JPH07113137B2 - Manufacturing method of sintered high speed steel members - Google Patents

Manufacturing method of sintered high speed steel members

Info

Publication number
JPH07113137B2
JPH07113137B2 JP62169422A JP16942287A JPH07113137B2 JP H07113137 B2 JPH07113137 B2 JP H07113137B2 JP 62169422 A JP62169422 A JP 62169422A JP 16942287 A JP16942287 A JP 16942287A JP H07113137 B2 JPH07113137 B2 JP H07113137B2
Authority
JP
Japan
Prior art keywords
speed steel
powder
sintered
carbides
steel member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62169422A
Other languages
Japanese (ja)
Other versions
JPS6415344A (en
Inventor
照義 棚瀬
俊三 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP62169422A priority Critical patent/JPH07113137B2/en
Publication of JPS6415344A publication Critical patent/JPS6415344A/en
Publication of JPH07113137B2 publication Critical patent/JPH07113137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱間鍜造や熱間静水圧焼結(以下HIPとい
う)などの手段を用いることなく、通常の粉末冶金法に
て、高強度および高靱性を有する焼結高速度鋼部材を製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] This invention uses a normal powder metallurgy method without using means such as hot forging or hot isostatic pressing (hereinafter referred to as HIP). The present invention relates to a method for producing a sintered high speed steel member having high strength and high toughness.

〔従来の技術〕[Conventional technology]

一般に、焼結高速度鋼部材が、原料粉末として、水アト
マイズ法によつて成形された高速度鋼粉末を用い、通常
の粉末冶金法にて焼結体とし、この焼結体に焼入および
焼戻しの熱処理を施すことによつて製造されることは良
く知られるところである。
Generally, a sintered high-speed steel member uses a high-speed steel powder formed by a water atomizing method as a raw material powder to obtain a sintered body by an ordinary powder metallurgy method, and quenching and sintering the sintered body. It is well known that it is manufactured by performing a heat treatment for tempering.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記の従来焼結高速度鋼部材の製造には、原料
粉末として、粒度:100メツシユ以下、一般には平均粒径
で60〜100μm程度の比較的粗い高速度鋼粉末が用いら
れているために、焼結性に劣り、この結果高強度および
高靱性の焼結高速度鋼部材を製造するのが困難となるば
かりでなく、適正焼結温度範囲もきわめて狭いものとな
り、組成によつては前記高速度粉末の液相出現温度
(T)〜数度ないしは10℃程度であり、この結果量産上
きわめて厳密な温度制御が必要となるなどの問題点があ
る。
However, in the production of the above-mentioned conventional sintered high speed steel member, a relatively coarse high speed steel powder having a particle size of 100 mesh or less, generally having an average particle size of about 60 to 100 μm is used as a raw material powder. In addition, the sinterability is inferior, and as a result, it is not only difficult to produce a high-strength and high-toughness sintered high-speed steel member, but also the appropriate sintering temperature range becomes extremely narrow. The liquid phase appearance temperature (T) of the high-speed powder is from about several degrees to about 10 ° C. As a result, there is a problem that extremely strict temperature control is required in mass production.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、従来焼
結高速度鋼部材の製造法のもつ問題点を解決すべく研究
を行なつた結果、原料粉末として、平均粒径で5〜40μ
mの高速度鋼粉末を用い、この場合酸素含有量が300〜1
000ppmの場合には前記高速度鋼粉末単独で、一方酸素含
有量が1000超〜3000ppmの場合には、脱酸の目的で前記
高速度鋼粉末に0.01〜0.3重量%の炭素粉末を混合した
状態で、通常の粉末冶金法にて焼結体とし、この場合焼
結性は良好で、焼結温度を前記高速度鋼粉末の液相出現
温度(T)〜T+30℃の比較的広い範囲とすることが可
能となり、最終的に前記焼結体に通常の条件で焼入およ
び焼戻しの熱処理を施すと、炭化物の平均粒径が1〜10
μmにして、20μm以上の粒径の炭化物が実質的に存在
しない組織を有し、この結果高強度と高靱性を有する焼
結高速度鋼部材が得られるようになるという知見を得た
のである。
Therefore, the inventors of the present invention have conducted research from the above viewpoints to solve the problems of the conventional method for producing a sintered high-speed steel member, and as a result, as the raw material powder, have an average particle diameter of 5 to 5. 40μ
m high-speed steel powder is used, with an oxygen content of 300 to 1
In the case of 000 ppm, the high-speed steel powder alone, while when the oxygen content is more than 1000 ~ 3000 ppm, 0.01-0.3 wt% carbon powder is mixed with the high-speed steel powder for the purpose of deoxidation. Then, it is made into a sintered body by an ordinary powder metallurgy method, and in this case, the sinterability is good, and the sintering temperature is set to a relatively wide range of the liquid phase appearance temperature (T) to T + 30 ° C. of the high speed steel powder. Finally, when the sintered body is subjected to heat treatment of quenching and tempering under normal conditions, the average grain size of the carbide is 1 to 10
It has been found that a sintered high-speed steel member having a structure in which carbides having a grain size of 20 μm or more are substantially absent and having high strength and high toughness can be obtained by making it to be μm. .

この発明は、上記知見にもとづいてなされたものであつ
て、原料粉末として、高速度鋼粉末を用い、通常の粉末
冶金法にて焼結体とし、この焼結体に焼入および焼戻し
の熱処理を施して焼結高速度鋼部材を製造するに際し
て、原料粉末として、 (a) 平均粒径が5〜40μmにして、酸素含有量が30
0〜1000ppmの水アトマイズ高速度鋼粉末、あるいは、 (b) 平均粒径が5〜40μmにして、酸素含有量が10
00超〜3000ppmの水アトマイズ高速度鋼粉末に、0.01〜
0.3重量%の炭素粉末を混合した混合粉末を用い、 かつ、上記高速度鋼粉末の液相出現温度(以下Tで示
す)〜T+30℃の範囲内の所定温度で焼結することによ
つて、炭化物の平均粒径が1〜10μmにして、20μm以
上の粒径の炭化物が実質的に存在しない組織を有する高
強度および高靱性の焼結高速度鋼部材を製造する方法に
特徴を有するものである。
The present invention has been made based on the above findings, in which a high-speed steel powder is used as a raw material powder, a sintered body is formed by an ordinary powder metallurgy method, and this sintered body is heat treated for quenching and tempering. When producing a sintered high-speed steel member, the raw material powder is (a) having an average particle size of 5 to 40 μm and an oxygen content of 30.
Water atomized high-speed steel powder of 0 to 1000 ppm, or (b) an average particle size of 5 to 40 μm and an oxygen content of 10
More than 00 to 3000ppm of water atomized high speed steel powder, 0.01 to
By using a mixed powder in which 0.3% by weight of carbon powder is mixed and by sintering at a predetermined temperature within the range of the liquid phase appearance temperature (hereinafter referred to as T) to T + 30 ° C. of the high-speed steel powder, Characterized by a method for producing a high-strength and high-toughness sintered high-speed steel member having a structure in which the average grain size of carbides is 1 to 10 μm and carbides having a grain size of 20 μm or more are substantially absent. is there.

つぎに、この発明の方法において、製造条件を上記の通
りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described.

(a) 高速度鋼粉末の平均粒径 その平均粒径が5μm未満では、酸素含有量が3000ppm
以下の粉末の製造が極めて困難であると共に流動性が低
下し、圧粉体のプレス成形時の局部的に密度差が生じる
ようになつて均質な圧粉体に成形することが困難にな
り、一方その平均粒径が40μmを越えると、上記のよう
に適正焼結温度範囲が狭くなつて、T〜T+30℃の広い
適正焼結温度範囲を確保することができないばかりでな
く、熱処理後の部材における炭化物の平均粒径が10μm
を越え、かつ20μm以上の粒径の炭化物が出現するよう
になり、これが破壊の起点としても作用するようになつ
て所望の高強度および高靱性を確保することができない
ことから、その平均粒径を5〜50μmと定めた。
(A) Average particle size of high-speed steel powder If the average particle size is less than 5 μm, the oxygen content is 3000 ppm
The following powder is extremely difficult to produce and the fluidity is lowered, and it becomes difficult to form a homogeneous green compact as a density difference locally occurs during press molding of the green compact, On the other hand, if the average particle size exceeds 40 μm, the proper sintering temperature range becomes narrow as described above, and it is not possible to secure a wide proper sintering temperature range of T to T + 30 ° C. Average particle size of carbides in
Carbides with a grain size of more than 20 μm and more than 20 μm appear, which also acts as a starting point of fracture and cannot secure desired high strength and high toughness. Was determined to be 5 to 50 μm.

(b) 焼結温度 焼結温度がT℃未満では十分な焼結を行なうことができ
ず、一方焼結温度がT+30℃を越えると、部材の炭化物
が部分的に粗大化して、20μmを越えた炭化物が出現し
たり、炭化物が網目状に発達したりするようになり、い
ずれの場合も強度および靱性低下の原因となることか
ら、焼結温度をT〜T+30℃と定めた。
(B) Sintering temperature If the sintering temperature is lower than T ° C, sufficient sintering cannot be performed. On the other hand, if the sintering temperature exceeds T + 30 ° C, the carbide of the member partially coarsens and exceeds 20 μm. Further, since carbides will appear and the carbides will develop into a mesh shape, and in any case, it will cause a decrease in strength and toughness, so the sintering temperature was set to T to T + 30 ° C.

(c) 炭素粉末の混合量 原料粉末としての高速度鋼粉末における酸素含有量は少
なければ少ないほど良いが、酸素含有量が300〜1000ppm
(酸素含有量が300ppm未満の高速度鋼粉末は水アトマイ
ズ後の通常の還元工程では製造困難である)の場合に
は、部材の特性に何らの悪影響も及ぼさないので問題は
ないが、酸素含有量が1000ppmを越えると、部材の特性
に影響を及ぼすようになるので、この場合には脱酸の目
的で炭素粉末を混合してやると良く、通常1000超〜3000
ppmの酸素含有量に対して、0.01〜0.3重量%の範囲で比
例的に混合してやればよく、この場合0.3%を越えた場
合は、部材の炭化物の局部的粗大化および網目状成長を
もたらすことから望ましくなく、したがつて、その混合
量を0.01〜0.3重量%と定めた。なお、粉末の酸素含有
量が3000ppmを越えた場合、炭素添加量が0.3重量%以下
では空孔が生じ易く、0.3重量%を越えると局部的に粗
大炭化物が生成するようになる。
(C) Mixing amount of carbon powder The lower the oxygen content in the high-speed steel powder as the raw material powder, the better, but the oxygen content is 300 to 1000 ppm.
In the case of (high-speed steel powder with an oxygen content of less than 300 ppm is difficult to manufacture in the normal reduction process after water atomization), there is no problem because it does not have any adverse effect on the characteristics of the member, but the oxygen content is low. If the amount exceeds 1000 ppm, it will affect the characteristics of the member, so in this case it is advisable to mix carbon powder for the purpose of deoxidation, usually over 1000 ~ 3000
Proportional mixing in the range of 0.01 to 0.3% by weight with respect to the oxygen content of ppm should be performed. In this case, if it exceeds 0.3%, it causes local coarsening and network growth of carbide of the member. Therefore, the mixing amount was set to 0.01 to 0.3% by weight. When the oxygen content of the powder exceeds 3000 ppm, vacancies are likely to occur when the amount of carbon added is 0.3% by weight or less, and when it exceeds 0.3% by weight, coarse carbides are locally formed.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically described by way of Examples.

それぞれ第1表に示される成分組成および平均粒径をも
つた高速度鋼粉末、さらに平均粒径:2μmの炭素粉末を
用意し、これら高速度鋼粉末単独で、あるいはこれに第
1表に示される割合の炭素粉末を混合した状態で、通常
の粉末冶金法にしたがい、5ton/cm2の圧力で圧粉体にプ
レス成形し、この圧粉体を、真空雰囲気(あるいは非酸
化性雰囲気でもよい)中、同じく第1表に示される温度
に2時間保持の条件で焼結し、焼結後、真空中、1200〜
1240℃の範囲内の所定温度に1時間保持後N2ガス焼入
れ、および大気中、550〜580℃の範囲内の所定温度に1
時間保持の焼戻しからなる熱処理を施すことによつて本
発明法 1〜10および比較法1〜4をそれぞれ実施し、焼結高速
度鋼部材を製造した。
Prepare high-speed steel powders having the composition and average particle size shown in Table 1, respectively, and carbon powder with an average particle size of 2 μm. These high-speed steel powders alone or in addition to them are shown in Table 1. In the state of mixing the carbon powder in the ratio shown below, according to the usual powder metallurgy method, it is pressed into a green compact at a pressure of 5 ton / cm 2 , and this green compact is in a vacuum atmosphere (or in a non-oxidizing atmosphere) ) In the same manner as above, the same temperature as shown in Table 1 was maintained for 2 hours, and after sintering, in vacuum, the
After holding at a predetermined temperature in the range of 1240 ° C for 1 hour, quenching with N 2 gas
According to the method of the present invention, by applying a heat treatment consisting of tempering for holding time. 1 to 10 and Comparative Methods 1 to 4 were carried out to manufacture sintered high speed steel members.

なお、比較法1〜4は、いずれも製造条件のうちのいず
れかの条件(第1表に※印を付した条件)がこの発明の
範囲から外れたものである。
In Comparative Methods 1 to 4, any of the manufacturing conditions (the conditions marked with * in Table 1) are out of the scope of the present invention.

つぎに、この結果得られた各種の焼結高速度鋼部材につ
いて、炭化物の平均粒径を測定すると共に、20μm以上
の粒径の粗大炭化物の有無を観察し、さらに強度と靱性
を評価する目的で、引張強度と抗折力を測定し、かつロ
ツクウエル硬さ(Cスケール)も測定した。これらの結
果を第1表に示した。
Next, for various sintered high-speed steel members obtained as a result, the average grain size of carbides is measured, and the presence or absence of coarse carbides with a grain size of 20 μm or more is observed to further evaluate strength and toughness. Then, the tensile strength and the transverse rupture strength were measured, and the Rockwell hardness (C scale) was also measured. The results are shown in Table 1.

〔発明の効果〕〔The invention's effect〕

第1表に示される結果から、本発明法1〜10で製造され
た焼結高速度鋼部材は、いずれも炭化物が微細で、粗大
炭化物が存在しない組織を有し、したがつて高強度と高
靱性を示すのに対して、比較法1〜4に見られるよう
に、製造条件のうちのいずれかの条件でもこの発明の範
囲から外れると、前記特性を満足して具備した焼結高速
度鋼部材を製造することができないことが明らかであ
る。
From the results shown in Table 1, all of the sintered high-speed steel members produced by the methods 1 to 10 of the present invention have a structure in which carbides are fine and coarse carbides do not exist, and accordingly, have high strength. While exhibiting high toughness, as seen in Comparative Methods 1 to 4, when any of the manufacturing conditions deviates from the scope of the present invention, the sintering high speed satisfying the above characteristics is provided. It is clear that steel parts cannot be manufactured.

上述のように、この発明の方法によれば、比較的広い適
正焼結温度範囲で、焼結性よく、高強度および高靱性、
さらに高硬度を有する焼結高速度鋼部材を製造すること
ができるのである。
As described above, according to the method of the present invention, in a relatively wide proper sintering temperature range, good sinterability, high strength and high toughness,
Further, it is possible to manufacture a sintered high speed steel member having high hardness.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原料粉末として、高速度鋼粉末を用い、通
常の粉末冶金法にて焼結体とし、この焼結体に焼入およ
び焼戻しの熱処理を施して焼結高速度鋼部材を製造する
に際して、 原料粉末として、平均粒径が5〜40μmにして、酸素含
有量が300〜1000ppmの水アトマイズ高速度鋼粉末を用
い、かつ前記高速度鋼粉末の液相出現温度(T)〜T+
30℃の範囲内の所定温度で焼結して、炭化物の平均粒径
が1〜10μmにして、20μm以上の粒径の炭化物が実質
的に存在しない組織を有する焼結高速度鋼部材を製造す
ることを特徴とする高強度および高靱性を有する焼結高
速度鋼部材の製造法。
1. A high-speed steel powder is used as a raw material powder to obtain a sintered body by an ordinary powder metallurgy method, and the sintered body is subjected to heat treatments of quenching and tempering to produce a sintered high-speed steel member. In doing so, as the raw material powder, water atomized high speed steel powder having an average particle size of 5 to 40 μm and an oxygen content of 300 to 1000 ppm is used, and the liquid phase appearance temperature (T) to T + of the high speed steel powder is used.
Manufacture a sintered high-speed steel member having a structure in which the average grain size of carbides is set to 1 to 10 μm by sintering at a predetermined temperature within the range of 30 ° C. and carbides having a grain size of 20 μm or more are substantially absent. A method for producing a sintered high speed steel member having high strength and high toughness, which is characterized by:
【請求項2】原料粉末として、高速度鋼粉末を用い、通
常の粉末冶金法にて焼結体とし、この焼結体に焼入およ
び焼戻しの熱処理を施して焼結高速度鋼部材を製造する
に際して、 原料粉末として、平均粒径が5〜40μmにして、酸素含
有量が1000超〜3000ppmの水アトマイズ高速度鋼粉末
に、0.01〜0.3重量%の炭素粉末を混合した混合粉末を
用い、かつ前記高速度鋼粉末の液相出現温度(T)〜T
+30℃の範囲内の所定温度で焼結して、炭化物の平均粒
径が1〜10μmにして、20μm以上の粒径の炭化物が実
質的に存在しない組織を有する焼結高速度鋼部材を製造
することを特徴とする高強度および高靱性を有する焼結
高速度鋼 部材の製造法。
2. A high-speed steel powder is used as a raw material powder to obtain a sintered body by a normal powder metallurgy method, and the sintered body is subjected to heat treatments of quenching and tempering to produce a sintered high-speed steel member. In doing so, as the raw material powder, the average particle size is 5 to 40 μm, the oxygen content is water atomized high-speed steel powder of more than 1000 to 3000 ppm, using a mixed powder of 0.01 to 0.3% by weight of carbon powder, And liquid phase appearance temperature (T) to T of the high-speed steel powder
Manufacture a sintered high-speed steel member having a structure in which the average grain size of carbides is 1 to 10 μm by sintering at a predetermined temperature within a range of + 30 ° C. and substantially no carbides having a grain size of 20 μm or more are present. A method for producing a sintered high-speed steel member having high strength and high toughness, characterized by:
JP62169422A 1987-07-07 1987-07-07 Manufacturing method of sintered high speed steel members Expired - Fee Related JPH07113137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62169422A JPH07113137B2 (en) 1987-07-07 1987-07-07 Manufacturing method of sintered high speed steel members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62169422A JPH07113137B2 (en) 1987-07-07 1987-07-07 Manufacturing method of sintered high speed steel members

Publications (2)

Publication Number Publication Date
JPS6415344A JPS6415344A (en) 1989-01-19
JPH07113137B2 true JPH07113137B2 (en) 1995-12-06

Family

ID=15886298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62169422A Expired - Fee Related JPH07113137B2 (en) 1987-07-07 1987-07-07 Manufacturing method of sintered high speed steel members

Country Status (1)

Country Link
JP (1) JPH07113137B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392929B (en) * 1989-03-06 1991-07-10 Boehler Gmbh METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF WORKPIECES OR TOOLS
CN115110011A (en) * 2021-03-22 2022-09-27 江苏润晨新材料科技有限公司 Preparation method of low-carbon high-toughness high-speed steel

Also Published As

Publication number Publication date
JPS6415344A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
DE60016634T2 (en) PREPARATION FOR FE-CR-AL ALLOYING AND SUCH ALLOYING
EP3362210B1 (en) Iron based powders for powder injection molding
JPH05209247A (en) Cermet alloy and its production
JPH0689365B2 (en) Atomized prealloyed steel powder for powder metallurgy
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JPH07113137B2 (en) Manufacturing method of sintered high speed steel members
JPS6033335A (en) Heat resistant molybdenum material
JPS62287041A (en) Production of high-alloy steel sintered material
JP2003531961A (en) Method of sintering carbon steel parts using hydrocolloid binder as carbon source
JP2927400B2 (en) Method for regenerating cemented carbide composition and method for producing cemented carbide
WO1993018195A1 (en) Process for manufacturing a sintered body made of high alloy steel powder
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPS63169341A (en) Production of morybdenum based alloy dispersed with carbide and strengthened thereby
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH0118137B2 (en)
JPH06172810A (en) Production of tungsten alloy sintered compact
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JP2018076582A (en) Powder high speed tool steel having fine carbide particle and manufacturing method therefor
JP4198226B2 (en) High strength sintered body
JPH05147917A (en) Production of fine tungsten-based carbide powder
JPH06279124A (en) Production of silicon nitride sintered compact
JP3250132B2 (en) Free graphite precipitated iron-based sintered material with high strength and toughness
JPS63293102A (en) Production of fe-base sintered alloy member having high strength and high toughness
JPS636601B2 (en)
JPH0660324B2 (en) Method for manufacturing Ni-Ti based shape memory alloy sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees