JPH11265930A - Electrostatic chuck and its producing method - Google Patents

Electrostatic chuck and its producing method

Info

Publication number
JPH11265930A
JPH11265930A JP8245098A JP8245098A JPH11265930A JP H11265930 A JPH11265930 A JP H11265930A JP 8245098 A JP8245098 A JP 8245098A JP 8245098 A JP8245098 A JP 8245098A JP H11265930 A JPH11265930 A JP H11265930A
Authority
JP
Japan
Prior art keywords
ceramic
electrostatic chuck
metal
composite material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8245098A
Other languages
Japanese (ja)
Other versions
JP3888766B2 (en
Inventor
Hiromasa Shimojima
浩正 下嶋
Kazunari Naito
一成 内藤
Mutsuo Hayashi
睦夫 林
Heishiro Takahashi
平四郎 高橋
Takeshi Higuchi
毅 樋口
Tomikazu Koyama
富和 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SERANKUSU KK
Taiheiyo Cement Corp
Original Assignee
SERANKUSU KK
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SERANKUSU KK, Taiheiyo Cement Corp filed Critical SERANKUSU KK
Priority to JP8245098A priority Critical patent/JP3888766B2/en
Publication of JPH11265930A publication Critical patent/JPH11265930A/en
Application granted granted Critical
Publication of JP3888766B2 publication Critical patent/JP3888766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chuck improved in heat resistance by using a metal/ceramic compound material in place of metal. SOLUTION: Concerning the electrostatic chuck coating the surface of an electric conductor with an insulator, this electric conductor is the metal/ceramic composite material combining ceramics powder in the metal and the insulator is ceramics. Then, molding is performed by adding an inorganic binder to AlN, Al2 O3 or SiC powder having the average grain diameter of from 1 to 100 μm, a preform is formed by burning it and the electric conductor is prepared by permeating aluminium alloy containing at least one of Ti, Cr and Mn in 0.5 to 10 wt.% in that preform with no pressure at the temperature of from 700 to 1000 deg.C. After such a metal/ceramic composite material is prepared, a ceramic film is formed on the surface of that compound material by flame coating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、静電チャック及び
その製造方法に関し、特に金属−セラミックス複合材料
から成る静電チャック及びその製造方法に関する。
The present invention relates to an electrostatic chuck and a method of manufacturing the same, and more particularly, to an electrostatic chuck made of a metal-ceramic composite material and a method of manufacturing the same.

【0002】[0002]

【従来の技術】静電チャックは、半導体製造装置などの
部品として最近広く使われるようになった。その理由
は、機械的なチャッキングや真空チャックに比べ、発塵
が少ない、真空中でも使えるなどのメリットが認められ
てきたためと思われる。
2. Description of the Related Art Electrostatic chucks have recently been widely used as components for semiconductor manufacturing equipment and the like. The reason is considered to be that advantages such as less dust generation and use even in vacuum have been recognized as compared with mechanical chucking and vacuum chucks.

【0003】この静電チャックは、セラミックスなどで
作製された堅固なものも使われ始めているが、まだまだ
高価なため、アルミニウム合金などの金属表面にポリイ
ミド膜やAl23溶射膜などの絶縁膜を被覆しただけの
簡易なものが主流である。このような静電チャックは、
当然のことながら、耐久性に欠け、絶縁膜の頻繁な取り
替えを必要とするので、メンテナンスが面倒ではある
が、常温に近い比較的低温で用いるならば支障なく十分
使用できる。
As the electrostatic chuck, a rigid one made of ceramics or the like has begun to be used, but since it is still expensive, an insulating film such as a polyimide film or an Al 2 O 3 sprayed film is formed on a metal surface such as an aluminum alloy. The mainstream is a simple one that is simply coated. Such an electrostatic chuck is
Naturally, it lacks durability and requires frequent replacement of the insulating film, so that maintenance is troublesome, but it can be used satisfactorily if used at a relatively low temperature near normal temperature.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、最近の
傾向としてCVDなどの一部の装置には、より高温での
プロセッシングが求められ、それに伴って静電チャック
にも耐熱性が必要となってきており、上述した簡易な静
電チャックでは、この要求には全く不十分であった。そ
れは、アルミニウム合金は融点が低く、また剛性も低い
ため、例えば450℃以上の温度下で繰り返し使用する
と、僅かな繰り返し回数で変形を生じ、使用に耐えられ
なくなるからである。
However, as a recent trend, some devices such as CVD require processing at a higher temperature, and accordingly, the electrostatic chuck also needs to have heat resistance. Thus, the above-described simple electrostatic chuck was completely insufficient for this requirement. This is because the aluminum alloy has a low melting point and low rigidity, so if it is repeatedly used at a temperature of, for example, 450 ° C. or more, it will be deformed by a small number of repetitions and cannot be used.

【0005】本発明は、上述した静電チャックが有する
課題に鑑みなされたものであって、その目的は、耐熱性
に優れる静電チャックを提供し、その製造方法も提供す
ることにある。
The present invention has been made in view of the above-mentioned problems of the electrostatic chuck, and an object of the present invention is to provide an electrostatic chuck having excellent heat resistance and to provide a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、金属に代えて金属−
セラミックス複合材料を用いれば、耐熱性に優れた静電
チャックが得られるとの知見を得て本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have found that metal-
The inventors have found that the use of a ceramic composite material can provide an electrostatic chuck having excellent heat resistance, and completed the present invention.

【0007】即ち本発明は、(1)電導体表面に絶縁体
が被覆された静電チャックにおいて、該電導体が、金属
にセラミックス粉末を複合させた金属−セラミックス複
合材料であり、該絶縁体が、セラミックスであることを
特徴とする静電チャック(請求項1)とし、また、
(2)電導体中のセラミックス粉末が、1〜100μm
の平均粒径を有するAlN、Al23またはSiC粉末
であり、電導体中の金属が、Ti、Cr、Mnの少なく
とも1種を0.5〜10重量%含むアルミニウム合金で
あり、絶縁体が、10〜100μmの厚さを有するセラ
ミックス溶射膜であることを特徴とする請求項1記載の
静電チャック(請求項2)とし、さらに、(3)1〜1
00μmの平均粒径を有するAlN、Al23またはS
iC粉末に、無機バインダーを加えて成形し、それを焼
成してプリフォームを形成し、そのプリフォームにT
i、Cr、Mnの少なくとも1種を0.5〜10重量%
含むアルミニウム合金を700〜1000℃の温度で非
加圧で浸透させることにより電導体となる金属−セラミ
ックス複合材料を作製した後、その複合材料表面に溶射
によりセラミックス膜を形成することを特徴とする静電
チャックの製造方法(請求項3)とし、さらにまた、
(4)1〜100μmの平均粒径を有するAlN、Al
23またはSiC粉末を型枠に充填し、その充填粉末に
Ti、Cr、Mnの少なくとも1種を0.5〜10重量
%含むアルミニウム合金を700〜1000℃の温度で
非加圧で浸透させることにより電導体となる金属−セラ
ミックス複合材料を作製した後、その複合材料表面に溶
射によりセラミックス膜を形成することを特徴とする静
電チャックの製造方法(請求項4)とすることを要旨と
する。以下さらに詳細に説明する。
That is, the present invention provides (1) an electrostatic chuck in which an insulator is coated on the surface of an electric conductor, wherein the electric conductor is a metal-ceramic composite material obtained by compounding a ceramic powder with a metal; Is an electrostatic chuck characterized by being a ceramic (Claim 1);
(2) The ceramic powder in the conductor is 1 to 100 μm
AlN, Al 2 O 3, or SiC powder having an average particle diameter of 0.5 to 10% by weight, and the metal in the conductor is an aluminum alloy containing at least one of Ti, Cr, and Mn in an amount of 0.5 to 10% by weight. Is a ceramic sprayed film having a thickness of 10 to 100 [mu] m, wherein the electrostatic chuck according to claim 1 (claim 2) is further provided.
AlN, Al 2 O 3 or S having an average particle size of 00 μm
An inorganic binder is added to the iC powder, and the mixture is molded and fired to form a preform.
0.5 to 10% by weight of at least one of i, Cr and Mn
A metal-ceramic composite material to be a conductor is produced by infiltrating an aluminum alloy containing the alloy at a temperature of 700 to 1000 ° C. without applying pressure, and then a ceramic film is formed on the surface of the composite material by thermal spraying. A method for manufacturing an electrostatic chuck (Claim 3).
(4) AlN, Al having an average particle size of 1 to 100 μm
A mold is filled with 2 O 3 or SiC powder, and an aluminum alloy containing 0.5 to 10% by weight of at least one of Ti, Cr and Mn is infiltrated at 700 to 1000 ° C. without pressure in the filled powder. A method for producing an electrostatic chuck, characterized in that after forming a metal-ceramic composite material to be an electric conductor by forming the composite material, a ceramic film is formed on the surface of the composite material by thermal spraying. And This will be described in more detail below.

【0008】上記静電チャックの電導体としては、金属
にセラミックス粉末を複合させた金属−セラミックス複
合材料とし、絶縁体としては、セラミックスとする静電
チャックとした(請求項1)。金属とセラミックス粉末
の複合材料を電導体としたのは、その複合材料が金属に
近い電導性を有していることは勿論のこと、金属に比べ
はるかに耐熱性に優れ、しかも高温でも剛性が高く、耐
クリープ性も良いことにある。
The electric conductor of the electrostatic chuck is a metal-ceramic composite material in which metal is combined with ceramic powder, and the insulator is an electrostatic chuck made of ceramic. The reason why the composite material of metal and ceramic powder is used as the conductor is not only that the composite material has conductivity close to that of metal, but also has much higher heat resistance than metal, and has high rigidity even at high temperatures. It is high and has good creep resistance.

【0009】さらに、熱膨張率が低いことも大きな一因
となっている。それは、アルミニウム合金は熱膨張率が
極めて大きい金属として知られているが、これにセラミ
ックス粉末を複合化すると、その量に応じて熱膨張率を
小さくすることができ、それに伴って絶縁体であるセラ
ミックスとの熱膨張率差を小さくすることができ、その
結果、温度の変動に伴って発生する絶縁体内の熱応力を
より低く抑えることができ、急激な熱衝撃にも耐えるこ
とができるようになることである。さらに、熱膨張率が
小さいことにより静電チャックの面積をより広くするこ
とも可能となり、特に半導体製造装置においては、今後
予想されるシリコンウェハの大径化にも十分対応できる
静電チャックとすることができる。
Further, the low coefficient of thermal expansion is also a major factor. It is known that aluminum alloy is a metal with a very high coefficient of thermal expansion, but when it is combined with ceramic powder, the coefficient of thermal expansion can be reduced according to the amount, and accordingly it is an insulator. The difference in the coefficient of thermal expansion from ceramics can be reduced, and as a result, the thermal stress in the insulator that occurs with temperature fluctuations can be kept lower, and it can withstand sudden thermal shock. It is becoming. Further, since the coefficient of thermal expansion is small, the area of the electrostatic chuck can be further increased. In particular, in the case of a semiconductor manufacturing apparatus, an electrostatic chuck that can sufficiently cope with an increase in the diameter of a silicon wafer expected in the future. be able to.

【0010】その複合材料中のセラミックス粉末として
は、1〜100μmの平均粒径を有するAlN、Al2
3またはSiC粉末とし、金属としては、Ti、C
r、Mnの少なくとも1種を0.5〜10重量%含むア
ルミニウム合金とし、複合材料を被覆する絶縁体として
は、10〜100μmの厚さを有するセラミックス溶射
膜とした(請求項2)。
The ceramic powder in the composite material includes AlN, Al 2 having an average particle size of 1 to 100 μm.
O 3 or SiC powder, and metals such as Ti and C
An aluminum alloy containing 0.5 to 10% by weight of at least one of r and Mn was used, and a ceramic sprayed film having a thickness of 10 to 100 μm was used as an insulator covering the composite material.

【0011】セラミックス粉末をAlN、Al23また
はSiC粉末としたのは、これら粉末が金属に浸透され
易いことによる。それら粉末の細かさとしては、平均粒
径で1〜100μmが好ましく、1μmより細かいと金
属の浸透が難しくなり、100μmより粗いと複合材料
の表面が平滑になり難い。
The reason why the ceramic powder is AlN, Al 2 O 3 or SiC powder is that these powders easily penetrate into the metal. The fineness of these powders is preferably 1 to 100 μm in average particle size, and if it is finer than 1 μm, penetration of metal is difficult, and if it is coarser than 100 μm, the surface of the composite material is hard to be smooth.

【0012】また、金属をTi、Cr、Mnを含むアル
ミニウム合金としたのは、アルミニウム合金の耐熱性を
上げることができることによる。それは、例えば、T
i、Cr、Mnを含まない純AlないしはAl−Mg系
の合金であるとその耐熱性は600℃程度に過ぎない
が、Ti、Cr、Mnを1種以上含むと650℃以上に
向上する。その含む量としては、0.5〜10重量%が
好ましく、0.5重量より少ないと耐熱性向上の効果が
少なく、10重量%より多いと未含浸等の浸透不良を起
こす。
The reason why the metal is an aluminum alloy containing Ti, Cr and Mn is that the heat resistance of the aluminum alloy can be improved. It is, for example, T
The heat resistance of pure Al or Al-Mg based alloy containing no i, Cr and Mn is only about 600 ° C., but is improved to 650 ° C. or more when one or more kinds of Ti, Cr and Mn are contained. The content thereof is preferably 0.5 to 10% by weight, and if it is less than 0.5%, the effect of improving heat resistance is small, and if it is more than 10% by weight, poor penetration such as non-impregnation occurs.

【0013】さらに、絶縁体をセラミックス溶射膜とし
たのは、このセラミックス溶射膜が優れた耐熱性を有
し、しかも複合材料の表面に容易に形成できることによ
る。その厚さとしては、10〜100μmが好ましく、
10μmより薄いと耐電圧が低くなり絶縁破壊が起こり
易く、100μmより厚いと複合材料との熱膨張率差が
顕著になり、熱衝撃による亀裂/破損が生じ易く、しか
も吸着力も低下する。
Further, the reason why the insulator is a ceramic sprayed film is that the ceramic sprayed film has excellent heat resistance and can be easily formed on the surface of the composite material. The thickness is preferably 10 to 100 μm,
If the thickness is less than 10 μm, the withstand voltage is reduced and dielectric breakdown is likely to occur. If the thickness is more than 100 μm, the difference in thermal expansion coefficient from the composite material becomes significant, and cracks / breakage due to thermal shock is likely to occur, and the attraction force is also reduced.

【0014】上記静電チャックを製造する方法として
は、1〜100μmの平均粒径を有するAlN、Al2
3またはSiC粉末に、無機バインダーを加えて成形
し、それを焼成してプリフォームを形成し、そのプリフ
ォームにTi、Cr、Mnの少なくとも1種を0.5〜
10重量%含むアルミニウム合金を700〜1000℃
の温度で非加圧で浸透させることにより電導体となる金
属−セラミックス複合材料を作製した後、その複合材料
表面に溶射によりセラミックス膜を形成することとする
製造方法とした(請求項3)。
As a method of manufacturing the electrostatic chuck, AlN, Al 2 having an average particle size of 1 to 100 μm is used.
The O 3 or SiC powder, molded by adding an inorganic binder, and firing it to form a preform, 0.5 to Ti, Cr, at least one of Mn in the preform
700-1000 ° C of aluminum alloy containing 10% by weight
After producing a metal-ceramic composite material to be an electric conductor by infiltrating at a temperature of non-pressurized at a non-pressurized temperature, a ceramic film is formed by thermal spraying on the surface of the composite material.

【0015】この方法は、電導体となる複合材料を、プ
リフォームを形成し、そのプリフォームにアルミニウム
合金を浸透させることにより作製する方法で、複合材料
中のセラミックス粉末の充填率が50vol%以上と高
い場合に適している。そして、この方法で作製された複
合材料の表面に溶射によってセラミックス膜を形成する
ことにより静電チャックが作製される。
According to this method, a composite material to be an electric conductor is produced by forming a preform and infiltrating an aluminum alloy into the preform. The filling rate of ceramic powder in the composite material is 50 vol% or more. Suitable for high cases. Then, a ceramic film is formed on the surface of the composite material produced by this method by thermal spraying, thereby producing an electrostatic chuck.

【0016】一方、上記以外の他の製造方法としては、
1〜100μmの平均粒径を有するAlN、Al23
たはSiC粉末を型枠に充填し、その充填粉末にTi、
Cr、Mnの少なくとも1種を0.5〜10重量%含む
アルミニウム合金を700〜1000℃の温度で非加圧
で浸透させることにより電導体となる金属−セラミック
ス複合材料を作製した後、その複合材料表面に溶射によ
りセラミックス膜を形成することとする製造方法とした
(請求項4)。
On the other hand, as another manufacturing method other than the above,
A mold is filled with AlN, Al 2 O 3 or SiC powder having an average particle diameter of 1 to 100 μm, and Ti,
A metal-ceramic composite material serving as an electric conductor is produced by infiltrating an aluminum alloy containing at least one of Cr and Mn at 0.5 to 10% by weight at a temperature of 700 to 1000 ° C. without applying pressure, and then forming the composite. According to a fourth aspect of the present invention, a ceramic film is formed on a material surface by thermal spraying.

【0017】この方法は、電導体となる複合材料を、型
枠に充填したセラミックス粉末にアルミニウム合金を浸
透させることにより作製する方法で、複合材料中のセラ
ミックス粉末の充填率が50vol%以下と低い場合に
適している。そして、前記したと同様この方法で作製さ
れた複合材料の表面に溶射によってセラミックス膜を形
成することにより静電チャックが作製される。
According to this method, a composite material to be an electric conductor is produced by infiltrating an aluminum alloy into ceramic powder filled in a mold, and the filling rate of the ceramic powder in the composite material is as low as 50 vol% or less. Suitable for the case. Then, a ceramic film is formed by spraying on the surface of the composite material manufactured by this method in the same manner as described above, thereby manufacturing an electrostatic chuck.

【0018】[0018]

【発明の実施の形態】本発明の製造方法をさらに詳しく
述べると、先ず強化材として1〜100μmの平均粒径
を有するAlN、Al23またはSiC粉末を用意す
る。プリフォームを形成する場合には、これら粉末に無
機バインダーを、必要があれば有機バインダーを加えて
混合する。混合方法は均一に混合できればどんな方法で
も構わない。
DETAILED DESCRIPTION OF THE INVENTION The production method of the present invention will be described in more detail. First, AlN, Al 2 O 3 or SiC powder having an average particle size of 1 to 100 μm is prepared as a reinforcing material. When forming a preform, an inorganic binder is added to these powders, and if necessary, an organic binder is added and mixed. Any mixing method may be used as long as it can be uniformly mixed.

【0019】得られた混合物を成形する。成形方法は、
沈降成形、射出成形、CIP成形などがあるが、いずれ
の方法でも構わない。要は非加圧で金属を浸透するのに
プリフォームの形態を保つことができ、かつ浸透を阻害
しない方法であれば何でもよい。その一例として沈降成
形について述べると、例えば、上述のセラミックス粉末
にコロイダルシリカ液などの無機バインダーを所定量添
加し、それにイオン交換水を加え、その他必要に応じて
消泡剤などを若干加えてポットミルで混合する。得られ
たスラリーを円板状の成形体が得られる型に振動しなが
ら鋳込む。鋳込んだ後粒子が沈降する間はなるべく振動
を加え充填をよくする。それを冷凍して脱型し、成形体
を得る。
The resulting mixture is shaped. The molding method is
There are sedimentation molding, injection molding, CIP molding and the like, but any method may be used. In short, any method can be used as long as it can maintain the form of the preform to penetrate the metal under no pressure and does not hinder the penetration. As an example, the sedimentation molding will be described. For example, a pot mill is prepared by adding a predetermined amount of an inorganic binder such as a colloidal silica liquid to the above-mentioned ceramic powder, adding ion-exchanged water thereto, and adding a slight amount of an antifoaming agent as necessary. Mix with. The obtained slurry is cast into a mold in which a disk-shaped molded body is obtained while vibrating. During the settling of the particles after casting, vibration is applied as much as possible to improve the filling. It is frozen and demolded to obtain a molded body.

【0020】得られた成形体を所定温度で焼成してプリ
フォームを形成する。形成したプリフォームにTi、C
r、Mnの少なくとも1種を0.5〜10重量%含むア
ルミニウム合金を700〜1000℃の温度で非加圧で
浸透させることにより電導体となる金属−セラミックス
複合材料を作製する。Ti、Cr、Mnについては、そ
れら元素の違いで浸透速度が変化することもあるので、
浸透させる温度及び時間は多少調整する必要がある。
The obtained molded body is fired at a predetermined temperature to form a preform. Ti, C on the formed preform
An aluminum alloy containing at least one of r and Mn in an amount of 0.5 to 10% by weight is infiltrated at 700 to 1000 ° C. in a non-pressurized state to produce a metal-ceramic composite material serving as an electric conductor. For Ti, Cr, and Mn, the penetration rate may change due to the difference between these elements.
The temperature and time for infiltration need to be adjusted slightly.

【0021】なお、強化材がSiC粉末の場合、SiC
粉末にアルミニウム合金が浸透すると、AlとSiCと
が反応して炭化アルミニウム(Al43)を生成し、こ
のAl43が常温で空気中の水分と容易に反応して水酸
化アルミニウムとなり、これが金属中に不純物として存
在し、欠陥となるので、あらかじめ合金中にSiを含ま
せておく必要がある。このSiは、耐熱性を著しく劣化
させるため、強化材がSiCでない場合には含ませない
が、SiCの場合には前記した理由で含ませる必要があ
り、耐熱性が500℃程度と低くなる。しかし、この場
合にもTi、Cr、Mnの少なくとも1種を含ませるこ
とにより550℃以上に向上させることができる。
When the reinforcing material is SiC powder, SiC powder is used.
When the aluminum alloy penetrates into the powder, Al and SiC react with each other to produce aluminum carbide (Al 4 C 3 ), and this Al 4 C 3 easily reacts with moisture in the air at room temperature to form aluminum hydroxide. Since this exists as an impurity in the metal and becomes a defect, it is necessary to include Si in the alloy in advance. Since Si significantly deteriorates heat resistance, it is not included when the reinforcing material is not SiC, but must be included for SiC when it is SiC, and the heat resistance is reduced to about 500 ° C. However, also in this case, the temperature can be increased to 550 ° C. or more by including at least one of Ti, Cr, and Mn.

【0022】得られた複合材料の表面を必要な面粗さ、
平面度になるよう研削加工し、その上面に溶射で10〜
100μmの厚さのセラミックス膜を形成して静電チャ
ックを作製する。セラミックス膜の種類は最も一般的な
のは、アルミナであるが、これに限定されるものではな
く、必要な特性、例えば、高い誘電率が必要であれば、
必要な誘電率の大きさに応じてセラミックスの種類を適
宜選べばよい。
The surface of the obtained composite material has a required surface roughness,
Grind to a flatness and spray on the upper surface
A ceramic film having a thickness of 100 μm is formed to manufacture an electrostatic chuck. The most common type of ceramic film is alumina, but it is not limited to this. If required characteristics, for example, a high dielectric constant is required,
The type of ceramic may be appropriately selected depending on the required dielectric constant.

【0023】以上の方法で静電チャックを作製すれば、
耐熱性に優れた静電チャックが得られる。
If the electrostatic chuck is manufactured by the above method,
An electrostatic chuck having excellent heat resistance can be obtained.

【0024】[0024]

【実施例】以下、本発明の実施例を具体的に挙げ、本発
明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail by giving specific examples of the present invention.

【0025】(実施例1) (1)静電チャックの作製 強化材として16μmの平均粒径を有するシリカコーテ
ィングしたAlN粉末(ダウケミカル社製)を用い、そ
れにバインダーとしてコロイダルシリカ液をそのシリカ
固形分がAlN粉末100重量部に対し2重量となる量
を添加し、さらにイオン交換水を30重量部加え、ポッ
トミルで16時間混合した。得られたスラリーをφ22
0×厚さ25mmの円板状の成形体が得られるシリコー
ンゴム型に流し込んで沈降成形を行い、−30℃に冷却
して冷凍品を得た。得られた冷凍品を600℃で5時間
焼成してプリフォームを形成した。
Example 1 (1) Preparation of Electrostatic Chuck A silica-coated AlN powder (manufactured by Dow Chemical Company) having an average particle diameter of 16 μm was used as a reinforcing material, and a colloidal silica liquid was used as a binder and the silica solid was used. Then, an amount of 2 parts by weight per 100 parts by weight of AlN powder was added, and 30 parts by weight of ion-exchanged water was further added, followed by mixing with a pot mill for 16 hours. The obtained slurry is φ22
It was poured into a silicone rubber mold from which a disk-shaped molded product having a thickness of 0 x 25 mm was obtained, subjected to sedimentation molding, and cooled to -30 ° C to obtain a frozen product. The obtained frozen product was fired at 600 ° C. for 5 hours to form a preform.

【0026】形成したプリフォームとAl−5Ti組成
のアルミニウム合金とを組み合わせ、その合金を窒素気
流中で850℃の温度で60時間非加圧浸透させた後、
冷却して金属−セラミックス複合材料を作製した。得ら
れた複合材料の表面を表面粗さがRmaxで6.3μm
以下になるまで#80のダイアモンド砥石で研削した
後、その上面にプラズマ溶射でAl23膜を20μmの
厚さに形成して静電チャックを作製した。
The formed preform is combined with an aluminum alloy having an Al-5Ti composition, and the alloy is subjected to non-pressure infiltration at 850 ° C. for 60 hours in a nitrogen gas stream.
After cooling, a metal-ceramic composite material was produced. The surface of the obtained composite material has a surface roughness Rmax of 6.3 μm.
After grinding with a # 80 diamond grindstone until the thickness became below, an Al 2 O 3 film was formed on the upper surface by plasma spraying to a thickness of 20 μm to produce an electrostatic chuck.

【0027】(2)評価 得られた静電チャックを電気炉に入れ、大気中650℃
の温度で2時間保持し、冷却して取り出し目視観察し
た。その結果、変形は全く無かった。このことは、本発
明の静電チャックが650℃以上の耐熱性を有している
ことを示している。
(2) Evaluation The obtained electrostatic chuck was placed in an electric furnace, and was placed in the atmosphere at 650 ° C.
, And then cooled and taken out for visual observation. As a result, there was no deformation. This indicates that the electrostatic chuck of the present invention has heat resistance of 650 ° C. or higher.

【0028】(実施例2) (1)静電チャックの作製 強化材として#180(平均粒径66μm)の市販Si
C粉末70重量部と#800(平均粒径14μm)の市
販SiC粉末30重量部を用い、それにバインダーとし
てコロイダルシリカ液をそのシリカ固形分がSiC粉末
100重量部に対し2重量部となる量を添加し、それに
消泡剤としてフォーマスタVL(サンノブコ社製)を
0.2重量部、イオン交換水を24重量部加え、ポット
ミルで12時間混合した。得られたスラリーをφ350
×厚さ25mmの円板状の成形体が得られるシリコーン
ゴム型に流し込んで沈降成形を行い、−30℃に冷却し
て冷凍品を得た。得られた冷凍品を1050℃で3時間
焼成してプリフォームを形成した。
Example 2 (1) Production of Electrostatic Chuck Commercially available Si of # 180 (average particle size 66 μm) as a reinforcing material
Using 70 parts by weight of C powder and 30 parts by weight of commercially available SiC powder of # 800 (average particle size: 14 μm), a colloidal silica liquid was used as a binder in such an amount that the silica solid content was 2 parts by weight based on 100 parts by weight of SiC powder. Then, 0.2 parts by weight of FORMASTER VL (manufactured by Sannobuco) and 24 parts by weight of ion-exchanged water were added to the mixture as an antifoaming agent, followed by mixing in a pot mill for 12 hours. The obtained slurry is φ350
× Discs were cast into a silicone rubber mold having a thickness of 25 mm to obtain a molded product, subjected to sedimentation molding, and cooled to −30 ° C. to obtain a frozen product. The obtained frozen product was fired at 1050 ° C. for 3 hours to form a preform.

【0029】形成したプリフォームとAl−12Si−
3Mg−2Cu−3Ti組成のアルミニウム合金を組み
合わせ、その合金を窒素気流中で825℃の温度で60
時間非加圧浸透させた後、冷却して金属−セラミックス
複合材料を作製した。得られた複合材料の表面を表面粗
さがRmaxで6.3μm以下になるまでダイアモンド
砥石で研削した後、その上面にプラズマ溶射でAl23
膜を30μmの厚さに形成して静電チャックを作製し
た。
The formed preform and Al-12Si-
An aluminum alloy having a composition of 3Mg-2Cu-3Ti is combined, and the alloy is heated to 825 ° C in a nitrogen stream at a temperature of 825 ° C.
After non-pressurized infiltration for a time, cooling was performed to produce a metal-ceramic composite material. After grinding the surface of the obtained composite material with a diamond grindstone until the surface roughness becomes 6.3 μm or less in Rmax, Al 2 O 3 is formed on the upper surface by plasma spraying.
The film was formed to a thickness of 30 μm to produce an electrostatic chuck.

【0030】(2)評価 得られた静電チャックを電気炉に入れ、大気中550℃
の温度で2時間保持し、冷却して取り出し目視観察し
た。その結果、変形は全く無かった。このことは、本発
明の静電チャックが550℃以上の耐熱性を有している
ことを示している。
(2) Evaluation The obtained electrostatic chuck was placed in an electric furnace, and was placed in the air at 550 ° C.
, And then cooled and taken out for visual observation. As a result, there was no deformation. This indicates that the electrostatic chuck of the present invention has a heat resistance of 550 ° C. or higher.

【0031】[0031]

【発明の効果】以上の通り、本発明にかかる方法で静電
チャックを製造すれば、耐熱性に優れた静電チャックを
得ることができるようになった。このことにより、軽
量、高剛性を維持しつつ、550〜650℃の耐熱性を
有する材料はセラミックス以外にはないことから、より
幅広い適用が可能となった。特に半導体製造装置の分野
では、今後予想されるシリコンウェハの大径化に適応で
きるものとして多いに期待できる。
As described above, when an electrostatic chuck is manufactured by the method according to the present invention, an electrostatic chuck having excellent heat resistance can be obtained. As a result, there is no material other than ceramics having heat resistance of 550 to 650 ° C. while maintaining light weight and high rigidity, so that a wider application is possible. In particular, in the field of semiconductor manufacturing equipment, it can be expected that it can be adapted to a large-diameter silicon wafer expected in the future.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 平四郎 千葉県松戸市松戸新田314−1 (72)発明者 樋口 毅 東京都東久留米市氷川台1−3−9 (72)発明者 小山 富和 東京都北区浮間1−3−1−805 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Heishiro Takahashi 314-1 Matsudo Nitta, Matsudo-shi, Chiba (72) Inventor Takeshi Higuchi 1-3-9 Hikawadai, Higashi-Kurume-shi, Tokyo (72) Inventor Tomi Koyama Wa 1-3-1 805, Ukima, Kita-ku, Tokyo

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電導体表面に絶縁体が被覆された静電チ
ャックにおいて、該電導体が、金属にセラミックス粉末
を複合させた金属−セラミックス複合材料であり、該絶
縁体が、セラミックスであることを特徴とする静電チャ
ック。
1. An electrostatic chuck having a conductor surface coated with an insulator, wherein the conductor is a metal-ceramic composite material obtained by combining a metal with ceramic powder, and the insulator is ceramic. An electrostatic chuck characterized by the above-mentioned.
【請求項2】 電導体中のセラミックス粉末が、1〜1
00μmの平均粒径を有するAlN、Al23またはS
iC粉末であり、電導体中の金属が、Ti、Cr、Mn
の少なくとも1種を0.5〜10重量%含むアルミニウ
ム合金であり、絶縁体が、10〜100μmの厚さを有
するセラミックス溶射膜であることを特徴とする請求項
1記載の静電チャック。
2. The method according to claim 1, wherein the ceramic powder in the conductor is 1 to 1%.
AlN, Al 2 O 3 or S having an average particle size of 00 μm
iC powder, and the metal in the conductor is Ti, Cr, Mn.
2. The electrostatic chuck according to claim 1, wherein the insulator is an aluminum alloy containing at least one of 0.5 to 10% by weight, and the insulator is a ceramic sprayed film having a thickness of 10 to 100 [mu] m.
【請求項3】 1〜100μmの平均粒径を有するAl
N、Al23またはSiC粉末に、無機バインダーを加
えて成形し、それを焼成してプリフォームを形成し、そ
のプリフォームにTi、Cr、Mnの少なくとも1種を
0.5〜10重量%含むアルミニウム合金を700〜1
000℃の温度で非加圧で浸透させることにより電導体
となる金属−セラミックス複合材料を作製した後、その
複合材料表面に溶射によりセラミックス膜を形成するこ
とを特徴とする静電チャックの製造方法。
3. Al having an average particle size of 1 to 100 μm.
An inorganic binder is added to N, Al 2 O 3, or SiC powder, molded and fired to form a preform, and at least one of Ti, Cr, and Mn is added to the preform in an amount of 0.5 to 10% by weight. % Of aluminum alloy containing 700-1%
A method for manufacturing an electrostatic chuck, comprising: preparing a metal-ceramic composite material to be an electric conductor by infiltrating at a temperature of 000 ° C. under non-pressure, and then forming a ceramic film on the surface of the composite material by thermal spraying. .
【請求項4】 1〜100μmの平均粒径を有するAl
N、Al23またはSiC粉末を型枠に充填し、その充
填粉末にTi、Cr、Mnの少なくとも1種を0.5〜
10重量%含むアルミニウム合金を700〜1000℃
の温度で非加圧で浸透させることにより電導体となる金
属−セラミックス複合材料を作製した後、その複合材料
表面に溶射によりセラミックス膜を形成することを特徴
とする静電チャックの製造方法。
4. Al having an average particle size of 1 to 100 μm
A mold is filled with N, Al 2 O 3 or SiC powder, and at least one of Ti, Cr, and Mn is added to the filled powder in an amount of 0.5 to
700-1000 ° C of aluminum alloy containing 10% by weight
A method for producing an electrostatic chuck, comprising: preparing a metal-ceramic composite material that becomes an electric conductor by infiltrating under pressure at a non-pressurized temperature, and then forming a ceramic film by thermal spraying on the surface of the composite material.
JP8245098A 1998-03-16 1998-03-16 Electrostatic chuck and manufacturing method thereof Expired - Fee Related JP3888766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8245098A JP3888766B2 (en) 1998-03-16 1998-03-16 Electrostatic chuck and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8245098A JP3888766B2 (en) 1998-03-16 1998-03-16 Electrostatic chuck and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11265930A true JPH11265930A (en) 1999-09-28
JP3888766B2 JP3888766B2 (en) 2007-03-07

Family

ID=13774864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8245098A Expired - Fee Related JP3888766B2 (en) 1998-03-16 1998-03-16 Electrostatic chuck and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3888766B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064428A (en) * 2001-08-27 2003-03-05 Taiheiyo Cement Corp Ceramics/metal composite member
JP2006332204A (en) * 2005-05-24 2006-12-07 Toto Ltd Electrostatic chuck
US7312974B2 (en) 2003-05-26 2007-12-25 Kyocera Corporation Electrostatic chuck
US7672111B2 (en) 2006-09-22 2010-03-02 Toto Ltd. Electrostatic chuck and method for manufacturing same
WO2012014873A1 (en) * 2010-07-26 2012-02-02 京セラ株式会社 Electrostatic chuck

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064428A (en) * 2001-08-27 2003-03-05 Taiheiyo Cement Corp Ceramics/metal composite member
US7312974B2 (en) 2003-05-26 2007-12-25 Kyocera Corporation Electrostatic chuck
JP2006332204A (en) * 2005-05-24 2006-12-07 Toto Ltd Electrostatic chuck
US7468880B2 (en) 2005-05-24 2008-12-23 Toto Ltd. Electrostatic chuck
KR100968019B1 (en) * 2005-05-24 2010-07-07 토토 가부시키가이샤 An electrostatic chuck
US7760484B2 (en) 2005-05-24 2010-07-20 Toto Ltd. Electrostatic chuck
US7672111B2 (en) 2006-09-22 2010-03-02 Toto Ltd. Electrostatic chuck and method for manufacturing same
WO2012014873A1 (en) * 2010-07-26 2012-02-02 京セラ株式会社 Electrostatic chuck
KR20130091630A (en) * 2010-07-26 2013-08-19 쿄세라 코포레이션 Electrostatic chuck
JP5409917B2 (en) * 2010-07-26 2014-02-05 京セラ株式会社 Electrostatic chuck
US8810992B2 (en) 2010-07-26 2014-08-19 Kyocera Corporation Electrostatic chuck

Also Published As

Publication number Publication date
JP3888766B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
EP1954856B1 (en) Crucible for the crystallization of silicon and process for making the same
EP0647601B1 (en) Ceramic composite material
US8664135B2 (en) Crucible body and method of forming same
CN106588021A (en) Silicon carbide ceramic and preparation method thereof
CN102884024B (en) For the crucible in photovoltaic field
CN111902383B (en) Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
KR102124766B1 (en) Plasma processing apparatus and manufacturing method of the same
JP3888766B2 (en) Electrostatic chuck and manufacturing method thereof
US10157731B2 (en) Semiconductor processing apparatus with protective coating including amorphous phase
KR102234171B1 (en) Manufacturing method of low-resistance silicon carbide composite
KR102737267B1 (en) Composite sintered body and method of manufacturing composite sintered body
JP2000128625A (en) Alumina ceramic sintered body and method for producing the same
RU2010783C1 (en) Charge for producing ceramic materials
JP4167318B2 (en) Method for producing metal-ceramic composite material
JPH1171177A (en) Recrystallized silicon carbide sintered compact with both high electrical resistance and thermal conductivity and its production
CN104163628A (en) method for preparing HfC-SiC multiphase ceramic
JP4243437B2 (en) Method for producing metal-ceramic composite material having a pore-less surface
JP4155940B2 (en) Manufacturing method of ceramic composite material
JPH10298685A (en) Electrode parts for semiconductor producing device
JPS6251913B2 (en)
JP2002289677A (en) Electrostatic chuck
JP2002134598A (en) Electrostatic chuck
JP2001130983A (en) Silicon nitride sintered body
JP3318471B2 (en) Window material for high frequency introduction
JP2002141402A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061128

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees