WO1993018195A1 - Process for manufacturing a sintered body made of high alloy steel powder - Google Patents

Process for manufacturing a sintered body made of high alloy steel powder Download PDF

Info

Publication number
WO1993018195A1
WO1993018195A1 PCT/CH1993/000043 CH9300043W WO9318195A1 WO 1993018195 A1 WO1993018195 A1 WO 1993018195A1 CH 9300043 W CH9300043 W CH 9300043W WO 9318195 A1 WO9318195 A1 WO 9318195A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel powder
boron
sintered body
sintering
powder
Prior art date
Application number
PCT/CH1993/000043
Other languages
German (de)
French (fr)
Inventor
Peter Ernst
Christoph Tönnes
Original Assignee
Asea Brown Boveri Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri Ag filed Critical Asea Brown Boveri Ag
Publication of WO1993018195A1 publication Critical patent/WO1993018195A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%

Definitions

  • the invention is based on a method for producing a sintered body from high-alloy steel powder, in which the steel powder is heated to the sintering temperature, is kept at the sintering temperature for a predetermined period of time, and the sintered body formed in this way is subsequently cooled.
  • the invention relates to a state of the art, such as that specified in Metals Handbook Ninth Edition Vol.7 Powder Metallurgy, pp. 360 and 361.
  • a method for producing a sintered body is described in which steel powder precompressed to form a green body is compacted to form a sintered body at temperatures that are close to the melting point of the steel powder used.
  • it is generally necessary to densify the sintered body by hot isostatic pressing.
  • the invention is based on the object of specifying a method for producing a sintered body from a high-alloy steel powder which, at temperatures as low as possible, has a sintered body of high density and with favorable mechanical and chemical properties, in particular in the temperature range up to 600 ° C, delivers.
  • the method according to the invention is characterized in that extremely dense sintered bodies can be produced on the basis of a high-alloy martensitic steel powder by means of comparatively simple technological measures. These sintered bodies are regarding their mechanical and chemical behavior, in particular in the temperature range up to 600 ° C., comparable to sintered bodies produced according to the prior art, which, however, had to be subsequently hot-isostatically pressed in order to achieve the corresponding density.
  • the method according to the invention is based on the knowledge that boron added to the steel powder, at comparatively low sintering temperatures and without subsequent hot isostatic pressing, produces an extremely dense sintered body if the added boron is evenly distributed in the steel powder before sintering. In addition, it has been recognized that despite the presence of alloy components with a comparatively high partial pressure, such as chromium or manganese, there is no change in the stoichiometry of the steel powder during sintering.
  • a high-alloy steel powder of the type SS 422, preferably produced by atomization in a gas atmosphere, according to German nomenclature X 20 CrMoV 1 21, is used as the starting alloy.
  • the chemical composition of this steel powder is:
  • the proportion of phosphorus, sulfur, oxygen and nitrogen is less than 0.05 percent by weight.
  • This alloy is predominantly artsitic with smaller proportions of 5-ferrite and austenite.
  • the average particle size of the powder grains is less than 25 ⁇ m.
  • a cast body made from this material is characterized by a high 0.2 proof stress of approx. 1200 MPa after heat treatment at approx. 500 ⁇ C and by high creep resistance at temperatures up to 600 ⁇ C after heat treatment at 700 ⁇ C. Due to the high chromium content, this alloy is extremely corrosion-resistant and is particularly suitable for the production of corrosion-resistant components exposed to high temperatures, such as steam turbine blades in particular.
  • alloys with comparable mechanical and chemical properties and slightly different compositions, for example with chromium contents between 10 and 15%, in the production of sintered bodies by the process according to the invention.
  • a powder containing boron is also used as the starting material.
  • This powder can consist of elemental boron and / or a boron compound such as in particular iron boride.
  • it can have an average particle size of approximately 1 ⁇ m, but can advantageously also be selected to be larger.
  • Powders with larger particles, for example 10 or 20 ⁇ ra, are particularly advantageous if the steel powder and the boron-containing powder are to be mixed with one another comparatively quickly without agglomeration of boron-containing particles occurring.
  • boron-containing powders with small particles it is advantageous to grind the boron-containing powder and the steel powder together when mixing, since then agglomeration of boron-containing particles is avoided and a uniform distribution of the boron-containing particles in the steel powder is achieved. It is also highly recommended that boron be added to the steel powder by atomization, especially in a gas atmosphere, since then a particularly uniform distribution of boron in the steel powder is achieved and, moreover, the risk of introducing contaminants is virtually eliminated. This atomization can be combined with the production of the steel powder with particular advantage if the steel powder is produced by atomization of a starting alloy.
  • Graphite powder with a particle size of less than 150 ⁇ m can serve as a further starting material. This is of particular advantage if the starting alloy contains no or too little carbon during atomization.
  • At least 99.5 percent by weight steel powder, up to 0.3 - preferably 0.1 to 0.2 - percent by weight boron powder and up to 0.1 - preferably 0.05 - percent by weight graphite powder are mixed together in a mixer for about 30 minutes swirled. Batches of approx. 25 g powder each are then filled into cuboid shapes of approx. 50 mm ⁇ 15 mm ⁇ 15 mm from the mixed material.
  • the molds filled with loosely poured powder become Presintered into a sintering furnace provided with a nickel steel tube. A sintering gas which is at atmospheric pressure and preferably contains argon is fed to the furnace. The sintering furnace filled with the molds is heated to a temperature of approx.
  • prismatic bodies each having a dimension of 20 mm x 10 mm x 10 mm are cut from the presintered batches and these bodies in an evacuable sintering furnace provided with an aluminum oxide tube at temperatures between 1300 ° C. and 1380 "c in vacuum and / eiz- or preferably argon-containing gas atmosphere in a period of up sintered to five hours. on and cooling amount in this case up to 20 ⁇ C / min.
  • f from the steel powder volatilizing carbon s in this case is substantially compensated by the addition of the graphite powder
  • This compensation can also be achieved by adding a carbon monoxide-containing sinter gas during sintering above a temperature of, for example, 1000 ° C.
  • the steel powder is then carburized below a temperature of approximately 1200 ° C. Above a temperature of approximately 1200 ° C.
  • Decarburization then takes place when the sintered body is cooled 'an inert gas or vacuum is used at a temperature of about 1200 ° C as sintering gas, it can, with a suitable dosage of the supplied gases and can be achieved with a suitable length of time that the carbon content of the sintered body corresponds to the carbon content of the steel powder.
  • the density of the sintered bodies is determined, and the grain size of their structure is determined using micrographs.
  • the densities d (A) and d (B) and the grain sizes g (A) and g (B) of the sintered bodies A and B kept at the sintering temperature at approx. 1320 e C are compared.
  • the sintered body A produced by the process according to the invention contains the steel powder described above and 0.2% by weight of boron, while the sintered body B produced according to the prior art only contains the steel powder.
  • Particularly dense sintered bodies can be achieved if sintering is carried out first in a vacuum and then in a noble gas atmosphere which preferably contains argon. At the same time, a strong evaporation of the components of the steel powder and thus a weight loss of the sintered body compared to the weight of the starting materials is largely avoided. In addition, by backfilling the vacuum with argon, as soon as the pore structure of the sintered body is no longer connected to the surface, an additional densifying effect is achieved by the pressure difference between the pores (vacuum) and the furnace atmosphere (greater than 1 bar argon).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

A process is suitable for producing a sintered body made of a high alloy steel powder. The steel powder is heated up to the sintering temperature, is maintained at the sintering temperature during a predetermined time period and the thus obtained sintered body is then cooled down. This process allows a high density (d) sintered body having favourable mechanical and chemical properties to be produced at temperatures as low as possible, in particular in a temperature range extending up to 600 °C. For that purpose, elementary boron or a boron compound is added as a sintering adjuvant to a martensitic steel powder and the added boron is uniformly mixed with the steel powder before sintering.

Description

B E S C H R E I B U N G DESCRIPTION
Verfahren zur Herstellung eines Sinterkörpers aus hochlegiertem StahlpulverProcess for producing a sintered body from high-alloy steel powder
TECHNISCHES GEBIETTECHNICAL AREA
Bei der Erfindung wird ausgegangen von einem Verfahren zur Herstellung eines Sinterkörpers aus hochlegiertem Stahlpulver, bei dem das Stahlpulver auf Sintertemperatur erwärmt, über einen vorbestimmten Zeitraum auf Sintertemperatur gehalten, und der hierbei gebildete Sinterkörper nachfolgend abgekühlt wird.The invention is based on a method for producing a sintered body from high-alloy steel powder, in which the steel powder is heated to the sintering temperature, is kept at the sintering temperature for a predetermined period of time, and the sintered body formed in this way is subsequently cooled.
STAND DER TECHNIKSTATE OF THE ART
Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er etwa in Metals Handbook Ninth Edition Vol.7 Powder Metallurgy, S.360 und 361, angegeben ist. In diesem Stand der Technik wird ein Verfahren zur Herstellung eines Sinterkörpers beschrieben, bei dem zu einem Grünkörper vorverdichtetes Stahlpulver bei Temperaturen, die nahe am Schmelzpunkt des verwendeten Stahlpulvers liegen, zu einem Sinterkörper verdichtet wird. Um einen auf nahezu 100% der theoretisch erreichbaren Dichte verdichteten Sinterkörper zu erzielen, ist es im allgemeinen notwendig, den Sinterkörper durch heiss-isostatisches Pressen nachzuverdichten. Die beim Sintern und heiss-isostatischen Pressen erforderlichen hohen Temperaturen und langen Zeiten bewirken jedoch zum einen eine Entkohlung des Stahlpulvers und damit eine erhebliche Änderung seiner mechanischen und chemischen Eigenschaften und zum anderen ein rasches Kornwachstum und damit die Ausbildung eines für die angestrebten Eigenschaften des Sinterkörpers unerwünschten Gefüges.The invention relates to a state of the art, such as that specified in Metals Handbook Ninth Edition Vol.7 Powder Metallurgy, pp. 360 and 361. In this prior art, a method for producing a sintered body is described in which steel powder precompressed to form a green body is compacted to form a sintered body at temperatures that are close to the melting point of the steel powder used. In order to achieve a sintered body compressed to almost 100% of the theoretically achievable density, it is generally necessary to densify the sintered body by hot isostatic pressing. However, the high temperatures and long times required for sintering and hot isostatic presses cause the steel powder to be decarburized and thus considerably Change in its mechanical and chemical properties and, on the other hand, rapid grain growth and thus the formation of an undesirable structure for the desired properties of the sintered body.
In Progress in Powder Metallurgy Vol.42 (1986), p.267-281 ist ferner beschrieben, dass Bor ein Sinterhilfsmittel für Eisenpulver ist. Dies ist dadurch bedingt, dass sich sehr wenig Bor im Eisen löst, und dass sich an den Grenzen der Eisenpulverkörner eine FeB oder FeB2 enthaltende flüssige Phase ausbildet, welche ein verbessertes Sintern des Eisenpulvers bewirkt.Progress in Powder Metallurgy Vol.42 (1986), p.267-281 also describes that boron is a sintering aid for iron powder. This is due to the fact that very little boron dissolves in the iron and that a liquid phase containing FeB or FeB 2 forms at the boundaries of the iron powder grains, which causes an improved sintering of the iron powder.
Aus der Dissertation von P.Ernst "Effect of boron on the mechanical properties of modified 12% chromium steels" ETH No.8596 (1988) ist es ausserdem bekannt, dass geringe Mengen von Bor das Kriechverhalten gegossener warmfester Chromstähle beträchtlich heraufsetzen.It is also known from P.Ernst's thesis "Effect of boron on the mechanical properties of modified 12% chromium steels" ETH No.8596 (1988) that small amounts of boron significantly increase the creep behavior of cast, heat-resistant chromium steels.
KÜRZE DARSTELLUNG DER ERFINDUNGSUMMARY OF THE INVENTION
Der Erfindung, wie sie in Patentanspruch 1 definiert ist, liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Sinterkörpers aus einem hochlegierten Stahlpulver anzugeben, welches bei möglichst niedrigen Temperaturen einen Sinterkörper hoher Dichte und mit günstigen mechanischen und chemischen Eigenschaften, insbesondere im Temperaturbereich bis 600°C, liefert.The invention, as defined in claim 1, is based on the object of specifying a method for producing a sintered body from a high-alloy steel powder which, at temperatures as low as possible, has a sintered body of high density and with favorable mechanical and chemical properties, in particular in the temperature range up to 600 ° C, delivers.
Das Verfahren nach der Erfindung zeichnet sich dadurch aus, dass durch vergleichsweise einfach auszuführende technologische Massnahmen äusserst dichte Sinterkörper auf der Basis eines hochlegierten martensitischen Stahlpulvers hergestellt werden können. Diese Sinterkörper sind hinsichtlich ihres mechanischen und chemischen Verhaltens, insbesondere im Temperaturbereich bis zu 600°C, vergleichbar mit nach dem Stand der Technik hergestellten Sinterkörpern, welche jedoch zur Erreichung der entsprechenden Dichte nachträglich noch heiss-isostatisch gepresst werden mussten. Das Verfahrens nach der Erfindung beruht auf der Erkenntnis, dass zum Stahlpulver zugesetztes Bor bei vergleichsweise tiefen Sintertemperaturen und ohne nachträgliches heiss- isostatisches Pressen vor allem dann einen äusserst dichten Sinterkörper liefert, wenn das zugesetzte Bor vor dem Sintern gleichmässig im Stahlpulver verteilt ist. Darüber hinaus ist erkannt worden, dass hierbei trotz des Vorhandenseins von Legierungsbestandteilen mit vergleichsweise hohem Partialdruck, wie etwa Chrom oder Mangan, keine Veränderung der Stöchiometrie des Stahlpulvers während des Sinterns eintritt.The method according to the invention is characterized in that extremely dense sintered bodies can be produced on the basis of a high-alloy martensitic steel powder by means of comparatively simple technological measures. These sintered bodies are regarding their mechanical and chemical behavior, in particular in the temperature range up to 600 ° C., comparable to sintered bodies produced according to the prior art, which, however, had to be subsequently hot-isostatically pressed in order to achieve the corresponding density. The method according to the invention is based on the knowledge that boron added to the steel powder, at comparatively low sintering temperatures and without subsequent hot isostatic pressing, produces an extremely dense sintered body if the added boron is evenly distributed in the steel powder before sintering. In addition, it has been recognized that despite the presence of alloy components with a comparatively high partial pressure, such as chromium or manganese, there is no change in the stoichiometry of the steel powder during sintering.
WEGE ZUR AUSFUHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION
Nachfolgend wird ein bevorzugtes Ausführungsbeispiel der Erfindung anhand einer Zeichnung beschrieben. Hierbei zeigt die einzige Figur die Abhängigkeit der Dichten d(A) und d(B) in [%] sowie der Korngrösse g(A) und g(B) in [mm] von der Sinterzeit t[min] eines nach dem erfindungsgemässen Verfahren hergestellten Sinterkörpers A und eines nach dem Stand der Technik hergestellten Sinterkörpers B.A preferred embodiment of the invention is described below with reference to a drawing. Here, the only figure shows the dependency of the densities d (A) and d (B) in [%] and the grain size g (A) and g (B) in [mm] on the sintering time t [min] one according to the inventive method sintered body A produced and a sintered body B produced according to the prior art
Bei der Herstellung der beiden Sinterkörper A und B wird als Ausgangslegierung ein vorzugsweise durch Zerstäuben in einer Gasatmosphäre hergestelltes hochlegiertes Stahlpulver des Typs SS 422, nach deutscher Nomenklatur X 20 CrMoV 1 21, verwendet. Die chemische Zusammensetzung dieses Stahlpulvers beträgt: In the production of the two sintered bodies A and B, a high-alloy steel powder of the type SS 422, preferably produced by atomization in a gas atmosphere, according to German nomenclature X 20 CrMoV 1 21, is used as the starting alloy. The chemical composition of this steel powder is:
Figure imgf000006_0001
Figure imgf000006_0001
Der Anteil an Phosphor, Schwefel, Sauerstoff und Stickstoff ist jeweils kleiner 0,05 Gewichtsprozent.The proportion of phosphorus, sulfur, oxygen and nitrogen is less than 0.05 percent by weight.
Die Struktur dieser Legierung ist überwiegend artensitisch mit kleineren Anteilen an 5-Ferrit und Austenit. Die mittlere Teilchengrösse der Pulverkörner ist kleiner 25μm. Ein aus diesem Material hergestellter Gusskörper zeichnet sich nach Wärmebehandlung bei ca. 500βC durch eine hohe 0,2- Dehngrenze von ca.1200 MPa und nach Wärmebehandlung bei 700βC durch eine grosse Kriechbeständigkeit bei Temperaturen bis zu 600βC aus. Bedingt durch den hohen Chromanteil ist diese Legierung äusserst korrosionsbeständig und eignet sich besonders zur Herstellung von korrosionsbeständigen, hohen Temperaturen ausgesetzten Bauteilen, wie insbesondere Dampfturbinenschaufein.The structure of this alloy is predominantly artensitic with smaller proportions of 5-ferrite and austenite. The average particle size of the powder grains is less than 25 μm. A cast body made from this material is characterized by a high 0.2 proof stress of approx. 1200 MPa after heat treatment at approx. 500 β C and by high creep resistance at temperatures up to 600 β C after heat treatment at 700 β C. Due to the high chromium content, this alloy is extremely corrosion-resistant and is particularly suitable for the production of corrosion-resistant components exposed to high temperatures, such as steam turbine blades in particular.
Anstelle dieser Legierung lassen sich auch Legierungen mit vergleichbaren mechanischen und chemischen Eigenschaften und geringfügig abweichender Zusammensetzungen, etwa mit Chromanteilen zwischen 10 und 15 %, bei der Herstellung von Sinterkörpern nach dem erfindungsgemässen Verfahren verwenden.Instead of this alloy, it is also possible to use alloys with comparable mechanical and chemical properties and slightly different compositions, for example with chromium contents between 10 and 15%, in the production of sintered bodies by the process according to the invention.
Als Ausgangsmaterial neben dem Stahlpulver wird ferner ein Bor enthaltendes Pulver verwendet. Dieses Pulver kann von elementarem Bor und/oder einer Borverbindung, wie insbesondere Eisenborid, gebildet sein. Es kann beispielsweise eine mittlere Teilchengrösεe von ca. lμm aufweisen, kann aber mit Vorteil auch grösser gewählt werden. Pulver mit grösseren Teilchen, von beispielsweise 10 oder 20 μra sind vor allem dann von Vorteil, wenn das Stahlpulver und das borhaltige Pulver vergleichsweise schnell miteinander vermischt werden sollen, ohne dass eine Agglomeration von borhaltigen Teilchen auftritt. Bei borhaltigen Pulvern mit kleinen Teilchen ist es von Vorteil, das borhaltige Pulver und das Stahlpulver beim Mischen gemeinsam zu mahlen, da dann eine Agglomeration von borhaltigen Teilchen vermieden und eine gleichmässige Verteilung der borhaltigen Teilchen im Stahlpulver erreicht wird. Sehr zu empfehlen ist es auch, dass Bor durch Zerstäuben, insbesondere in einer Gasatmosphäre, dem Stahlpulver zuzusetzen, da dann eine besonders gleichmässige Verteilung von Bor im Stahlpulver erzielt und zudem die Gefahr des Einbringens von Verunreinigungen nahezu ausgeschlossen ist. Mit besonderem Vorteil kann diese Zerstäubung mit der Herstellung des Stahlpulvers kombiniert werden, wenn das Stahlpulver durch Zerstäubung einer Ausgangslegierung hergestellt wird.In addition to the steel powder, a powder containing boron is also used as the starting material. This powder can consist of elemental boron and / or a boron compound such as in particular iron boride. For example, it can have an average particle size of approximately 1 μm, but can advantageously also be selected to be larger. Powders with larger particles, for example 10 or 20 μra, are particularly advantageous if the steel powder and the boron-containing powder are to be mixed with one another comparatively quickly without agglomeration of boron-containing particles occurring. In the case of boron-containing powders with small particles, it is advantageous to grind the boron-containing powder and the steel powder together when mixing, since then agglomeration of boron-containing particles is avoided and a uniform distribution of the boron-containing particles in the steel powder is achieved. It is also highly recommended that boron be added to the steel powder by atomization, especially in a gas atmosphere, since then a particularly uniform distribution of boron in the steel powder is achieved and, moreover, the risk of introducing contaminants is virtually eliminated. This atomization can be combined with the production of the steel powder with particular advantage if the steel powder is produced by atomization of a starting alloy.
Als weiteres Ausgangsmaterial kann Graphitpulver mit einer Teilchengrösse kleiner 150 μm dienen. Dies ist dann von besonderem Vorteil, wenn die Ausgangslegierung beim Zerstäuben keinen oder zuwenig Kohlenstoff enthält.Graphite powder with a particle size of less than 150 μm can serve as a further starting material. This is of particular advantage if the starting alloy contains no or too little carbon during atomization.
Mindestens 99,5 Gewichtsprozent Stahlpulver, bis zu 0,3 - vorzugsweise 0,1 bis 0,2 - Gewichtsprozent Bor enthaltendes Pulver und bis zu 0,1 - vorzugsweise 0,05 - Gewichtsprozent Graphitpulver werden in einem Mischer ca. 30 Minuten lang miteinander verwirbelt. Aus dem Mischgut werden sodann Chargen von jeweils ca. 25 g Pulver in quaderförmige Formen von ca. 5o mm x 15 mm x 15 mm Abmessung gefüllt. Die mit lose geschüttetem Pulver gefüllten Formen werden zum Vorsintern in einen mit einer Nickelstahl- Röhre versehenen Sinterofen gebracht. Dem Ofen wird ein unter atmosphärischem Druck stehendes und vorzugsweise Argon enthaltendes Sintergas zugeführt. Der mit den Formen gefüllte Sinterofen wird mit einer Rate von ca 5°C/min auf eine Temperatur von ca. 1000°C aufgeheizt, ca. eine halbe Stunde auf dieser Temperatur belassen und danach mit einer Rate von ca. 5°C/_min auf Raumtemperatur abgekühlt. Vorgesinterte Chargen ohne Borzusatz weisen 61,5% (4,76 g/cm3), mit einem Zusatz von 0,2 Gewichtsprozent Bor 64,5% (4,99 g/cm3) der theoretisch erreichbaren Dichte auf.At least 99.5 percent by weight steel powder, up to 0.3 - preferably 0.1 to 0.2 - percent by weight boron powder and up to 0.1 - preferably 0.05 - percent by weight graphite powder are mixed together in a mixer for about 30 minutes swirled. Batches of approx. 25 g powder each are then filled into cuboid shapes of approx. 50 mm × 15 mm × 15 mm from the mixed material. The molds filled with loosely poured powder become Presintered into a sintering furnace provided with a nickel steel tube. A sintering gas which is at atmospheric pressure and preferably contains argon is fed to the furnace. The sintering furnace filled with the molds is heated to a temperature of approx. 1000 ° C at a rate of approx. 5 ° C / min, left at this temperature for approx. Half an hour and then at a rate of approx. 5 ° C / min cooled to room temperature. Pre-sintered batches without added boron have 61.5% (4.76 g / cm 3 ), with an addition of 0.2% by weight boron 64.5% (4.99 g / cm 3 ) of the theoretically achievable density.
Aus den vorgesinterten Chargen werden nachfolgend prismatische Körper jeweils mit einer Abmessung von 2o mm x 10 mm x 10 mm geschnitten und diese Körper in einem evakuierbaren, mit einer Aluminiumoxid - Röhre versehenen Sinterofen bei Temperaturen zwischen 1300°C und 1380"c im Vakuum und/oder einer vorzugsweise Argon enthaltenden Gasatmosphäre in einem Zeitraum von bis zu fünf Stunden gesintert. Die Auf eiz- und Abkühlraten betragen hierbei bis zu 20βC/min. Beim Sintern sich aus dem Stahlpulver verflüchtigender Kohlensto f wird hierbei im wesentlichen durch Zugabe des Graphitpulvers kompensiert. Diese Kompensation kann auch dadurch erreicht werden, dass beim Sintern oberhalb einer Temperatur von beispielsweise 1000°C ein kohlenmonoxidhaltiges Sintergas zugeführt wird. Unterhalb einer Temperatur von ca. 1200°C wird dann das Stahlpulver aufgekohlt. Oberhalb einer Temperatur von ca. 1200°C findet dann eine Entkohlung statt. Wird beim Abkühlen des gebildeten Sinterkörpers bei einer Temperatur von ca. 1200°C als Sintergas 'ein Inertgas oder Vakuum verwendet, so kann bei geeigneter Dosierung der zugeführten Gase und bei geeigneter Zeitdauer erreicht werden, dass der Kohlenstoffgehalt des Sinterkörpers dem Kohlenstoffgehalt des Stahlpulvers entspricht. Anhand des archimedischen Prinzips wird von den Sinterkörpern die Dichte, anhand von Schliffbildern die Korngrösse ihres Gefüges bestimmt.Subsequently, prismatic bodies each having a dimension of 20 mm x 10 mm x 10 mm are cut from the presintered batches and these bodies in an evacuable sintering furnace provided with an aluminum oxide tube at temperatures between 1300 ° C. and 1380 "c in vacuum and / eiz- or preferably argon-containing gas atmosphere in a period of up sintered to five hours. on and cooling amount in this case up to 20 β C / min. During sintering, f from the steel powder volatilizing carbon s in this case is substantially compensated by the addition of the graphite powder This compensation can also be achieved by adding a carbon monoxide-containing sinter gas during sintering above a temperature of, for example, 1000 ° C. The steel powder is then carburized below a temperature of approximately 1200 ° C. Above a temperature of approximately 1200 ° C. Decarburization then takes place when the sintered body is cooled 'an inert gas or vacuum is used at a temperature of about 1200 ° C as sintering gas, it can, with a suitable dosage of the supplied gases and can be achieved with a suitable length of time that the carbon content of the sintered body corresponds to the carbon content of the steel powder. Based on the Archimedes In principle, the density of the sintered bodies is determined, and the grain size of their structure is determined using micrographs.
In der einzigen Figur sind nun die Dichten d(A) und d(B) sowie die Korngrössen g(A) und g(B) der bei ca. 1320 e C auf Sintertemperatur gehaltenen Sinterkörper A und B einander gegenübergestellt. Hierbei enthält der nach dem erfindungsgemässen Verfahren hergestellte Sinterkörper A das zuvor beschriebene Stahlpulver und 0,2 Gewichtsprozent Bor, der nach dem Stand der Technik hergestellte Sinterkörper B hingegen lediglich das Stahlpulver. Wie aus der Kurve d(A) ersichtlich ist, werden mit kleinen Borzusätzen bereits nach einer Stunde Sinterzeit bei 1320βC nahezu auf 100% verdichtete, d.h. nahezu porenfreie, Sinterkörper A erreicht, wohingegen entsprechend, jedoch ohne Borzusatz verdichtete Sinterkörper gemäss Kurve d(B) lediglich auf 96 bis 97% verdichtet sind. Die hierbei gemessene Korngrösse des Gefüges des Sinterkörpers A ist mit ca. 50 bis 60 um zwar etwas grösser als beim Sinterkörper B, jedoch ist zu beachten, dass dieser Sinterkörper durch heiss- isostatisches Pressen bei Drücken von 1000-1200 bar und Temperaturen von 1100-1250βC nachverdichtet werden muss, um eine mit dem Sinterkörper A vergleichbare Dichte zu erhalten. Beim Nachverdichten bildet sich aber ein vergleichsweise grobkörniges Gefüge aus.In the single figure, the densities d (A) and d (B) and the grain sizes g (A) and g (B) of the sintered bodies A and B kept at the sintering temperature at approx. 1320 e C are compared. Here, the sintered body A produced by the process according to the invention contains the steel powder described above and 0.2% by weight of boron, while the sintered body B produced according to the prior art only contains the steel powder. As d of the curve (A) is seen to be with young added boron already after one hour of sintering time at 1320 β C nearly 100% dense, that is almost non-porous, sintered body A obtained, whereas correspondingly d but without boron addition sintered compact according to curve ( B) are only compressed to 96 to 97%. The grain size of the structure of the sintered body A measured here is somewhat larger at about 50 to 60 .mu.m than that of the sintered body B, but it should be noted that this sintered body by hot isostatic pressing at pressures of 1000-1200 bar and temperatures of 1100- 1250 β C must be compressed to obtain a density comparable to that of sintered body A. However, a comparatively coarse-grained structure is formed during post-compaction.
Bestimmte mechanische Eigenschaften, wie die Kriechfestigkeit, werden bei einem nach dem erfindungsgemässen Verfahren hergestellten Sinterkörper gegenüber einem nach dem Stand der Technik hergestellten Sinterkörper beachtlich verbessert, während andere für die Anwendung insbesondere als Dampfturbinenschaufel wichtige mechanische Eigenschaften, wie die Duktilität, aber auch das Korrosionsverhalten beibehalten werden. Von grosser Wichtigkeit ist es, dass bei der Durchführung des erfindungsgemässen Verfahrens das Bor in besonders gleich ässig verteilter Form im Stahlpulver vorliegt, da an bestimmten Stellen im Stahlpulver agglomeriertes borhaltiges Pulver sonst während des Sinterns in den Stahl hineindiffundieren und unerwünschte Poren hinterlassen kann.Certain mechanical properties, such as creep resistance, are considerably improved in a sintered body produced by the method according to the invention compared to a sintered body produced in accordance with the prior art, while other mechanical properties, such as ductility, but also the corrosion behavior, which are important for use, in particular, as a steam turbine blade become. It is of great importance that when carrying out the process according to the invention, the boron is present in the steel powder in a particularly uniformly distributed form, since at certain points in the steel powder agglomerated boron-containing powder can otherwise diffuse into the steel during sintering and leave behind undesired pores.
Besonders dichte Sinterkörper können erreicht werden, wenn zunächst im Vakuum und dann in einer vorzugsweise Argon enthaltenden Edelgasatmosphäre gesintert wird. Hierbei wird zugleich auch ein starkes Verdampfen der Komponenten des Stahlpulvers und damit ein Gewichtsverlust des Sinterkörpers gegenüber dem Gewicht der Ausgangsmaterialien weitgehend vermieden. Ausserdem wird durch das Hinterfüllen des Vakuums mit Argon, sobald die Porenstruktur des Sinterkörpers nicht mehr mit der Oberfläche verbunden ist, ein zusätzlich verdichtender Effekt durch den Druckunterschied der Poren (Vakuum) zur Ofenatmosphäre (grösser 1 bar Argon) erreicht. Particularly dense sintered bodies can be achieved if sintering is carried out first in a vacuum and then in a noble gas atmosphere which preferably contains argon. At the same time, a strong evaporation of the components of the steel powder and thus a weight loss of the sintered body compared to the weight of the starting materials is largely avoided. In addition, by backfilling the vacuum with argon, as soon as the pore structure of the sintered body is no longer connected to the surface, an additional densifying effect is achieved by the pressure difference between the pores (vacuum) and the furnace atmosphere (greater than 1 bar argon).

Claims

P A T E N T A N S P R Ü C H E PATENT CLAIMS
1. Verfahren zur Herstellung eines Sinterkörpers aus einem hochlegierten Stahlpulver, bei dem das Stahlpulver auf Sintertemperatur erwärmt, über einen vorbestimmten Zeitraum auf Sintertemperatur gehalten, und der hierbei gebildete Sinterkörper nachfolgend abgekühlt wird, dadurch gekennzeichnet, dass einem martensitischen Stahlpulver als Sinterhilfe Bor in elementarer Form oder in Form einer Verbindung zugesetzt wird, und dass das zugesetzte Bor vor dem Sintern gleichmässig im Stahlpulver verteilt wird.1. A method for producing a sintered body from a high-alloy steel powder, in which the steel powder is heated to the sintering temperature, held at the sintering temperature for a predetermined period of time, and the sintered body formed in the process is subsequently cooled, characterized in that a martensitic steel powder as a sintering aid boron in elemental form or is added in the form of a compound, and that the added boron is evenly distributed in the steel powder before sintering.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Bor als Pulver zugesetzt wird, und dass das Stahlpulver und das borhaltige Pulver vor dem Sintern gemeinsam gemahlen werden.2. The method according to claim 1, characterized in that the boron is added as a powder, and that the steel powder and the boron-containing powder are ground together before sintering.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Bor durch Zerstäuben bei der Herstellung des Stahlpulvers zugesetzt wird.3. The method according to claim 1, characterized in that the boron is added by atomization in the manufacture of the steel powder.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass höchstens 0,3 Gewichtsprozent Bor zugesetzt werden.4. The method according to any one of claims 1 to 3, characterized in that at most 0.3 percent by weight boron are added.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass vorzugsweise 0,1' bis 0,2 Gewichtsprozent Bor zugesetzt werden. 5. The method according to claim 3, characterized in that preferably 0.1 ' to 0.2 weight percent boron are added.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass dem Stahlpulver neben dem Bor bis zu 0,1 Gewichtsprozent, vorzugsweise ca. 0,05 Gewichtsprozent, Kohlenstoff zugesetzt wird.6. The method according to any one of claims 1 to 5, characterized in that the steel powder in addition to the boron up to 0.1 percent by weight, preferably about 0.05 percent by weight, carbon is added.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Sintervorgang zumindest zeitweilig unter Vakuum ausgeführt wird.7. The method according to any one of claims 1 to 6, characterized in that the sintering process is carried out at least temporarily under vacuum.
8. Verfahren nach Ansprüche 7, dadurch gekennzeichnet, dass nach Schliessen der Poren des Stahlpulvers in einer vorzugsweise Argon enthaltenden Gasatmosphäre fertiggesintert wird.8. The method according to claim 7, characterized in that after closing the pores of the steel powder is sintered in a gas atmosphere preferably containing argon.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das als Stahlpulver ein Chromstahl des Typs X20CrMoV121 verwendet wird.9. The method according to claim 8, characterized in that a chromium steel of the type X20CrMoV121 is used as the steel powder.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass bei ca.1300 bis 1380βC gesintert wird. 10. The method according to claim 9, characterized in that at about 1300 to 1380 β C is sintered.
PCT/CH1993/000043 1992-03-09 1993-02-22 Process for manufacturing a sintered body made of high alloy steel powder WO1993018195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4207379.0 1992-03-09
DE19924207379 DE4207379A1 (en) 1992-03-09 1992-03-09 METHOD AND PRODUCTION OF A SINTERED COATER OF HIGH-ALLOY STEEL POWDER

Publications (1)

Publication Number Publication Date
WO1993018195A1 true WO1993018195A1 (en) 1993-09-16

Family

ID=6453557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1993/000043 WO1993018195A1 (en) 1992-03-09 1993-02-22 Process for manufacturing a sintered body made of high alloy steel powder

Country Status (3)

Country Link
CN (1) CN1076149A (en)
DE (1) DE4207379A1 (en)
WO (1) WO1993018195A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921205A1 (en) * 1997-12-05 1999-06-09 Daido Tokushuko Kabushiki Kaisha Corrosion resistant sintered body, sensor ring using same, and engagement part using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1086616C (en) * 1998-05-26 2002-06-26 北京科技大学 Apparatus for smelting-solidifying technology
CN1086615C (en) * 1998-05-26 2002-06-26 北京科技大学 Process for preparing metal-base particles reinforced composite material
AT411691B (en) * 2002-10-01 2004-04-26 Miba Sintermetall Ag METHOD FOR PRODUCING A SHAPED BODY FROM SINTER METAL
CN106238740B (en) * 2016-08-08 2018-02-02 长沙众聚达精密机械有限公司 Pure iron and low activity steel low-temperature reinforcement connection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014680A (en) * 1975-01-22 1977-03-29 Allegheny Ludlum Industries, Inc. Prealloyed stainless steel powder for liquid phase sintering
EP0181317A2 (en) * 1984-10-29 1986-05-14 Miba Sintermetall Aktiengesellschaft Process for manufacturing a porous filter body from metal powder
US4618473A (en) * 1985-06-14 1986-10-21 General Motors Corporation Iron powder article having improved toughness
FR2596067A1 (en) * 1986-03-19 1987-09-25 Metafram Alliages Fritte Process for the manufacture of articles made of sintered fast steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678510A (en) * 1985-12-24 1987-07-07 General Motors Corporation Wear resistant iron powder article
KR910002918B1 (en) * 1987-03-13 1991-05-10 미쯔비시마테리알 가부시기가이샤 Fe sintered alloy synchronizing ring for transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014680A (en) * 1975-01-22 1977-03-29 Allegheny Ludlum Industries, Inc. Prealloyed stainless steel powder for liquid phase sintering
EP0181317A2 (en) * 1984-10-29 1986-05-14 Miba Sintermetall Aktiengesellschaft Process for manufacturing a porous filter body from metal powder
US4618473A (en) * 1985-06-14 1986-10-21 General Motors Corporation Iron powder article having improved toughness
FR2596067A1 (en) * 1986-03-19 1987-09-25 Metafram Alliages Fritte Process for the manufacture of articles made of sintered fast steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921205A1 (en) * 1997-12-05 1999-06-09 Daido Tokushuko Kabushiki Kaisha Corrosion resistant sintered body, sensor ring using same, and engagement part using same
EP0921204A1 (en) * 1997-12-05 1999-06-09 Daido Tokushuko Kabushiki Kaisha Ferrite stainless steel powder for a sintered body
US6110252A (en) * 1997-12-05 2000-08-29 Daido Tokushuko Kabushiki Kaisha Powder for corrosion resistant sintered body having excellent ductility
US6149706A (en) * 1997-12-05 2000-11-21 Daido Tokushuko Kabushiki Kaisha Norrosion resistant sintered body having excellent ductility, sensor ring using the same, and engagement part using the same

Also Published As

Publication number Publication date
CN1076149A (en) 1993-09-15
DE4207379A1 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
DE3782064T2 (en) HIGH DENSITY SINKED IRON ALLOY.
DE60121242T2 (en) Molybdenum-copper composite powder and its production and processing into a pseudo alloy
DE3541398C2 (en) A method of manufacturing a sintered polycrystalline aluminum nitride ceramic body and polycrystalline aluminum nitride body
DE69908083T2 (en) DISPERSION HARDENING ALLOY AND METHOD FOR PRODUCING THE ALLOY
AT4737U1 (en) POWDER METALLURGICAL METHOD FOR PRODUCING HIGH-DENSITY MOLDED PARTS
EP0401374A1 (en) Method of obtaining composition material
DE3524276A1 (en) Aluminium alloy for producing ultrafine-grained powder having improved mechanical and microstructural properties
WO1993018195A1 (en) Process for manufacturing a sintered body made of high alloy steel powder
DE3781724T2 (en) METHOD FOR PRODUCING A NICKEL-TITANIUM ALLOY.
DE19711642A1 (en) Wear resistant steel matrix composite material production
DE102006005225B3 (en) Hard, strong, biocompatible titanium-based material, useful for producing medical implants, contains titanium carbide, boride and/or silicide in dispersoid form
DE1170651B (en) Process for the production of dispersion hardened metal bodies
DE2304731A1 (en) METHOD FOR MANUFACTURING SINTER CARBIDES AND THE PRODUCTS OBTAINED THEREOF
DE3308409C2 (en)
EP0464396B1 (en) Carbonitride alloys based on the transition metals (M, M*, M**) of groups 4 (M), 5 (M*) and 6 (M**) of the periodic table of elements, process for their production and an application for the carbonitride alloys
Igharo et al. Design of sintered high speed steel alloy powders for wear applications
DE69112214T2 (en) IRON BASE POWDER, MIXTURE THEREOF AND PRODUCTION OF THIS MIXTURE.
JPH0364402A (en) Method for controlling carbon content of metallic injection molding
DE532409C (en) Process for the production of iron alloys
DE1132735B (en) Process for the production of a heat-resistant material
US2657128A (en) Silicon-alloyed corrosion-resistant metal powders and related products and processes
DE2461736B2 (en) Sintered body and process and powder for its manufacture
DE19752505C1 (en) Method for producing a shaped component out of steel sinter powder
DE4013025C2 (en) Manufacture of boron nitride moldings
EP1409407A2 (en) Production of mg2 si and ternary compounds mg2 (si,e); (e=ge, sn, pb and transition metals; smaller than 10 wt.%) made of mgh2 and silicon and the production of magnesium silicide moulded bodies by pulse-plasma-synthesis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CZ JP PL RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA