JPH0450171A - Preparation of aln sintered product - Google Patents

Preparation of aln sintered product

Info

Publication number
JPH0450171A
JPH0450171A JP2157542A JP15754290A JPH0450171A JP H0450171 A JPH0450171 A JP H0450171A JP 2157542 A JP2157542 A JP 2157542A JP 15754290 A JP15754290 A JP 15754290A JP H0450171 A JPH0450171 A JP H0450171A
Authority
JP
Japan
Prior art keywords
sintered body
carbon
aln
thermal conductivity
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2157542A
Other languages
Japanese (ja)
Inventor
Satoshi Uenosono
聡 上ノ薗
Masato Kumagai
正人 熊谷
Toshihiko Funabashi
敏彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2157542A priority Critical patent/JPH0450171A/en
Publication of JPH0450171A publication Critical patent/JPH0450171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To prepare an AlN sintered product having high strength and high thermal conductivity in good productivity by defatting an AlN sintered product containing Y2O3, heating the product under a specific condition in a nitrogen stream and sintering the product under ordinary pressure. CONSTITUTION:A mixture of AlN as a main component and 0.5-10wt.% of Y2O3 as a sintering auxiliary is molded, defatted, heated so as to give a linear shrinkage rate of >=0.2%/hr at temperature of >=1500 deg.C and sintered at 1750-1950 deg.C under ordinary pressure. The further addition of carbon or a com pound producing the carbon on a calcination in an amount of 0.01-0.1wt.% readily gives a high thermal conductivity of >=170W/mK.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は、室温3点曲げ強度が50kgf/mm”以上
の強度と、高熱伝導率とを有するAβN焼結体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a method for producing an AβN sintered body having a room temperature three-point bending strength of 50 kgf/mm” or more and high thermal conductivity.

[従来の技術] 近年、LSIなどの半導体素子の集積度が上がるにした
がってLSIなどの発熱量が増大するために、その発熱
した熱を速やかに外部へ伝熱、放熱する必要が生じた。
[Prior Art] In recent years, as the degree of integration of semiconductor elements such as LSIs has increased, the amount of heat generated by LSIs has increased, and it has become necessary to quickly conduct and dissipate the generated heat to the outside.

また、パワートランジスタ、レーザダイオードなどの高
出力素子を実装するための基板及びパッケージにおいて
も、素子の動作時に発生する熱を短時間の内に素子外へ
放出しなければならない。
Furthermore, in substrates and packages on which high-output devices such as power transistors and laser diodes are mounted, heat generated during operation of the device must be released outside the device within a short period of time.

このような発熱量の多い半導体素子を実装するために熱
伝導率の高い基板材料が必要とされ、従来このような熱
伝導率の高い絶縁性基板として酸化ベリリウム(Bed
)系焼結体が用いられてきたが毒性があるため使用範囲
が限定されてきた。
In order to mount such semiconductor elements that generate a large amount of heat, a substrate material with high thermal conductivity is required, and conventionally, beryllium oxide (Bed) is used as an insulating substrate with high thermal conductivity.
) type sintered bodies have been used, but their range of use has been limited due to their toxicity.

最近、AlNは毒性がな(、高い熱伝導率をもち、その
熱膨張率が八β203より低くシリコンと同程度である
ため、高熱伝導性基板として注目を集めている。
Recently, AlN has attracted attention as a highly thermally conductive substrate because it is nontoxic and has high thermal conductivity, and its coefficient of thermal expansion is lower than 8β203 and comparable to that of silicon.

AlNを工業的に使用する場合、以下の最低限特性項目
を満たす必要がある。すなわち、■ 焼結体が均一で緻
密で、機械的強度が太きしλ。
When AlN is used industrially, it is necessary to satisfy the following minimum characteristics. In other words, ■ The sintered body is uniform and dense, and has a high mechanical strength.

■ 熱伝導率ができるだけ大きい。■ Thermal conductivity is as high as possible.

■ 体積抵抗が大きい(>1012Ωcm)。■ High volume resistance (>1012Ωcm).

■ 焼土がりの焼結体表面が平滑平坦である。■ The surface of the sintered body made of baked clay is smooth and flat.

■ 焼結体の外観は、色むら、着色がなく均一な色調で
ある。
■ The appearance of the sintered body is uniform in color with no unevenness or coloring.

AβN焼結体に銅板を接合した基板は、高出力素子から
発生する熱を除去するために非常に有益な材料である。
A substrate made by bonding a copper plate to an AβN sintered body is a very useful material for removing heat generated from high-power devices.

しかし、銅板接合基板にはAlN側に繰返し熱応力が発
生する。このため繰返し使用するとAJ2N基板と銅板
がはがれるといった問題が発生し易い。
However, repeated thermal stress occurs on the AlN side of the copper plate bonded substrate. For this reason, repeated use tends to cause problems such as peeling off of the AJ2N board and the copper plate.

この問題を解決するには、熱応力を緩和するために銅と
AlNの間に活性金属を挿入し中間相を設けることが提
案されている(特開昭60−32648号公報)。この
場合においてもAjZN側に引張応力が発生する。銅板
接合基板の信頼性を高めるためにはAlN基板自身が引
張応力に耐えつるほど強度が大きいことが当然好ましい
。このため熱伝導率が高く、強度の大きな基板が求めら
れていた。
To solve this problem, it has been proposed to insert an active metal between copper and AlN to form an intermediate phase in order to alleviate thermal stress (Japanese Patent Application Laid-open No. 32648/1983). In this case as well, tensile stress is generated on the AjZN side. In order to improve the reliability of the copper plate bonded substrate, it is naturally preferable that the AlN substrate itself has a strength large enough to withstand tensile stress. For this reason, a substrate with high thermal conductivity and high strength has been required.

往来の技術では、AlNは本来難焼結性であるため、Y
2O3などの焼結助剤を添加する製造方法が検討されて
きた(特開昭60−127267号公報)。しかし、そ
の室温3点曲げ強度は30〜50 k g f /mr
n”程度であった。
In conventional technology, since AlN is inherently difficult to sinter, Y
A manufacturing method in which a sintering aid such as 2O3 is added has been studied (Japanese Unexamined Patent Publication No. 127267/1983). However, its room temperature three-point bending strength is 30 to 50 kgf/mr.
It was about ``n''.

[発明が解決しようとする課題1 本発明は、上記従来技術の問題点を解決し、生産性に優
れる常圧焼成を用いて、室温3点曲げ強度が50kgf
/mrn”を越える高強度と高熱伝導率とを有するAβ
N焼結体を製造する方法を提供するものである。
[Problem to be Solved by the Invention 1] The present invention solves the above-mentioned problems of the prior art, and uses atmospheric pressure firing with excellent productivity to achieve a room temperature three-point bending strength of 50 kgf.
Aβ with high strength and high thermal conductivity exceeding /mrn”
The present invention provides a method for manufacturing a N sintered body.

[課題を解決するための手段] 本発明は前記課題を解決するために、主成分のAlNに
、焼結助剤としてY 2030.5〜10重量%を添加
した混合物を、成形脱脂した後、窒素気流中で、150
0℃以上での線収縮速度を0.2%/時間以上として昇
温し、1750〜1950℃にて常圧焼成することを特
徴とするAβN焼結体の製造方法、及び、焼結助剤とし
て、さらに、炭素または焼成により炭素を生成する化合
物を炭素換算で0.01〜0.1重量%未満添加する請
求項1記載のAlN焼結体の製造方法を提供するもので
ある。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a mixture in which 0.5 to 10% by weight of Y203 is added as a sintering aid to AlN as a main component, and after shaping and degreasing, 150 in a nitrogen stream
A method for producing an AβN sintered body, characterized by raising the temperature at a linear shrinkage rate of 0.2%/hour or more at 0°C or higher and firing at normal pressure at 1750 to 1950°C, and a sintering aid. The present invention provides a method for producing an AlN sintered body according to claim 1, further comprising adding carbon or a compound that produces carbon upon firing in an amount of 0.01 to less than 0.1% by weight in terms of carbon.

[作用] 本発明者らは前記課題を解決するため鋭意検討を行った
結果、AβN焼結体の破壊の起点はほとんどが直径30
um以上の異常粒成長粒子であることがわかった。従っ
てAlN焼結体の強度を上げるためには、微細な粒子か
ら構成され、気孔のない焼結体が望ましい。
[Function] The present inventors conducted extensive studies to solve the above problem, and found that the starting point of most fractures in AβN sintered bodies is at a diameter of 30 mm.
It was found that the particles were abnormal grain growth particles of um or larger. Therefore, in order to increase the strength of the AlN sintered body, a sintered body composed of fine particles and free of pores is desirable.

種々検討の結果、焼成中1500℃以上での線収縮速度
を0.2%/時間以上として昇温することより、平均粒
径3〜5μm程度のきわめて微細な焼結体が得られるこ
とがわかった。線収縮速度とは線収縮率の時間変化率で
ある。このため焼結体の破壊は表面の加工傷からしか進
行しないようになり、室温3点曲げ強度が50kgf/
mrn”以上の強度を有するようになった。
As a result of various studies, it was found that extremely fine sintered bodies with an average grain size of about 3 to 5 μm can be obtained by increasing the temperature at a linear shrinkage rate of 0.2%/hour or more at 1500°C or higher during firing. Ta. Linear shrinkage rate is the rate of change of linear shrinkage rate over time. Therefore, the fracture of the sintered body only progresses from the processing scratches on the surface, and the 3-point bending strength at room temperature is 50 kgf/
It now has a strength greater than mrn''.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

主成分のAlNに、焼結助剤としてY2O3を0.5〜
10重量%添加する。Y2O3が0.5重量%未満では
焼結中に生成する液相量が少ないため十分に緻密化せず
、焼結体の熱伝導率が低下する。添加量が10重量%を
越えると液相量が多すぎるためかえって熱伝導率が低下
することが多くなり、同時に基板の一部に黄色い着色が
起こりやすくなる。
Add 0.5 to 0.5 Y2O3 as a sintering aid to AlN as the main component.
Add 10% by weight. When Y2O3 is less than 0.5% by weight, the amount of liquid phase generated during sintering is small, resulting in insufficient densification and a decrease in thermal conductivity of the sintered body. When the amount added exceeds 10% by weight, the amount of liquid phase is too large, which often causes a decrease in thermal conductivity, and at the same time, yellowing tends to occur in a portion of the substrate.

焼結助剤として、Y2O3に加えて炭素又は焼成により
炭素を生成する化合物を、炭素換算で0、O1〜0.1
重量%未満添加することができる。
As a sintering aid, in addition to Y2O3, carbon or a compound that generates carbon by sintering is used as a sintering aid of 0, O1 to 0.1 in terms of carbon.
Less than % by weight can be added.

Y2O3に炭素を0.01〜0.1重量%未満添加する
ことにより、170W/mK以上の高熱伝導率が容易に
得られる。
By adding 0.01 to less than 0.1% by weight of carbon to Y2O3, a high thermal conductivity of 170 W/mK or more can be easily obtained.

炭素の添加量が0.01重量%未満では実質上添加した
効果が認められない。また、炭素の添加量が0.1重量
%以上になると、焼結後に焼結体中に炭素が残留し、焼
結体が黒く変色すると同時に、熱伝導率もかえって低下
し商品価値がなくなる。
If the amount of carbon added is less than 0.01% by weight, virtually no effect of the addition is observed. Furthermore, if the amount of carbon added is 0.1% by weight or more, carbon remains in the sintered body after sintering, causing the sintered body to turn black and at the same time, the thermal conductivity to the contrary decreases, resulting in loss of commercial value.

焼成中の雰囲気は窒素気流中でよいが、炭素を遮断した
雰囲気、例えばAj2N製の坩堝で焼成することなどが
好適である。炭素製坩堝中で焼成することに代表される
還元性雰囲気では完全な緻密体が得られない。
The atmosphere during firing may be a nitrogen stream, but it is preferable to perform the firing in an atmosphere in which carbon is blocked, for example, in a crucible made of AJ2N. A completely dense body cannot be obtained in a reducing atmosphere such as when firing in a carbon crucible.

焼成中1500℃以上での線収縮速度を0.2%/時間
以上となるように昇温速度を制御しながら昇温する。こ
の場合AffN焼結体は平均粒径3〜5μm程度のきわ
めて微細な焼結体が得られ、室温3点曲げ強度50がk
gf/mrn”以上の強度を有する。線収縮速度が0.
2%/時間未満では、低温で粒成長が進行すると同時に
大きな残留気孔が生成するし、この気孔が焼結中になく
ならないので、緻密な焼結体が得られない。このため低
強度のAj2N焼結体しか得られない。
During firing, the temperature is increased while controlling the heating rate so that the linear shrinkage rate at 1500° C. or higher is 0.2%/hour or higher. In this case, the AffN sintered body is an extremely fine sintered body with an average grain size of about 3 to 5 μm, and a room temperature three-point bending strength of 50 k
It has a strength of more than "gf/mrn" and a linear shrinkage rate of 0.
If it is less than 2%/hour, large residual pores are generated as grain growth progresses at low temperatures, and these pores are not eliminated during sintering, making it impossible to obtain a dense sintered body. Therefore, only an Aj2N sintered body with low strength can be obtained.

線収縮速度の上限は特に限定されるものではないが、大
きな線収縮速度で昇温すると、炉内位置により成形体の
昇温速度が異なりやす(、同一焼成ロット内での焼結体
の強度のばらつきが生じやすいので好ましく、また焼成
炉の加熱電力も太き(なり経済的でない。線収縮速度は
、ロットの大きさ、焼成炉の大きさ、要求される品質特
性等を勘案して、0,2%/時間以上の適切な値が用い
られる。
The upper limit of the linear shrinkage rate is not particularly limited, but if the temperature is increased at a large linear shrinkage rate, the temperature increase rate of the compact tends to vary depending on the position in the furnace (the strength of the sintered compact within the same firing lot) It is preferable because the heating power of the firing furnace is large (which makes it uneconomical). Suitable values of 0.2%/hour or more are used.

昇温中線収縮速度が所定の値になるように昇温速度を決
定する方法について述べる。熱膨張計を内装した焼結炉
を用いて、収縮率の変化を連続的に測定し、測定した収
縮率の時間変化を求めながら、設定した収縮速度より小
さい場合は加熱電力を大きくし、逆に設定した収縮速度
より大きい場合は加熱電力を小さくするようなPID制
御を行いながら加熱すればよい。
A method for determining the heating rate so that the linear shrinkage rate during heating becomes a predetermined value will be described. Using a sintering furnace equipped with a thermal dilatometer, the change in shrinkage rate is continuously measured, and while determining the change in the measured shrinkage rate over time, if the shrinkage rate is lower than the set shrinkage rate, increase the heating power and reverse the change. If the shrinkage speed is higher than the set contraction speed, heating may be performed while performing PID control to reduce the heating power.

線収縮速度が一定になるように昇温すると、焼結体の結
晶粒径が揃い、焼結体の強度のばらつきが小さくなるの
で好ましい。
It is preferable to raise the temperature so that the linear shrinkage rate is constant because the crystal grain size of the sintered body becomes uniform and variations in the strength of the sintered body are reduced.

焼結温度は1750〜1950℃とする。The sintering temperature is 1750-1950°C.

1750℃未満では完全な緻密体が得られない。If the temperature is lower than 1750°C, a complete dense body cannot be obtained.

1950℃を越えると焼結体の粒子径が大きくなり強度
が劣化する。
If the temperature exceeds 1950°C, the particle size of the sintered body increases and the strength deteriorates.

焼結体の粒界組成はY4Aj2209とY2O3が共存
することが好ましい。粒界相にY4/1209とY2O
3とが共存する時は、高熱伝導化と共に外観の異常発生
率がきわめて小さい。
As for the grain boundary composition of the sintered body, it is preferable that Y4Aj2209 and Y2O3 coexist. Y4/1209 and Y2O in the grain boundary phase
When 3 coexists, the thermal conductivity becomes high and the occurrence of abnormalities in appearance is extremely small.

粒界相がAl2203 、YAG相あるいはYAJ20
3相を含有する場合は、熱伝導率が低下する。
Grain boundary phase is Al2203, YAG phase or YAJ20
When three phases are contained, thermal conductivity decreases.

また網目状の模様や基板の一部に着色が発生しやす(な
る。
In addition, coloring tends to occur in the mesh pattern and parts of the board.

炭素としてはカーボンブラック、グラファイト等、焼成
中炭素を生成する物質としてはフェノールレジン等が好
ましい。
Preferable examples of carbon include carbon black and graphite, and examples of substances that generate carbon during firing include phenol resin.

使用するAlN粉末は、平均粒径が1〜2μm程度、粉
末に含有される酸素量は2%未満が好ましい。またY2
03は、純度99.9%以上、平均粒径5μm以下が好
ましい。
It is preferable that the AlN powder used has an average particle size of about 1 to 2 μm, and the amount of oxygen contained in the powder is less than 2%. Also Y2
03 preferably has a purity of 99.9% or more and an average particle size of 5 μm or less.

〔実施例〕〔Example〕

実施例1 平均粒径0.8μm、酸素含有量0.6%、純度98%
のAlN粉末を主成分とし、これに平均粒径1.OLL
mのY2O3粉末を3重量%添加した。
Example 1 Average particle size 0.8 μm, oxygen content 0.6%, purity 98%
The main component is AlN powder with an average particle size of 1. OLL
3% by weight of Y2O3 powder was added.

バインダとしてポリビニルブチラール(PVB)を適量
添加、成形し、この成形体を窒素中で脱脂した。
An appropriate amount of polyvinyl butyral (PVB) was added as a binder and molded, and the molded product was degreased in nitrogen.

次に、得られた成形体をAj2N坩堝に充填し常圧のも
と1500℃までは500℃/時間の昇温速度で昇温し
、1500℃を越えてからは種々の一定の線収縮速度と
なるように昇温し、窒素気流中、1820℃で4時間焼
成した。
Next, the obtained molded body was filled into an Aj2N crucible, and the temperature was raised at a heating rate of 500°C/hour until it reached 1500°C under normal pressure, and after it exceeded 1500°C, various constant linear shrinkage rates were applied. The temperature was raised to 1,820° C. in a nitrogen stream for 4 hours.

得られた焼結体を3X4X40mmの大きさの試験片5
0本に研削加工し、JISR1601に準拠し3点曲げ
試験を行い、焼結体の強度ばらつきをワイブル係数で示
した。また、レーザフラッシュ法で熱伝導率を測定した
。第1表に焼結体の熱伝導率、強度、ワイブル係数をま
とめて示した。また、レーザフラッシュ法で熱伝導率を
測定した6第1表に焼結体の熱伝導率、強度、ワイブル
係数をまとめて示した。
The obtained sintered body was made into a test piece 5 with a size of 3 x 4 x 40 mm.
The sintered body was ground to zero and subjected to a three-point bending test in accordance with JISR1601, and the strength variation of the sintered body was expressed as a Weibull coefficient. In addition, thermal conductivity was measured using a laser flash method. Table 1 summarizes the thermal conductivity, strength, and Weibull coefficient of the sintered body. In addition, the thermal conductivity, strength, and Weibull coefficient of the sintered body are summarized in Table 1, which was measured by the laser flash method.

No、 1では、線収縮速度が、0.2%/時間未満の
ため、低温で粒成長が進行すると同時に大きな残留気孔
が生成するので、緻密な焼結体が得られず強度が小さい
In No. 1, since the linear shrinkage rate was less than 0.2%/hour, large residual pores were generated at the same time as grain growth progressed at low temperatures, so a dense sintered body could not be obtained and the strength was low.

−2〜6では、焼成中1500℃以上での線収縮速度を
0.2%/時間以上、8%/時間以下の範囲で一定とす
れば熱伝4率が高く、焼結体の強度が50kgf/mr
r1″以上となり、そのばらつきも小さいことがわかる
-2 to 6, if the linear shrinkage rate at 1500°C or higher during firing is constant in the range of 0.2%/hour or more and 8%/hour or less, the heat transfer rate is high and the strength of the sintered body is high. 50kgf/mr
It can be seen that the value is r1'' or more, and the variation thereof is small.

No、 7.8では線収縮速度が8%/時間をこえると
昇温速度が太き(なるので焼成炉内の温度分布が大きく
なり、このため同一ロット内での品質のばらつきが生じ
易く、強度は50kgf/mm”以上あるが、ワイブル
係数が5〜6と小さく強度のばらつきが大きかった。
In No. 7.8, when the linear shrinkage rate exceeds 8%/hour, the temperature increase rate increases (as a result, the temperature distribution in the firing furnace increases, which tends to cause variations in quality within the same lot. Although the strength was 50 kgf/mm'' or more, the Weibull coefficient was small at 5 to 6, and the strength varied widely.

実施例2 平均粒径0.8μm、酸素含有量0.6%、純度98%
のAlN粉末を主成分とし、これに平均粒径1.04t
mのY203粉末、カーボンブラックを第2表に示すヤ
合で添加した。バインダとしてボJビニルブチラール(
PVB)を適量添加し形成し、この成形体を窒素中で脱
脂した。
Example 2 Average particle size 0.8 μm, oxygen content 0.6%, purity 98%
The main component is AlN powder with an average particle size of 1.04t.
m of Y203 powder and carbon black were added in the amounts shown in Table 2. BoJ vinyl butyral (
A suitable amount of PVB) was added to form a molded body, and the molded body was degreased in nitrogen.

得られた成形体をAffN坩堝に充填し、常圧のもと1
500°Cまでは500℃/時間の昇温速度で昇温し、
1500℃を越えてからは、種々の一定の線収縮速度と
なるように昇温し、窒素気流中1820℃4時間昇温焼
成した。
The obtained molded body was filled into an AffN crucible and heated under normal pressure for 1
The temperature is raised at a rate of 500°C/hour up to 500°C.
After the temperature exceeded 1500°C, the temperature was increased to achieve various constant linear shrinkage rates, and firing was performed at 1820°C for 4 hours in a nitrogen stream.

得られた焼結体を3X4X40mmの大きさの試験片に
研削加工し、J I SRl 601に準拠し3点曲げ
試験を行った。またレーザフラッシュ法で熱伝導率を測
定した。
The obtained sintered body was ground into a test piece with a size of 3 x 4 x 40 mm, and a three-point bending test was conducted in accordance with J I SRl 601. Thermal conductivity was also measured using the laser flash method.

第2表に原料配合割合、焼結体の熱伝導率、強度、粒界
相、外観等をまとめて示した。また、同じ条件で20回
焼成した場合、焼結体外観異常の発生する割合も合わせ
て示した。
Table 2 summarizes the raw material blending ratio, thermal conductivity, strength, grain boundary phase, appearance, etc. of the sintered body. In addition, the rate at which abnormalities in the appearance of the sintered body occur when the sintered body is fired 20 times under the same conditions is also shown.

述1〜19では、主成分のAlNに焼結助剤としてY2
O30,5〜IO重量%、またはY2O30,5〜10
重量%とともに、炭素または焼成により炭素を生成する
化合物を炭素換算で0.01〜0、1%未満添加し、成
形脱脂した後、焼成中1500℃以上での線収縮速度を
0.2%/時間以上の一定となるように昇温すれば、焼
結体の強度が50kgf/mrn’以上で165W/m
K以上の高熱伝導化が達成される。また、AβN焼結体
の粒界相がY4AJ2209とY2O3からなる場合は
あみめや着色といった焼結体表面の外観の異常の発生率
が非常に小さくなることをあわせて示している。また、
この助剤配合であれば粒界相がY4AJ2209とYA
氾03となっても外観異常発生率は10%以下と小さく
なる。
In descriptions 1 to 19, Y2 is added as a sintering aid to AlN as the main component.
O30.5-IO wt%, or Y2O30.5-10
Along with weight%, carbon or a compound that produces carbon upon firing is added in an amount of 0.01 to 0.1% in terms of carbon, and after molding and degreasing, the linear shrinkage rate at 1500°C or higher during firing is 0.2%/ If the temperature is raised constant over time, the strength of the sintered body will be 165W/m at 50kgf/mrn' or more.
High thermal conductivity of K or higher is achieved. It is also shown that when the grain boundary phase of the AβN sintered body is composed of Y4AJ2209 and Y2O3, the incidence of abnormalities in the appearance of the sintered body surface such as graining and coloring is extremely small. Also,
With this additive combination, the grain boundary phase is Y4AJ2209 and YA
Even in Flood 03, the occurrence rate of appearance abnormalities will be as low as 10% or less.

No、20.21では、Y2O3の配合量が0.5重量
%以下では焼結中に生成する液相量が小ないため充分に
緻密化しないので強度が小さい。このため熱伝導率も低
(、粒界相がYAG+YAff03となり、あみめ状の
焼結体の表面の外観異常の発生率が大きい。
In No. 20.21, if the amount of Y2O3 added is 0.5% by weight or less, the amount of liquid phase generated during sintering is small, so it is not sufficiently densified and the strength is low. Therefore, the thermal conductivity is low (the grain boundary phase is YAG+YAff03), and the occurrence of abnormal appearance on the surface of the net-like sintered body is high.

N022〜26では、炭素の配合量が0.1重量%以上
では焼結体の強度は大きいが、焼結後に焼結体に炭素が
残留し焼結体が黒っぽく変色し易(なり、熱伝導率もか
えって低下し商品価値がなくなる。また、外観異常発生
率も多大である。
For N022 to 26, when the carbon content is 0.1% by weight or more, the strength of the sintered body is high, but carbon remains in the sintered body after sintering, and the sintered body tends to turn black (becomes difficult to conduct heat). The rate of occurrence of appearance abnormalities is also high, and the product value is lost.

陥、27では、Y2O3が10重量%を越えると焼結体
中の液相量が多すぎるためかえって熱伝導率が低下し、
同時に基板の一部に黄色い着色が起こりやすくなる。ま
た、外観異常発生率も多大である。
In case 27, when Y2O3 exceeds 10% by weight, the amount of liquid phase in the sintered body is too large, and the thermal conductivity decreases on the contrary.
At the same time, yellowing tends to occur in a part of the board. Furthermore, the incidence of appearance abnormalities is also high.

[発明の効果] 本発明により、生産性に優れる常圧焼結を用いて、強度
が大きく、高熱伝導性で、外観の良好なAj2N基板を
容易に製造することができる。
[Effects of the Invention] According to the present invention, an Aj2N substrate with high strength, high thermal conductivity, and good appearance can be easily manufactured using pressureless sintering, which has excellent productivity.

Claims (1)

【特許請求の範囲】 1 主成分のAlNに、焼結助剤として Y_2O_30.5〜10重量%を添加した混合物を、
成形脱脂した後、窒素気流中で、 1500℃以上での線収縮速度を0.2%/時間以上と
して昇温し、1750〜1950℃にて常圧焼成するこ
とを特徴とするAlN焼結体の製造方法。 2 焼結助剤として、さらに、炭素または焼成により炭
素を生成する化合物を炭素換算で0.01〜0.1重量
%未満添加する請求項1記載のAlN焼結体の製造方法
[Claims] 1. A mixture of AlN as the main component and Y_2O_30.5 to 10% by weight as a sintering aid,
After molding and degreasing, the AlN sintered body is heated in a nitrogen stream at a linear shrinkage rate of 0.2%/hour or more at 1500°C or higher, and then sintered at normal pressure at 1750 to 1950°C. manufacturing method. 2. The method for producing an AlN sintered body according to claim 1, wherein carbon or a compound that generates carbon upon firing is further added as a sintering aid in an amount of 0.01 to less than 0.1% by weight in terms of carbon.
JP2157542A 1990-06-18 1990-06-18 Preparation of aln sintered product Pending JPH0450171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157542A JPH0450171A (en) 1990-06-18 1990-06-18 Preparation of aln sintered product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157542A JPH0450171A (en) 1990-06-18 1990-06-18 Preparation of aln sintered product

Publications (1)

Publication Number Publication Date
JPH0450171A true JPH0450171A (en) 1992-02-19

Family

ID=15651958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157542A Pending JPH0450171A (en) 1990-06-18 1990-06-18 Preparation of aln sintered product

Country Status (1)

Country Link
JP (1) JPH0450171A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327425A (en) * 1999-03-17 2000-11-28 Asahi Techno Glass Corp Aluminum nitride sintered compact and its production
JP2018184316A (en) * 2017-04-25 2018-11-22 株式会社Maruwa Aluminum nitride sintered body and manufacturing method thereof
JP2019195036A (en) * 2018-04-26 2019-11-07 株式会社Maruwa Composite substrate and method for manufacturing the same
WO2021125351A1 (en) * 2019-12-20 2021-06-24 クラレノリタケデンタル株式会社 Method for producing zirconia sintered compact
US11319254B2 (en) 2018-09-19 2022-05-03 Maruwa Co., Ltd. Aluminum nitride sintered body and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327425A (en) * 1999-03-17 2000-11-28 Asahi Techno Glass Corp Aluminum nitride sintered compact and its production
JP2018184316A (en) * 2017-04-25 2018-11-22 株式会社Maruwa Aluminum nitride sintered body and manufacturing method thereof
JP2019195036A (en) * 2018-04-26 2019-11-07 株式会社Maruwa Composite substrate and method for manufacturing the same
US11319254B2 (en) 2018-09-19 2022-05-03 Maruwa Co., Ltd. Aluminum nitride sintered body and method for producing same
WO2021125351A1 (en) * 2019-12-20 2021-06-24 クラレノリタケデンタル株式会社 Method for producing zirconia sintered compact

Similar Documents

Publication Publication Date Title
JP3797905B2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
JP5172738B2 (en) Semiconductor module and electronic device using the same
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPH0969672A (en) Silicon nitride circuit board
JPH0450171A (en) Preparation of aln sintered product
JP4384101B2 (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP2018184316A (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JP3145519B2 (en) Aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JPH025711B2 (en)
JP4221006B2 (en) Silicon nitride ceramic circuit board
JPH0312363A (en) Aluminum nitride-containing sintered body and its manufacture
JPH046161A (en) Production of aln sintered body
JP5289184B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JP2003192445A (en) Silicon nitride substrate, method of producing the same and silicon nitride substrate having thin film obtained by using the substrate
JP2000191376A (en) Aluminum nitride sintered body and its production
JPH046162A (en) Aln-bn-based composite sintered body and production thereof
JP4912530B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH02307871A (en) Production of ceramic sintered compact
JPH02107569A (en) Production of aluminum nitride sintered body