合が行われる。TiC及びZrCは目標とするTZ
M合金の組成量として加えられる。MoC(MolC)
は、その炭素量とMo粉中の0ffiが原子比でCl0
=1〜t5となるよう添加される。脱酸に寄与する炭素
は量の上からはMo炭化物によって供給されたものと同
量ということになる(これは、実際に脱酸に寄与した炭
素の起源がすべてMo炭化物の炭素であることを意味す
るわけでない。Tl。
Mo raw material powder, TiC and ZrC powder, and Mo carbide (
M o C, M o z C) are added and mixed using a V-type mixer or the like. TiC and ZrC are the target TZ
It is added as a composition amount of M alloy. MoC (MolC)
The carbon content and 0ffi in Mo powder are Cl0 in atomic ratio.
=1 to t5. The amount of carbon that contributes to deoxidation is the same as that supplied by Mo carbide (this means that the carbon that actually contributed to deoxidation originates entirely from Mo carbide). I don't mean that. Tl.

Zr等は炭化物の形で供給し、最終的に炭化物として使
用するわけであるから、化学量論からはMo炭化物の炭
素のみが脱酸に寄与すると考えて差支えないという意味
である。)。
Since Zr and the like are supplied in the form of carbides and ultimately used as carbides, it is safe to assume that only the carbon in the Mo carbide contributes to deoxidation based on stoichiometry. ).

混合の段階においても炭化物粉使用の効果が生じる。従
来のように炭素粉を使用した場合には主成分のモリブデ
ン粉に較べて炭素粉の比重が小さいためV型ミキサ等を
使用した場合均一な混合が困難であったが、炭化物粉を
使用することにより比較的均一な混合を行うことが出来
るので、混合時間を短縮しうる。
The effect of using carbide powder also occurs in the mixing stage. When using carbon powder as in the past, it was difficult to mix uniformly using a V-type mixer because the specific gravity of the carbon powder was smaller than the molybdenum powder, which is the main component.However, using carbide powder This allows relatively uniform mixing, thereby shortening the mixing time.

混合粉は、金型プレス等を用いて圧粉成形される。炭素
粉を用いず、炭化物粉を用いることにより圧粉成形性が
格段に向上する。−実施例に従えば、従来例に比較して
密度については約5%そして抗折力については約2倍も
上回る結果が得られた。良質の圧粉体を得ることは、後
の焼結工程で高密度焼結体を得るのに不可欠であり、こ
こに炭素粉の使用を回避した本発明の童顔が存在するの
である。
The mixed powder is compacted using a mold press or the like. By using carbide powder instead of carbon powder, compaction properties are significantly improved. - According to the example, the density was about 5% higher and the transverse rupture strength was about twice as high as the conventional example. Obtaining a high-quality green compact is essential for obtaining a high-density sintered compact in the subsequent sintering process, and this is where the baby face of the present invention, which avoids the use of carbon powder, exists.

次いで、圧粉成形体は真空焼結される。好ましくは、焼
結はc−1−o→COの炭素還元領域にあり且つ焼結が
あまり進行しない温度範囲において脱砂反応によるガス
放出を充分に行なわせる予備焼結段階と、その後混炭を
更に上げて本来の焼結を行う本焼結段階に分けて実施さ
れる。脱ガスを充分に行っておかないと、焼結体内部に
気孔が残り、焼結体の密度の低下を招く。予備焼結段階
は10″′1torr以下の真空下で1300〜180
0”Cで1〜3時間保持することによりそして本焼結段
階は1900〜2050℃で4〜8時間保持することに
より実施される。高温にしすぎると、炭化物の蒸気圧が
上昇し、蒸発による組成変化を生ずる。
Next, the powder compact is vacuum sintered. Preferably, the sintering includes a preliminary sintering step in which gas is sufficiently released by a desanding reaction in a temperature range in the carbon reduction region of c-1-o→CO and in which sintering does not proceed much, and then a pre-sintering step in which the mixed coal is further added. The process is divided into a main sintering stage in which the main sintering process is performed. If sufficient degassing is not performed, pores will remain inside the sintered body, leading to a decrease in the density of the sintered body. Pre-sintering step is 1300 ~ 180 ℃ under vacuum below 10''1 torr.
The main sintering step is carried out by holding at 0"C for 1 to 3 hours and the main sintering step is carried out by holding at 1900 to 2050C for 4 to 8 hours. If the temperature is too high, the vapor pressure of the carbide increases and Causes compositional changes.

或いは、逆に、この蒸発を利用して出発原料中の過剰炭
素の調整を行うことも可能である。
Or, conversely, it is also possible to utilize this evaporation to adjust excess carbon in the starting material.

いずれにせよ、真空焼結において脱酸は充分に進行する
。溶解法の場合的500 ppmの酸素が残留するとさ
れているが、本発明ではそれより充分に低い水準にまで
脱酸がもたらされる。
In any case, deoxidation proceeds sufficiently during vacuum sintering. While the dissolution method typically leaves 500 ppm of oxygen remaining, the present invention provides deoxidation to levels well below that level.

同時に、焼結によって密度は理論値の90%を超える水
準にまで増大し、その後加工熱処理を施しても支障のな
い高密度焼結体を生成する。
At the same time, the density increases by sintering to a level exceeding 90% of the theoretical value, producing a high-density sintered body that can be subjected to subsequent heat treatment without any problems.

発明の効果 構成成分以外の元素混入を極力排除して、低酸素含有量
の高密度焼結体の製造に成功し、粉末冶金法により溶製
品に匹敵若しくはそれを上回る機械的性質を持つモリブ
デン基合金の製造への道を拓いた。
Effects of the invention By eliminating the contamination of elements other than the constituent components as much as possible, we have succeeded in producing a high-density sintered body with a low oxygen content, and we have succeeded in producing a molybdenum-based sintered body with mechanical properties comparable to or superior to that of molten products using the powder metallurgy method. This paved the way for the manufacture of alloys.

〔実施例〕〔Example〕

約1500 ppmの酸素含有量を持つMo粉に、TI
C粉α6vt%、ZrC粉α09wt%、更に、このM
o粉中の酸素をC還元で除去する為に、MoC粉をt 
5 vt%添加し、混合した。この混合粉を3t o 
n/ 6n”の圧力で成形したところ、圧粉体密度は、
理論密度の65%となった。また、この圧粉体の抗折力
は、約16 kg’/ mm2であった。次に、この圧
粉体を10−’ torr以下の真空中で1700″C
まで加熱し、2時間保持することで、圧粉体中の酸素を
C還元により除去した。その後、温度を2000℃まで
加熱し、8時間保持することによって、焼結を行なった
。その結果得られた焼結体の密度は92%以上となった
。また、酸素量は140 ppmにまで減少した。
TI was added to Mo powder with an oxygen content of approximately 1500 ppm.
C powder α6vt%, ZrC powder α09wt%, furthermore, this M
In order to remove oxygen in o powder by C reduction, MoC powder was
5 vt% was added and mixed. 3 tons of this mixed powder
When compacted at a pressure of n/6n”, the green compact density was:
The density was 65% of the theoretical density. Further, the transverse rupture strength of this green compact was approximately 16 kg'/mm2. Next, this green compact was heated at 170"C in a vacuum of 10-' torr or less.
By heating the powder to a temperature of 100.degree. C. and holding it for 2 hours, oxygen in the green compact was removed by C reduction. Thereafter, sintering was performed by heating the temperature to 2000° C. and maintaining it for 8 hours. The density of the resulting sintered body was 92% or more. Additionally, the amount of oxygen decreased to 140 ppm.

〔比較例〕[Comparative example]

上記Mo粉に、TiC,ZrC粉を上記と同量添加した
。また、MoC粉の代りにカーボンブラック0、2 v
t%を使用し、混合した。この混合粉を上記と同じ条件
で圧粉成形したところ、圧粉密度は、60%、抗折力は
、α55 kyf /mrn”であツタ。更に、上記と
同条件で真空熱処理、焼結を行なったところ、焼結体の
密度は、90%、酸素量は、300 ppmであった。
The same amounts of TiC and ZrC powders as above were added to the Mo powder. Also, carbon black 0.2v instead of MoC powder
t% was used and mixed. When this mixed powder was compacted under the same conditions as above, the compacted powder density was 60% and the transverse rupture strength was α55 kyf/mrn''.Furthermore, vacuum heat treatment and sintering were performed under the same conditions as above. As a result, the density of the sintered body was 90%, and the oxygen content was 300 ppm.

1・′−1 代理人の氏名 倉 内 基 弘 1“、1手続補正書 昭和62年 4月 70 特許子長官 黒 1)明 雄 殿 事件の表示 昭和62年 特願第 190  号補正を
する者 事件との関係           答許出願人名 称
  日本鉱業株式会社
1・'-1 Name of agent Motohiro Kurauchi 1", 1 Procedural Amendment April 70, 1988 Commissioner of Patents Kuro 1) Indication of Akio Case Patent Application No. 190 of 1988 Person making the amendment Relationship to the case Respondent applicant name Nippon Mining Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)炭化物分散強化型モリブデン基合金を粉末冶金法に
より製造するに際して、モリブデン乃至モリブデン合金
マトリックス成分用原料粉末に、炭化物形成元素を炭化
物の形でそして脱酸用炭素源をマトリックス成分の炭化
物の形で添加混合し、生成する混合粉を圧粉成形し、そ
して後圧粉成形体を真空焼結することを特徴とする炭化
物分散強化型モリブデン基合金の製造方法。
1) When producing a carbide dispersion strengthened molybdenum-based alloy by a powder metallurgy method, a carbide-forming element is added in the form of a carbide to molybdenum or a raw material powder for a molybdenum alloy matrix component, and a carbon source for deoxidation is added in the form of a carbide of the matrix component. A method for producing a carbide dispersion-strengthened molybdenum-based alloy, which comprises adding and mixing the resulting mixed powder, compacting the resulting powder compact, and vacuum-sintering the compacted compact afterward.
JP19087A 1987-01-06 1987-01-06 Production of morybdenum based alloy dispersed with carbide and strengthened thereby Pending JPS63169341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19087A JPS63169341A (en) 1987-01-06 1987-01-06 Production of morybdenum based alloy dispersed with carbide and strengthened thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19087A JPS63169341A (en) 1987-01-06 1987-01-06 Production of morybdenum based alloy dispersed with carbide and strengthened thereby

Publications (1)

Publication Number Publication Date
JPS63169341A true JPS63169341A (en) 1988-07-13

Family

ID=11467074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19087A Pending JPS63169341A (en) 1987-01-06 1987-01-06 Production of morybdenum based alloy dispersed with carbide and strengthened thereby

Country Status (1)

Country Link
JP (1) JPS63169341A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156449A (en) * 1987-12-11 1989-06-20 Tokyo Tungsten Co Ltd Molybdenum sintered compact and its production
JP2013119663A (en) * 2011-12-09 2013-06-17 Ducol:Kk Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device
JP2022507758A (en) * 2018-11-19 2022-01-18 プランゼー エスエー Additional refractory metal parts, additional manufacturing methods and powders
JP2022513611A (en) * 2018-11-19 2022-02-09 プランゼー エスエー Additional refractory metal parts, additional manufacturing methods and powders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156449A (en) * 1987-12-11 1989-06-20 Tokyo Tungsten Co Ltd Molybdenum sintered compact and its production
JP2013119663A (en) * 2011-12-09 2013-06-17 Ducol:Kk Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device
JP2022507758A (en) * 2018-11-19 2022-01-18 プランゼー エスエー Additional refractory metal parts, additional manufacturing methods and powders
JP2022513611A (en) * 2018-11-19 2022-02-09 プランゼー エスエー Additional refractory metal parts, additional manufacturing methods and powders

Similar Documents

Publication Publication Date Title
US4518441A (en) Method of producing metal alloys with high modulus of elasticity
JPS6340855B2 (en)
US2765227A (en) Titanium carbide composite material
JPS63169341A (en) Production of morybdenum based alloy dispersed with carbide and strengthened thereby
US3361599A (en) Method of producing high temperature alloys
US3166416A (en) Process for producing dispersionhardened alloys
US2315302A (en) Process of manufacturing shaped bodies from iron powders
JP2542566B2 (en) Method for manufacturing target for sputtering device
JPS6033335A (en) Heat resistant molybdenum material
JP2927400B2 (en) Method for regenerating cemented carbide composition and method for producing cemented carbide
JPS61110734A (en) Manufacture of titanium composite material
JPH1046269A (en) Manufacture of titanium-molybdenum master alloy, and titanium-molybdenum master alloy
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JP4608090B2 (en) Low oxygen sputtering target
CA1073474A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
US2568251A (en) Process for refining refractory carbides
US2289104A (en) Method for the production of hardmetal alloys
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JPS5836914A (en) Carbonitride starting material and its manufacture
US1840457A (en) Alloy
JPS648063B2 (en)
JPH07113137B2 (en) Manufacturing method of sintered high speed steel members
JPS59446B2 (en) Titanium tungsten
JPS636601B2 (en)