JPS648063B2 - - Google Patents

Info

Publication number
JPS648063B2
JPS648063B2 JP3948180A JP3948180A JPS648063B2 JP S648063 B2 JPS648063 B2 JP S648063B2 JP 3948180 A JP3948180 A JP 3948180A JP 3948180 A JP3948180 A JP 3948180A JP S648063 B2 JPS648063 B2 JP S648063B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
porosity
sintered
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3948180A
Other languages
Japanese (ja)
Other versions
JPS56136957A (en
Inventor
Tokio Oota
Masuhiro Yamaguchi
Seiichiro Kashu
Katsuto Noda
Koichi Oku
Hisao Konno
Koji Sasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON JUKAGAKU KOGYO KK
SHINKU YAKIN KK
Original Assignee
NIPPON JUKAGAKU KOGYO KK
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON JUKAGAKU KOGYO KK, SHINKU YAKIN KK filed Critical NIPPON JUKAGAKU KOGYO KK
Priority to JP3948180A priority Critical patent/JPS56136957A/en
Publication of JPS56136957A publication Critical patent/JPS56136957A/en
Publication of JPS648063B2 publication Critical patent/JPS648063B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素吸蔵合金の製造方法に関するもの
であつて、水素の吸蔵処理が簡単な新規な合金の
製造方法を提供するにある。 水素吸蔵合金としては従来よりFe−Ti系合金、
M・M−Ni系合金(M・Mは希土類金属)、Mg
−Ni系合金、及びTi−Co系合金等が提案されて
おり、このうちFe−Ti系合金は他の合金に比較
して原料価格が低廉であること、資源も豊富なた
め、もつとも実用化が期待されている。 上述Fe−Ti系の水素吸蔵合金は、従来チタン
原料であるスポンジチタン、チタンスクラツプ等
に、鉄源として純鉄又は鋼屑等を配合し、真空中
又は不活性気体雰囲気中でアーク溶解又は誘導加
熱溶解し、鋳型に流し込んで凝固させる所謂溶解
法によつて得られる合金を粉砕し、活性化処理を
施して製造されている。 しかし、上述の如く溶解法によつて得られる合
金は、組織が緻密であつて粉砕に困難を伴うほ
か、水素吸蔵のための活性化処理に問題がある。 茲に水素吸蔵のための活性化処理(以下活性化
処理と云う)は、該合金に水素を吸蔵せしめるた
めに行われる付活処理である。すなわち前記合金
に水素を吸蔵させる場合、該合金は当初水素を吸
蔵し難いため、該合金を水素ガスの加圧下で加熱
及び冷却処理を数十回繰返して活性化処理を施し
た後、該合金に吸蔵された水素は、爾後該合金を
加熱するときは水素を放出し、また水素ガスの存
在下に冷却すれば再び水素を吸蔵することがで
き、従つて活性化処理によつて、爾後水素を吸蔵
し又は放出することが可能となる。 前述従来法で得られるFe−Ti系合金の活性化
処理は、該合金を粒径150μ以下に粉砕した後に、
30〜50気圧の水素ガス雰囲気中で、常温〜300℃
の範囲で加熱、冷却を10回以上繰返すことが必要
である。しかし、活性化のための合金の粉砕が困
難であるばかりか水素ガス雰囲気を30〜50気圧と
すること及び加熱、冷却を10回以上繰返すことは
作業が繁雑であり、またコストの高騰を招くと云
う欠点がある。 本発明は特許請求の範囲に記載した構成とする
ことにより、粉砕が容易であり、かつ、活性化容
易な水素系吸蔵合金を得ることができた。 先づ本発明の製造方法は、粒径105μ以下の金
属チタン粉末と鉄粉末とを、TiとFeとの重量比
が46.2:53.8(原子比がほゞ1:1)となるよう
に配合混合せしめる。上述両者の粉末は夫々Ti
及びFe含有率が98%以上好ましくは99%以上の
もので可及的に酸素、窒素の低いものを使用す
る。上述鉄粉末は、一部Al、Cr、Mn、Nb、V
等の金属粉末を置替えて配合せしめてもよい。 また、上述金属粉末は105μ以下好ましくは72μ
以下のものであつて、105μ以上のものは可及的
に少ないことが望ましいが、105〜150μの粒子は
10%程度以下であれば差支えない。 つぎに上述混合粉末をブリケツトに成形した
後、真空下で焼結処理を行う。 第1表は金属チタン粉末と鉄粉末の混合物を成
形後焼結処理した場合の結果である。即ち、粒径
105μ以下の金属チタン粉末(Ti99.3%)と鉄粉末
(Fe99.2%)とを重量比で46.2:53.8の割合で配合
し充分混合した後、6t/cm2の圧力で圧縮成形した
ブリケツトを、真空度3×10-6Torr及びアルゴ
ンガス雰囲気下で900〜1200℃の温度で加熱して
焼結せしめた後、該合金を500μ以下に粉砕し、
ついで5気圧の水素ガス雰囲気中で常温から250
℃までの間で加熱及び冷却の操作を繰返して活性
化せしめた場合の合金中に吸蔵される吸蔵水素量
及び焼結合金の気孔率を測定したものである。
The present invention relates to a method for manufacturing a hydrogen storage alloy, and its object is to provide a new method for manufacturing a hydrogen storage alloy that allows easy hydrogen storage treatment. Traditionally, hydrogen storage alloys include Fe-Ti alloys,
M・M-Ni alloy (M・M is rare earth metal), Mg
-Ni-based alloys and Ti-Co-based alloys have been proposed. Among these, Fe-Ti-based alloys have low raw material costs and abundant resources compared to other alloys, so it is unlikely that they will be put into practical use. is expected. The above-mentioned Fe-Ti-based hydrogen storage alloy is made by blending pure iron or steel scraps as an iron source with conventional titanium raw materials such as sponge titanium and titanium scrap, and then arc melting or induction heating in a vacuum or inert gas atmosphere. It is manufactured by pulverizing an alloy obtained by a so-called melting method in which it is melted, poured into a mold, and solidified, and subjected to activation treatment. However, the alloy obtained by the melting method as described above has a dense structure and is difficult to crush, and there are also problems in the activation treatment for hydrogen storage. Activation treatment for hydrogen storage in the alloy (hereinafter referred to as activation treatment) is an activation treatment performed to cause the alloy to store hydrogen. In other words, when the alloy is made to absorb hydrogen, since it is difficult for the alloy to absorb hydrogen at first, the alloy is activated by repeating heating and cooling several dozen times under pressure of hydrogen gas, and then the alloy is activated. The hydrogen stored in the alloy releases hydrogen when the alloy is subsequently heated, and can be stored again when the alloy is cooled in the presence of hydrogen gas. It becomes possible to occlude or release. The activation treatment of the Fe-Ti alloy obtained by the conventional method described above is carried out by pulverizing the alloy to a particle size of 150μ or less, and then
In a hydrogen gas atmosphere of 30 to 50 atm, room temperature to 300℃
It is necessary to repeat heating and cooling more than 10 times within the range of . However, not only is it difficult to crush the alloy for activation, but also the work is complicated as it requires a hydrogen gas atmosphere of 30 to 50 atmospheres and repeats heating and cooling more than 10 times, which also increases costs. There is a drawback. By having the structure described in the claims of the present invention, it was possible to obtain a hydrogen-based storage alloy that is easy to crush and easy to activate. First, in the production method of the present invention, metallic titanium powder with a particle size of 105 μm or less and iron powder are mixed so that the weight ratio of Ti to Fe is 46.2:53.8 (atomic ratio is approximately 1:1). urge Both powders mentioned above are Ti
Also, use one with an Fe content of 98% or more, preferably 99% or more, and as low oxygen and nitrogen as possible. Some of the above iron powders include Al, Cr, Mn, Nb, and V.
Alternatively, metal powders such as the following may be substituted and blended. In addition, the metal powder mentioned above is 105μ or less, preferably 72μ
Among the following, it is desirable that particles larger than 105μ are as small as possible, but particles of 105 to 150μ are
There is no problem as long as it is about 10% or less. Next, the above-mentioned mixed powder is formed into a briquette, and then sintered under vacuum. Table 1 shows the results when a mixture of metallic titanium powder and iron powder was sintered after molding. That is, the particle size
Briquettes are made by blending metallic titanium powder (Ti99.3%) with a size of 105μ or less and iron powder (Fe99.2%) in a weight ratio of 46.2:53.8, mixing thoroughly, and then compression molding at a pressure of 6t/ cm2 . is sintered by heating at a temperature of 900 to 1200 °C under a vacuum degree of 3 × 10 -6 Torr and an argon gas atmosphere, and then the alloy is pulverized to a size of 500 μ or less,
Then, in a hydrogen gas atmosphere of 5 atm, it was heated to 250°C from room temperature.
The amount of hydrogen occluded in the alloy and the porosity of the sintered alloy were measured when the alloy was activated by repeated heating and cooling operations up to ℃.

【表】【table】

【表】 第1表から明らかな如く、真空下で1000〜1150
℃で焼結処理したものでは、吸蔵水素量140c.c./
g以上で、特に焼結温度1050〜1150℃で処理した
ものは、活性化処理における加熱及び冷却の操作
が3〜5回程度で、吸蔵水素量が160c.c./g以上
となることが認められる。また、第1表中のNo.6
のように1000℃では8時間の焼結処理によつて活
性化の繰返し回数3回で吸蔵水素量を162c.c./g
とすることができるが、焼結温度が950℃以下及
び1200℃以上では、活性化処理の繰返し回数20回
であつても、5気圧程度の水素ガス雰囲気では活
性化することができない。 また、焼結処理するものでも、アルゴン雰囲気
下で焼結処理するものは、前記と同様活性化処理
の繰返し回数が20回として処理しても、殆んど水
素を吸蔵せしめることができない。尚第1表には
示されていないが、スポンジチタンと純鉄(電解
鉄)とを第1表と同比率で混合し、アルゴンガス
雰囲気中で水冷鋼ルツボを使用してアーク溶解し
た試料を第1表と同様な条件で活性化処理したも
のでは、活性化処理における加熱及び冷却の操作
を20回以上繰返しても殆んど水素を吸蔵すること
ができなかつた。 また、第1表中No.18〜20のものは、鉄粉末の一
部をNb、V、Mn等の金属粉末で置替えたもので
あつて、金属チタン粉末と鉄粉末と同様その気孔
率も高く、また活性化処理が容易であることが認
められる。 第1表の結果から、活性化処理の繰返し回数が
少なく、しかも吸蔵水素量の高いものは、いずれ
も合金中の気孔率の高いものであることが認めら
れる。 図面は、本発明で得られた合金の気孔率と、こ
れに吸蔵される水素ガス吸蔵量との関係を示した
ものであつて、気孔率20%以上の場合は、活性化
処理の繰返し回数3回で安定した水素ガス吸蔵量
が得られるが、気孔率20%以下では、僅かな気孔
率の変化に対し、水素吸蔵量が大きく変動するた
め実用に供し得ない。 しかし、本発明で得られた合金における吸蔵水
素量は上述のように気孔率ばかりでなく、該合金
中のチタンの含有量にも影響を受けるものであ
り、合金中のチタン43〜51重量%の範囲内である
ことが必要である。 本発明が上述の如く簡単な活性化処理によつて
160c.c./g以上の高い吸蔵水素量を含有すること
ができるのは、金属チタン粉末と鉄粉末との混合
物を真空条件下で焼結された焼結合金であつて、
合金中の原子の拡散が起り、水素に対して活性な
金属間化合物が生成すると共に、本発明の合金が
焼結処理により膨張し、多孔質のスポンジ状のも
のとして得られる為である。 さらに本発明合金の製造法の焼結処理は、真空
下での焼結と云う簡単な処理であり、得られる合
金も粉砕が容易である。また、その活性化処理も
水素ガスの圧力5気圧以下と極めて低いものであ
り、しかも活性化処理における加熱及び冷却の操
作の繰返し回数も極めて少くすることができるか
ら、その製造方法も簡単であると云う利点があ
る。 実施例 粒径105μ以下の金属チタン粉末(Ti99.3%)と
鉄粉(Fe99.2%)を重量比で46.2:53.8の割合に
配合し、良く混合したのち、6t/cm2の圧力で成形
し、50gのブリケツトとする。このブリケツトの
気孔率は約13%であつた。 前記ブリケツトを真空度2×10-5Torrの真空
下で、温度1100℃で2時間焼結処理を行つた。得
られた焼結合金はTi45.8%で、気孔率32.5%のス
ポンジ状合金である。 次ぎに上述スポンジ状合金を250μ以下に粉砕
し、5気圧の水素ガス雰囲気中で、250℃で加熱
し、常温で冷却する操作を3回繰返した後、冷却
した時点での標準状態における該合金中の吸蔵水
素量を測定した結果、188c.c./gと高い吸蔵水素
量を得た。
[Table] As is clear from Table 1, 1000 to 1150 under vacuum
For those sintered at ℃, the amount of absorbed hydrogen is 140c.c./
g or more, and especially those treated at a sintering temperature of 1050 to 1150°C, the amount of absorbed hydrogen can reach 160 c.c./g or more with about 3 to 5 heating and cooling operations in the activation treatment. Is recognized. Also, No. 6 in Table 1
At 1000℃, the amount of absorbed hydrogen can be increased to 162c.c./g by repeating activation three times by sintering for 8 hours.
However, if the sintering temperature is below 950°C or above 1200°C, activation cannot be achieved in a hydrogen gas atmosphere of about 5 atmospheres even if the activation process is repeated 20 times. In addition, even if the material is sintered, if the material is sintered in an argon atmosphere, even if the activation treatment is repeated 20 times as described above, it will hardly be able to absorb hydrogen. Although not shown in Table 1, a sample was prepared by mixing titanium sponge and pure iron (electrolytic iron) in the same proportions as in Table 1 and arc melting the mixture in an argon gas atmosphere using a water-cooled steel crucible. When the activation treatment was performed under the same conditions as shown in Table 1, almost no hydrogen could be stored even if the heating and cooling operations in the activation treatment were repeated 20 times or more. In addition, Nos. 18 to 20 in Table 1 are those in which part of the iron powder is replaced with metal powders such as Nb, V, Mn, etc., and their porosity is similar to that of metallic titanium powder and iron powder. It is also recognized that the activation process is easy. From the results in Table 1, it is recognized that alloys with a small number of repetitions of activation treatment and a high amount of absorbed hydrogen are all alloys with high porosity. The drawing shows the relationship between the porosity of the alloy obtained by the present invention and the amount of hydrogen gas stored therein. If the porosity is 20% or more, the number of repetitions of the activation treatment is shown. A stable amount of hydrogen gas storage can be obtained after three times, but if the porosity is less than 20%, the amount of hydrogen storage will vary greatly with a slight change in porosity, so it cannot be put to practical use. However, the amount of absorbed hydrogen in the alloy obtained by the present invention is affected not only by the porosity as described above but also by the titanium content in the alloy, and the titanium content in the alloy is 43 to 51% by weight. It is necessary to be within the range of . The present invention is achieved by the simple activation process as described above.
A sintered alloy made by sintering a mixture of metallic titanium powder and iron powder under vacuum conditions is capable of containing a high amount of absorbed hydrogen of 160 c.c./g or more.
This is because atoms in the alloy diffuse and an intermetallic compound active against hydrogen is formed, and the alloy of the present invention expands during the sintering process, resulting in a porous sponge-like material. Furthermore, the sintering process in the method for producing the alloy of the present invention is a simple process of sintering under vacuum, and the resulting alloy is also easy to crush. In addition, the activation process is extremely low, at less than 5 atmospheres of hydrogen gas, and the number of repetitions of heating and cooling operations in the activation process can be extremely reduced, so the manufacturing method is simple. There is an advantage to this. Example Metallic titanium powder (Ti99.3%) with a particle size of 105μ or less and iron powder (Fe99.2%) were mixed at a weight ratio of 46.2:53.8, mixed well, and then heated at a pressure of 6t/ cm2. Shape into 50g briquettes. The porosity of this briquette was about 13%. The briquettes were sintered at a temperature of 1100° C. for 2 hours under a vacuum of 2×10 −5 Torr. The obtained sintered alloy is a spongy alloy with a Ti content of 45.8% and a porosity of 32.5%. Next, the above-mentioned spongy alloy was crushed to a size of 250 μm or less, heated at 250°C in a hydrogen gas atmosphere of 5 atm, and cooled at room temperature three times. As a result of measuring the amount of absorbed hydrogen inside, a high amount of absorbed hydrogen of 188 c.c./g was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明で得られた焼結合金の気孔率に対
する合金中の吸蔵水素量の関係を示すグラフであ
る。
The drawing is a graph showing the relationship between the porosity of the sintered alloy obtained by the present invention and the amount of hydrogen absorbed in the alloy.

Claims (1)

【特許請求の範囲】[Claims] 1 粒径105μ以下の金属チタン粉末と鉄粉末と
を配合し、加圧成形し、真空下で1000〜1150℃で
焼結処理することにより気孔率20%以上のスポン
ジ状合金を得ることを特徴とする水素吸蔵合金の
製造方法。
1. A spongy alloy with a porosity of 20% or more is obtained by blending metallic titanium powder with a particle size of 105μ or less and iron powder, press-molding, and sintering at 1000-1150℃ under vacuum. A method for producing a hydrogen storage alloy.
JP3948180A 1980-03-27 1980-03-27 Hydrogen occluding alloy and its manufacture Granted JPS56136957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3948180A JPS56136957A (en) 1980-03-27 1980-03-27 Hydrogen occluding alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3948180A JPS56136957A (en) 1980-03-27 1980-03-27 Hydrogen occluding alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS56136957A JPS56136957A (en) 1981-10-26
JPS648063B2 true JPS648063B2 (en) 1989-02-13

Family

ID=12554246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3948180A Granted JPS56136957A (en) 1980-03-27 1980-03-27 Hydrogen occluding alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS56136957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502651A (en) * 1992-11-02 1996-03-26 ストラサイヤー ピーティーワイ.リミテッド Turf products
WO2020110208A1 (en) * 2018-11-27 2020-06-04 富士通フロンテック株式会社 Cause estimation device, cause estimation output method, and paper sheet handling device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807533A (en) * 1996-12-23 1998-09-15 Midwest Research Institute Method for charging a hydrogen getter
EP4227025A1 (en) 2022-02-15 2023-08-16 Helmholtz-Zentrum hereon GmbH Method for producing tife-based alloys useful for hydrogen storage applications

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122611A (en) * 1975-04-21 1976-10-26 Hitachi Ltd Material for storing hydrogen
JPS51124617A (en) * 1975-04-25 1976-10-30 Hitachi Ltd Hydrogen storage material
JPS51124616A (en) * 1975-04-25 1976-10-30 Hitachi Ltd Activation method of hydrogen storage material
JPS51124615A (en) * 1975-04-25 1976-10-30 Hitachi Ltd A method of activating hydrogen storage materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502651A (en) * 1992-11-02 1996-03-26 ストラサイヤー ピーティーワイ.リミテッド Turf products
WO2020110208A1 (en) * 2018-11-27 2020-06-04 富士通フロンテック株式会社 Cause estimation device, cause estimation output method, and paper sheet handling device
KR20210063397A (en) * 2018-11-27 2021-06-01 후지츠 프론테크 가부시키가이샤 Cause estimation device, cause estimation output method and paper handling system

Also Published As

Publication number Publication date
JPS56136957A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
US4762558A (en) Production of reactive sintered nickel aluminide material
US8920712B2 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
WO1998043763A1 (en) A method for producing a non-evaporable getter and a getter produced by said method
US20160243617A1 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
JPH0362764B2 (en)
Mizuno et al. Titanium concentration in FeTix (l⩽ x⩽ 2) alloys and its effect on hydrogen storage properties
EP0101498B1 (en) Oxygen-free dispersion-strengthened copper and process for making same
US4851042A (en) Hardness and strength of heavy alloys by addition of tantalum
US2765227A (en) Titanium carbide composite material
US3969112A (en) Process for preparing silver-cadmium oxide alloys
JPS648063B2 (en)
US5551970A (en) Dispersion strengthened copper
US3893820A (en) Cu-{8 Ag{9 -CdO electric contact materials
JP3049874B2 (en) Method for producing alloy powder containing rare earth metal
US3573903A (en) Ductile high temperature tungstenrhenium alloy and process for making same
US3779717A (en) Nickel-tantalum addition agent for incorporating tantalum in molten nickel systems
US4028063A (en) Compacts for preparing silver-cadmium oxide alloys
JPS6256939B2 (en)
JPH0214401B2 (en)
JP2627302B2 (en) Method for producing hydrogen storage alloy molded product
JP2000054042A (en) Production of hydrogen storage alloy
JPH01129936A (en) Manufacture of hydrogen occlusion alloy
JPH1030136A (en) Manufacture of sintered titanium alloy
JPH0520865B2 (en)
JPS61231129A (en) Manufacture of sintered metal containing easily oxidizable element