JPH075379B2 - Method for manufacturing refractory for molten steel - Google Patents

Method for manufacturing refractory for molten steel

Info

Publication number
JPH075379B2
JPH075379B2 JP63071635A JP7163588A JPH075379B2 JP H075379 B2 JPH075379 B2 JP H075379B2 JP 63071635 A JP63071635 A JP 63071635A JP 7163588 A JP7163588 A JP 7163588A JP H075379 B2 JPH075379 B2 JP H075379B2
Authority
JP
Japan
Prior art keywords
powder
molten steel
weight
parts
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63071635A
Other languages
Japanese (ja)
Other versions
JPH01246178A (en
Inventor
一郎 那須
洋 原田
洋 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP63071635A priority Critical patent/JPH075379B2/en
Publication of JPH01246178A publication Critical patent/JPH01246178A/en
Publication of JPH075379B2 publication Critical patent/JPH075379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶鋼用耐火物の製造方法に関し、さらに詳し
くは、連続鋳造用ブレークリング又はノズルとして使用
するのに特に望ましい耐溶損性と耐熱衝撃性を有する溶
鋼用耐火物の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a refractory material for molten steel, and more particularly, a melt loss resistance and heat resistance particularly desirable for use as a break ring or nozzle for continuous casting. The present invention relates to a method for manufacturing a refractory material for molten steel having impact properties.

〔従来の技術〕[Conventional technology]

従来、鉄鋼業関連で用いられる溶鋼用耐火物、例えば水
平連鋳用ブレークリングやノズルには窒化ホウ素(BN)
焼結体や窒化ケイ素(Si3N4)焼結体が用いられてき
た。しかしながら、前者は耐熱衝撃性に優れるが耐摩耗
性に劣り、一方、後者は耐摩耗性に優れるが耐熱衝撃性
に劣るという欠点があつた。
Conventionally, refractory for molten steel used in the steel industry, for example, boron nitride (BN) for break rings and nozzles for horizontal continuous casting
Sintered bodies and silicon nitride (Si 3 N 4 ) sintered bodies have been used. However, the former has a drawback that it is excellent in thermal shock resistance but inferior in abrasion resistance, while the latter is excellent in abrasion resistance but inferior in thermal shock resistance.

このため、BNとSi3N4を複合化させて両者の欠点をおぎ
なう努力がなされている。しかし、Si3N4には、溶鋼に
浸漬されると溶鋼あるいは溶鋼中に含まれる不純物成分
と化学的に反応し溶損するという溶鋼用耐火物にとつて
根本的な欠点がある。
For this reason, efforts are being made to combine BN and Si 3 N 4 to fill the shortcomings of both. However, Si 3 N 4 has a fundamental defect in the refractory for molten steel that when it is immersed in molten steel, it chemically reacts with the molten steel or the impurity components contained in the molten steel to cause melting loss.

そこで最近になつて、溶鋼に対し化学的に安定な窒化ア
ルミニウム(AlN)や酸化アルミニウム(Al2O3)をさら
に複合化し耐溶損性を改良した耐火物が提案されている
(例えば、特開昭56−129666号公報、特開昭60−51669
号公報)。しかしながら、これらの耐火物においてもSi
3N4を10重量%以上含んでいるため、耐溶損性を充分に
改良するまでには至つていない。
Therefore, recently, a refractory has been proposed in which aluminum nitride (AlN) and aluminum oxide (Al 2 O 3 ), which are chemically stable against molten steel, are further compounded to improve the melt damage resistance (for example, Japanese Patent Laid-Open Publication No. 2000-242242). JP-A-56-129666, JP-A-60-51669
Issue). However, even in these refractories, Si
Since it contains 3 N 4 in an amount of 10% by weight or more, it has not yet been sufficiently improved in erosion resistance.

一方、AlNに酸化イツトリウム(Y2O3)を添加した焼結
体は、高熱伝導性基板や高温構造材として利用できるこ
とが知られているが、この焼結体は耐熱衝撃性が劣るた
め、実際のところ溶鋼用耐火物としては利用できない。
On the other hand, it is known that a sintered body obtained by adding yttrium oxide (Y 2 O 3 ) to AlN can be used as a high thermal conductivity substrate or a high temperature structural material, but since this sintered body has poor thermal shock resistance, In fact, it cannot be used as a refractory for molten steel.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

一般に、溶鋼用耐火物は、溶鋼中に浸漬されて静止ある
いは溶鋼中を移動する状態で用いられるか、又はブレー
クリングやノズルのように固定され、その内側を溶鋼が
流れる状態で用いられる。そのため、溶鋼用耐火物に
は、特に大きな機械的応力や固体どうしの摺動のような
摩耗力が加わるわけではないので、Si3N4−BN系、Si3N4
−BN−AlN系、Si3N4−BN−AlN−Al2O3系で得られるよう
な高い強度と高い硬度(耐摩耗性)は必要でない。むし
ろ、ブレークリングやノズル等により得られる金属材料
の寸法変化の防止、溶鋼用耐火物の寿命延長、熱衝撃に
よる耐火物の破壊防止の点から耐溶損性と耐熱衝撃性に
優れていることが重要である。
Generally, a refractory for molten steel is used in a state of being immersed in molten steel and being stationary or moving in the molten steel, or fixed such as a break ring or a nozzle, and used in a state in which the molten steel flows. Therefore, the refractory for molten steel is not subjected to particularly large mechanical stress or wear force such as sliding between solids, so Si 3 N 4 -BN system, Si 3 N 4
-BN-AlN-based, Si 3 N 4 -BN-AlN -Al 2 O 3 system in obtained such high strength and high hardness (wear resistance) is not required. Rather, it is excellent in melting resistance and thermal shock resistance from the viewpoint of preventing dimensional change of metal materials obtained by break rings, nozzles, etc., extending the life of refractory for molten steel, and preventing destruction of refractory due to thermal shock. is important.

このため、鉄鋼業界等ではさらに耐溶損性と耐熱衝撃性
に優れた溶鋼用耐火物の開発が強く望まれている。
Therefore, in the steel industry and the like, there is a strong demand for the development of refractory materials for molten steel that are more excellent in melt damage resistance and thermal shock resistance.

本発明者等は、連続鋳造用ブレークリングやノズル等の
用途として好適なSi3N4を含まない溶鋼用耐火物につい
て種々検討した結果、出発原料にSi3N4粉末を用いない
かわりに、BN粉末とAlN粉末とY2O3粉末とを特定割合に
すると共にBN粉末の比表面積を30m2/g以上にすれば、優
れた耐溶損性を持ち、しかも溶鋼用耐火物としての使用
に充分耐え得る強度、耐摩耗性及び耐熱衝撃性を備えた
溶鋼用耐火物を製造できることを見い出し、本発明を完
成するに至つた。
The present inventors have variously studied molten steel refractory not containing Si 3 N 4 suitable for applications such as break rings and nozzles for continuous casting, and instead of using Si 3 N 4 powder as a starting material, If BN powder, AlN powder and Y 2 O 3 powder are made to have a specific ratio and the specific surface area of BN powder is 30 m 2 / g or more, it has excellent erosion resistance and is suitable for use as a refractory for molten steel. It has been found that a refractory for molten steel having sufficient strength, abrasion resistance and thermal shock resistance can be produced, and the present invention has been completed.

〔課題を解決するための手段〕[Means for Solving the Problems]

すなわち、本発明は、比表面積30m2/g以上の六方晶BN粉
末20〜70重量部、AlN粉末30〜80重量部及びY2O3粉末0.1
〜8重量部を含んでなる混合粉末を、1000kg/cm2以上の
圧力で成形した後又は成形しながら非酸化性雰囲気中16
00〜2100℃の温度で焼成することを特徴とする溶鋼用耐
火物の製造方法である。
That is, the present invention, a specific surface area of 30 m 2 / g or more hexagonal BN powder 20 to 70 parts by weight, AlN powder 30 to 80 parts by weight and Y 2 O 3 powder 0.1.
After molding the mixed powder containing ~ 8 parts by weight at a pressure of 1000 kg / cm 2 or more in a non-oxidizing atmosphere 16
A method for producing a refractory for molten steel, characterized by firing at a temperature of 00 to 2100 ° C.

以下、本発明をさらに詳しく説明する。Hereinafter, the present invention will be described in more detail.

まず、本発明で用いる原料粉末について説明すると、六
方晶BN粉末は市販のもので良いが、その比表面積は30m2
/g以上であること要する。これは本発明の大きな特徴の
1つである。比表面積が30m2/g未満では耐火物の粒子間
の結合力が低下し、強度と耐溶損性が低下するようにな
る。
First, the raw material powder used in the present invention will be described. The hexagonal BN powder may be a commercially available one, but its specific surface area is 30 m 2
It must be at least / g. This is one of the major features of the present invention. When the specific surface area is less than 30 m 2 / g, the bond strength between particles of the refractory material is reduced, and the strength and the melt damage resistance are reduced.

特に好ましい六方晶BN粉末は、結晶性の高い六方晶BN粉
末をアトライター、ボールミル、振動ボールミル、ライ
カイ機等の通常の粉砕機を用い粉砕して得られた比表面
積30m2/g以上の六方晶BN粉末である。これは、結晶性の
高い六方晶BN粉末は予備成形時の可塑変形性に優れてお
り高密度の予備成形体が得られやすいことによる。
A particularly preferable hexagonal BN powder is a hexagonal BN powder having a high crystallinity and a specific surface area of 30 m 2 / g or more obtained by pulverizing the hexagonal BN powder with an ordinary pulverizer such as an attritor, a ball mill, a vibrating ball mill, and a Raiki machine. Crystalline BN powder. This is because the hexagonal BN powder having high crystallinity is excellent in plastic deformation during preforming, and a high-density preform can be easily obtained.

AlN粉末とY2O3粉末は市販品で良いが、いずれも純度98
%以上、平均粒子径4μm以下のものが望ましい。なお
AlNの粒度が六方晶BN粉末と同等あるいは微細粒である
ほど焼結体の密度が向上しその結果耐溶損性が向上す
る。
AlN powder and Y 2 O 3 powder may be commercially available products, but both have a purity of 98
% Or more and an average particle diameter of 4 μm or less is desirable. Note that
As the particle size of AlN is equal to or smaller than that of hexagonal BN powder, the density of the sintered body is improved, and as a result, the melt damage resistance is improved.

本発明においては、前記原料粉末の配合割合が重要であ
る。
In the present invention, the blending ratio of the raw material powder is important.

六方晶BN粉末は20〜70重量部である。20重量部未満では
溶鋼用耐火物の耐熱衝撃性が低下し、一方、70重量部を
超えると溶鋼に対する耐溶損性が低下すると共に耐火物
の強度と耐摩耗性が低下する。
Hexagonal BN powder is 20 to 70 parts by weight. If it is less than 20 parts by weight, the thermal shock resistance of the refractory for molten steel is lowered, while if it exceeds 70 parts by weight, the melt damage resistance to molten steel is lowered and the strength and wear resistance of the refractory are lowered.

AlN粉末は30〜80重量部である。30重量部未満では溶鋼
用耐火物の耐溶損性が低下し、一方、80重量部を超える
と耐熱衝撃性が低下する。
AlN powder is 30-80 parts by weight. If it is less than 30 parts by weight, the melting resistance of the refractory for molten steel is lowered, while if it exceeds 80 parts by weight, the thermal shock resistance is lowered.

Y2O3粉末は0.1〜8重量部である。0.1重量部未満では溶
鋼用耐火物の粒子間の結合力が弱くなり充分な強度がえ
られない。また、密度も低下するので耐溶損性が低下す
る。一方、8重量部を超えると焼結時に液相が流出して
耐溶損性が低下する。
Y 2 O 3 powder is 0.1 to 8 parts by weight. If it is less than 0.1 part by weight, the bond strength between the particles of the refractory material for molten steel becomes weak and sufficient strength cannot be obtained. Moreover, since the density also decreases, the melting resistance decreases. On the other hand, if it exceeds 8 parts by weight, the liquid phase will flow out during sintering, and the melting resistance will be reduced.

特にブレークリングやノズルの用途にこの溶鋼用耐火物
を用いる場合は、六方晶BN粉末40〜70重量部、AlN粉末3
0〜60重量部、Y2O3粉末2〜4重量部が望ましい。
Especially when using this refractory for molten steel for break ring and nozzle applications, hexagonal BN powder 40 to 70 parts by weight, AlN powder 3
0 to 60 parts by weight and 2 to 4 parts by weight of Y 2 O 3 powder are desirable.

次に、前記原料粉末を所定の割合で配合後、混合機を用
いて均一に混合し、この混合粉末をホツトプレス法や常
圧焼結法等の常法により焼成する。
Next, the raw material powders are blended in a predetermined ratio and uniformly mixed using a mixer, and the mixed powder is fired by a conventional method such as a hot press method or a normal pressure sintering method.

成形圧力は1000kg/cm2以上であれば良く好ましくは5000
kg/cm2以上である。1000kg/cm2未満の圧力であると成形
体の密度を充分上げることができず、強度が低下するた
め成形体の精密加工が困難となるばかりでなくこの成形
体を焼成しても低密度の耐火物しか得られれない。この
ような耐火物を溶鋼に浸漬すると開気孔より溶鋼が耐火
物中に浸入しやすくなるため耐溶損性が低下する。なお
粉末を成形するにあたつては金型成形機、冷間等方圧成
形機が用いられる。
The molding pressure may be 1000 kg / cm 2 or more, preferably 5000
It is more than kg / cm 2 . If the pressure is less than 1000 kg / cm 2 , the density of the molded product cannot be sufficiently increased, and the strength will be reduced, making it difficult to perform precision processing of the molded product. Only refractories can be obtained. When such a refractory material is immersed in the molten steel, the molten steel easily penetrates into the refractory material through the open pores, so that the melt loss resistance is lowered. A mold molding machine and a cold isostatic molding machine are used for molding the powder.

焼成は非酸化性雰囲気中1600〜2100℃の温度で行う。焼
成温度が1600℃未満では、六方晶BN粒子、AlN粒子、Y2O
3粒子の結合力が充分でなくなり耐火物の強度が低下す
る。また、2100℃を超えるとAlNが熱分解を起こしその
本来の性質を失う。特に耐溶損性に優れ高強度な焼結体
を得るためには、焼成温度を1750〜2050℃にすることが
好ましい。
Firing is performed at a temperature of 1600 to 2100 ° C in a non-oxidizing atmosphere. If the firing temperature is less than 1600 ℃, hexagonal BN particles, AlN particles, Y 2 O
3 The bond strength of the particles becomes insufficient and the strength of the refractory material decreases. Also, when the temperature exceeds 2100 ° C, AlN undergoes thermal decomposition and loses its original properties. In particular, in order to obtain a sintered body having excellent melting resistance and high strength, it is preferable to set the firing temperature to 1750 to 2050 ° C.

焼成雰囲気としては、真空中、He、Ar等の不活性ガス
中、あるいはH2、N2、NH3ガス中等から選ばれた非酸化
性雰囲気であれば良いが、特に、AlN、六方晶BNの分解
を抑制する効果のあるN2雰囲気が望ましい。なお、酸化
雰囲気中で焼成するとBNの酸化によりB2O3が耐火物中に
生成するため、耐溶損性、耐熱衝撃性、高温強度が低下
してしまう。焼成装置としては、タンマン炉、高周波
炉、抵抗加熱炉が用いられる。
The firing atmosphere may be vacuum, in an inert gas such as He or Ar, or a non-oxidizing atmosphere selected from H 2 , N 2 , NH 3 gas, etc., but especially AlN, hexagonal BN An N 2 atmosphere that has the effect of suppressing the decomposition of is desirable. Note that when firing in an oxidizing atmosphere, B 2 O 3 is generated in the refractory due to the oxidation of BN, so that the melting resistance, thermal shock resistance, and high temperature strength deteriorate. As the firing device, a Tammann furnace, a high frequency furnace, or a resistance heating furnace is used.

溶鋼用耐火物の密度については、相対密度として70%以
上であることが好ましい。相対密度が70%未満であると
溶鋼中に耐火物を浸漬した場合、開気孔より溶鋼が耐火
物中に侵入しやすくなるため耐溶損性、耐摩耗性及び強
度が低下する。相対密度は例えば成形圧力によつて変え
ることができる。
Regarding the density of the refractory for molten steel, the relative density is preferably 70% or more. When the relative density is less than 70%, when the refractory material is immersed in the molten steel, the molten steel easily enters the refractory material through the open pores, so that the melt loss resistance, wear resistance and strength decrease. The relative density can be changed, for example, by the molding pressure.

〔実施例〕〔Example〕

以下、本発明を実施例と比較例をあげてさらに具体的に
説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1 六方晶BN粉末(電気化学工業(株)製、グレードSP−
1、六方晶、純度96%、比表面積50m2/g)50重量部にAl
N粉末(電気化学工業(株)製、グレードAP−10、純度9
9%、平均粒子径2μm)47重量部、Y2O3粉末(三徳金
属工業(株)製、高純度酸化イツトリウム純度99.9%、
平均粒子径4μm)3重量部を添加した後振動ボールミ
ルにて混合し成形用混合粉末を得た。次にこの混合粉末
を1000kg/cm2の圧力で冷間等方圧成形した。得られた成
形体をBN粉末の入つた黒鉛容器中に埋め込み、高周波炉
にて2000℃で60分間N2雰囲気下で焼成した。得られた焼
結体の相対密度、曲げ強さ、シヨア硬度、耐熱衝撃性及
び溶鋼に対する溶損量を測定した。その結果を表に示
す。
Example 1 Hexagonal BN powder (manufactured by Denki Kagaku Kogyo KK, grade SP-
1, hexagonal crystal, purity 96%, specific surface area 50m 2 / g) 50 parts by weight of Al
N powder (manufactured by Denki Kagaku Kogyo, grade AP-10, purity 9
9%, average particle diameter 2 μm) 47 parts by weight, Y 2 O 3 powder (manufactured by Santoku Metal Industry Co., Ltd., high purity yttrium oxide purity 99.9%,
3 parts by weight of an average particle diameter of 4 μm) was added and mixed by a vibrating ball mill to obtain a mixed powder for molding. Next, this mixed powder was cold isostatically pressed at a pressure of 1000 kg / cm 2 . The obtained molded body was embedded in a graphite container containing BN powder and fired in a high-frequency furnace at 2000 ° C. for 60 minutes under N 2 atmosphere. The relative density, bending strength, shear hardness, thermal shock resistance, and amount of melting loss with respect to molten steel of the obtained sintered body were measured. The results are shown in the table.

実施例2 成形圧力を5000kg/cm2としたこと以外は実施例1と同様
の方法にて実施した。
Example 2 The procedure of Example 1 was repeated except that the molding pressure was 5000 kg / cm 2 .

実施例3〜5 実施例1で用いた原料粉末を用い表に示す配合組成に変
えたこと以外は実施例1と同様の方法にて実施した。
Examples 3 to 5 The same procedure as in Example 1 was carried out except that the raw material powder used in Example 1 was used and the compounding composition shown in the table was changed.

実施例6 六方晶BN粉末(電気化学工業(株)製、グレードGP、六
方晶、純度99%、比表面積6m2/g)をアトライターミル
を用い比表面積が85m2/gになるまで粉砕し六方晶BN微粉
末を得た。比表面積はBET法にて測定した。この粉末50
重量部に実施例1で用いたAlN粉末47重量部とY2O3粉末
3重量部を添加混合し成形用原料粉末を得た。この成形
用原料粉末を実施例1と同様の方法にて成形した後2000
℃の温度で60分間、N2ガス雰囲気中で焼成した。
Example 6 Hexagonal BN powder (manufactured by Denki Kagaku Kogyo KK, grade GP, hexagonal, purity 99%, specific surface area 6 m 2 / g) was pulverized using an attritor mill until the specific surface area reached 85 m 2 / g. Then, hexagonal BN fine powder was obtained. The specific surface area was measured by the BET method. This powder 50
47 parts by weight of the AlN powder used in Example 1 and 3 parts by weight of the Y 2 O 3 powder were added and mixed in parts by weight to obtain a raw material powder for molding. After molding this molding raw material powder in the same manner as in Example 1, 2000
Firing was performed at a temperature of ° C for 60 minutes in a N 2 gas atmosphere.

実施例7 焼成温度を1600℃としたこと以外は実施例6と同様の方
法にて実施した。
Example 7 The procedure of Example 6 was repeated except that the firing temperature was set to 1600 ° C.

実施例8 比表面積が35m2/gになるまで粉砕した六方晶BN粉末を用
いたこと以外は実施例6と同様の方法にて実施した。
Example 8 The procedure of Example 6 was repeated except that hexagonal BN powder pulverized to a specific surface area of 35 m 2 / g was used.

比較例1 六方晶BN粉末を粉砕処理なしで用いたこと以外は実施例
6と同様の方法にて実施した。
Comparative Example 1 The procedure of Example 6 was repeated, except that the hexagonal BN powder was used without pulverization.

比較例2 成形圧力を500kg/cm2としたこと以外は実施例6と同様
の方法にて実施した。
Comparative Example 2 The procedure of Example 6 was repeated except that the molding pressure was 500 kg / cm 2 .

比較例3〜6 六方晶BN粉末、AlN粉末及びY2O3粉末を表に示す配合組
成に変えたこと以外は実施例6と同様の方法にて実施し
た。
Comparative Examples 3 to 6 Comparative Example 3 was carried out in the same manner as in Example 6 except that the hexagonal BN powder, AlN powder and Y 2 O 3 powder were changed to the compounding compositions shown in the table.

比較例7 焼成温度を2200℃としたこと以外は実施例6と同様の方
法にて実施した。
Comparative Example 7 The procedure of Example 6 was repeated except that the firing temperature was set to 2200 ° C.

比較例8 焼成温度を1500℃としたこと以外は実施例6と同様の方
法にて実施した。
Comparative Example 8 The procedure of Example 6 was repeated except that the firing temperature was 1500 ° C.

比較例9 比表面積が25m2/gになるまで粉砕した六方晶BN粉末を用
いたこと以外は実施例6と同様の方法にて実施した。
Comparative Example 9 The procedure of Example 6 was repeated except that hexagonal BN powder pulverized to a specific surface area of 25 m 2 / g was used.

比較例10 実施例1で用いた六方晶BN粉末20重量部に、AlN粉末30
重量部、Al2O3粉末(純度99%、比表面積8m2/g)20重量
部、さらに結合剤としてSi3N4粉末(電気化学工業
(株)製、SN−9FW、純度97%、比表表面積12m2/g)30
重量部を添加し振動ボールミルにて混合した後、この混
合粉末を成形圧3000kg/cm2の圧力で冷間等方圧成形し
た。得られた成形体をN2ガス雰囲気下1800℃で2時間焼
成した。
Comparative Example 10 AlN powder 30 was added to 20 parts by weight of the hexagonal BN powder used in Example 1.
20 parts by weight of Al 2 O 3 powder (purity 99%, specific surface area 8 m 2 / g), and further Si 3 N 4 powder (manufactured by Denki Kagaku Kogyo KK, SN-9FW, purity 97%) as a binder. Specific surface area 12 m 2 / g) 30
After adding parts by weight and mixing in a vibrating ball mill, this mixed powder was subjected to cold isostatic pressing at a molding pressure of 3000 kg / cm 2 . The obtained molded body was fired at 1800 ° C. for 2 hours under N 2 gas atmosphere.

比較例11 六方晶BN粉末30重量部とSi3N4粉末70重量部の混合粉末
を用いたこと以外は比較例10と同様の方法にて実施し
た。
Comparative Example 11 The same method as in Comparative Example 10 was carried out except that a mixed powder of 30 parts by weight of hexagonal BN powder and 70 parts by weight of Si 3 N 4 powder was used.

表に記載した各物性の測定は次の方法によつた。Each physical property described in the table was measured by the following methods.

(1) 相対密度…焼結体の寸法より体積を求め、重量
から密度を求めた後、相対密度(%)=密度(g/cm3
/理論密度(g/cm3)×100の式で算出した。
(1) Relative density: The volume was obtained from the dimensions of the sintered body, and the density was obtained from the weight, and then the relative density (%) = density (g / cm 3 ).
/ Theoretical density (g / cm 3 ) × 100.

(2) 常温曲げ強さ…JIS R1601に準拠した。(2) Bending strength at room temperature ... Compliant with JIS R1601.

(3) シヨア硬さ…JIS Z2246に準拠した。(3) Shear hardness: in accordance with JIS Z2246.

(4) 耐熱衝撃性…焼結体より切出した試料を一定温
度に加熱保持した後、この試料を20℃の水中に急冷投入
して急衝撃を加え、急冷後の試料の曲げ強さを測定して
急激な曲げ強さの低下がおき始める臨界温度差△Tを求
め耐熱衝撃性とした。
(4) Thermal shock resistance: After the sample cut out from the sintered body is heated and held at a constant temperature, this sample is rapidly cooled in 20 ° C water and subjected to a rapid shock to measure the bending strength of the sample after the rapid cooling. Then, the critical temperature difference ΔT at which a sharp decrease in bending strength begins to occur was determined as the thermal shock resistance.

(5) 溶損量…SUS304、SS41をMgOルツボ中1550℃の
温度で融解し、その融液に焼結体より切り出した7×20
×40mmの試料を30分間浸漬し浸漬後の試料の寸法を測定
し次式により算出した。
(5) Amount of melting loss ... SUS304, SS41 was melted in a MgO crucible at a temperature of 1550 ° C, and the melt was cut out from the sintered body 7 × 20
A sample of × 40 mm was immersed for 30 minutes, and the dimensions of the sample after immersion were measured and calculated by the following formula.

W1:浸漬前試料の幅(mm)…20mm W2:浸漬後試料の幅(mm)…浸漬後測定 T1:浸漬前試料の厚さ(mm)…7mm T2:浸漬後試料の厚さ(mm)…浸漬後測定 L:浸漬長さ(mm)…30mm θ:浸漬時間(Hr)…0.5Hr 〔発明の効果〕 本発明の製造方法によつて得られた溶鋼用耐火物は、耐
溶損性と耐熱衝撃性が著しく優れており、しかも適度な
曲げ強さとシヨア硬さ(耐摩耗性)を備えているので連
続鋳造用ブレークリングやノズル等の用途として特に好
適なものである。
W 1 : Width of sample before immersion (mm)… 20 mm W 2 : Width of sample after immersion (mm)… Measurement after immersion T 1 : Thickness of sample before immersion (mm)… 7 mm T 2 : Thickness of sample after immersion Length (mm)… Measurement after immersion L: Immersion length (mm)… 30 mm θ: Immersion time (Hr)… 0.5 Hr [Effects of the Invention] The refractory for molten steel obtained by the production method of the present invention has remarkably excellent erosion resistance and thermal shock resistance, and yet has appropriate bending strength and shear hardness (wear resistance). Since it is provided, it is particularly suitable for applications such as break rings for continuous casting and nozzles.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】比表面積30m2/g以上の六方晶窒化ホウ素粉
末20〜70重量部、窒化アルミニウム粉末30〜80重量部及
び酸化イットリウム粉末0.1〜8重量部を含んでなる混
合粉末を、1000Kg/cm2以上の圧力で成形した後又は成形
しながら非酸化性雰囲気中1600〜2100℃の温度で焼成す
ることを特徴とする溶鋼用耐火物の製造方法。
1. A mixed powder containing 20 to 70 parts by weight of hexagonal boron nitride powder having a specific surface area of 30 m 2 / g or more, 30 to 80 parts by weight of aluminum nitride powder and 0.1 to 8 parts by weight of yttrium oxide powder, and 1000 Kg A method for producing a refractory material for molten steel, which comprises firing at a temperature of 1600 to 2100 ° C. in a non-oxidizing atmosphere after or while molding at a pressure of / cm 2 or more.
JP63071635A 1988-03-25 1988-03-25 Method for manufacturing refractory for molten steel Expired - Lifetime JPH075379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071635A JPH075379B2 (en) 1988-03-25 1988-03-25 Method for manufacturing refractory for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071635A JPH075379B2 (en) 1988-03-25 1988-03-25 Method for manufacturing refractory for molten steel

Publications (2)

Publication Number Publication Date
JPH01246178A JPH01246178A (en) 1989-10-02
JPH075379B2 true JPH075379B2 (en) 1995-01-25

Family

ID=13466306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071635A Expired - Lifetime JPH075379B2 (en) 1988-03-25 1988-03-25 Method for manufacturing refractory for molten steel

Country Status (1)

Country Link
JP (1) JPH075379B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002776A1 (en) * 1998-11-19 2000-05-24 Vesuvius Crucible Company Composite material
CA2351604C (en) * 1998-11-19 2007-02-06 Vesuvius Crucible Company Composite material
JP2008001536A (en) * 2006-06-20 2008-01-10 Osaka Univ Aluminum nitride-boron nitride composite powder and method for producing the same
WO2017209063A1 (en) * 2016-05-31 2017-12-07 デンカ株式会社 Boron nitride nozzle and boron nitride crucible for production of neodymium alloy, and neodymium alloy production method using nozzle or crucible

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465072A (en) * 1987-05-12 1989-03-10 Koransha Kk Bn-based ceramics having superior erosion resistance

Also Published As

Publication number Publication date
JPH01246178A (en) 1989-10-02

Similar Documents

Publication Publication Date Title
US4595663A (en) Sintered ceramic shaped article wholly or predominantly of eutectic microstructure constituents
US4885264A (en) Pressure-sintered polycpystalline mixed materials with a base of hexagonal boron nitride, oxides and carbides
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
JPS6022676B2 (en) Silicon nitride/boron nitride composite sintered body and its manufacturing method
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
US5457075A (en) Sintered ceramic composite and molten metal contact member produced therefrom
KR100605326B1 (en) Composite pressured-sintered material
JPS6128627B2 (en)
JPS62100412A (en) Production of alumina-zirconia compound powder body
EP0381360B1 (en) Zirconia mullite/boron nitride composites
EP0170889B1 (en) Zrb2 composite sintered material
JPH075379B2 (en) Method for manufacturing refractory for molten steel
EP0262687B1 (en) Refractory composites of alumina and boron nitride
EP0311043B1 (en) Chromium carbide sintered body
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
US20020079390A1 (en) Process for recycling side dams for the continuous casting of thin steel strip
JP2525432B2 (en) Normal pressure sintered boron nitride compact
JP2614875B2 (en) Manufacturing method of high temperature corrosion resistant sintered material
JPS6210954B2 (en)
CA2067531C (en) Mullite/yttria stabilized zirconia/boron nitride composites
JPS6335593B2 (en)
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
US5134098A (en) Method of producing mullite/yttria stabilized zirconia/boron nitride composites
EP1044177A1 (en) Dense refractories with improved thermal shock resistance
JPH01131069A (en) Complex compact calcined under ordinary pressure

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14