JPS6343346B2 - - Google Patents

Info

Publication number
JPS6343346B2
JPS6343346B2 JP58247421A JP24742183A JPS6343346B2 JP S6343346 B2 JPS6343346 B2 JP S6343346B2 JP 58247421 A JP58247421 A JP 58247421A JP 24742183 A JP24742183 A JP 24742183A JP S6343346 B2 JPS6343346 B2 JP S6343346B2
Authority
JP
Japan
Prior art keywords
sialon
sintered body
sintering
powder
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58247421A
Other languages
Japanese (ja)
Other versions
JPS60145961A (en
Inventor
Kazuji Kishi
Masaki Umebayashi
Eiji Tani
Kazuo Kobayashi
Hiroshi Nakamura
Keiichiro Kiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Mitsui Mining Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsui Mining Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP58247421A priority Critical patent/JPS60145961A/en
Publication of JPS60145961A publication Critical patent/JPS60145961A/en
Publication of JPS6343346B2 publication Critical patent/JPS6343346B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は高強度耐熱セラミツクス焼結体の製造
方法、さらに詳しくいえば、高温構造材料として
有用な、炭化ケイ素を含むβ―サイアロン焼結体
から成る高強度耐熱セラミツクス焼結体の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-strength, heat-resistant ceramic sintered body, and more specifically, a method for manufacturing a high-strength, heat-resistant ceramic sintered body made of a β-SiAlON sintered body containing silicon carbide, which is useful as a high-temperature structural material. The present invention relates to a method for producing a solid.

ここでβ―サイアロンとは、Si3N4とAl3O3N
間の固溶体であつて、一般にSi6-ZAlZOZN8-Zで示
され、そのZの値は0.25〜4.2の範囲である。Z
の値が0.25より小さいとほとんど焼結が進まず緻
密な焼結体を得ることができないし、Zが4.2を
超えると該β―サイアロンに固溶できない余剰成
分が粒界に析出し、β―サイアロンのもつ種々の
特性が失なわれてしまう。したがつて、前記式に
おけるZは0.25〜4.2の範囲でなければならない。
Here, β-sialon refers to Si 3 N 4 and Al 3 O 3 N
is a solid solution between Si 6-Z Al Z O Z N 8-Z , and the value of Z is in the range of 0.25 to 4.2. Z
If the value of Z is less than 0.25, sintering will hardly proceed and a dense sintered body cannot be obtained, and if Z exceeds 4.2, excess components that cannot be dissolved in the β-SiAlON will precipitate at the grain boundaries, resulting in β- Various characteristics of Sialon will be lost. Therefore, Z in the above formula must be in the range of 0.25 to 4.2.

このようなβ―サイアロン焼結体は窒化ケイ素
焼結体よりも耐酸化性に優れ、熱膨張率が小さ
く、かつ熱衝撃抵抗及び溶融金属に対する耐食性
が高く、その上高温強度が高いなどの特徴を有す
る材料として注目されており、近年、このβ―サ
イアロン焼結体をタービンブレードやノズル、あ
るいは熱交換器などの高温構造材料として使用す
ることを目的とした研究開発が行われている。
This type of β-sialon sintered body has superior oxidation resistance than silicon nitride sintered body, has a lower coefficient of thermal expansion, has high thermal shock resistance and corrosion resistance against molten metal, and has high strength at high temperatures. In recent years, research and development has been conducted with the aim of using this β-sialon sintered body as a high-temperature structural material such as turbine blades, nozzles, or heat exchangers.

しかしながら、従来のβ―サイアロン焼結体に
おいてはSi3N4―Al2O3―AlN系又はSiO2―Al―
Si系などの組成を有する混合粉末を常圧又は加圧
下で高温加熱することによつて製造されており、
このような方法で得られたβ―サイアロン焼結体
の強度は、高温構造材料として十分に満足しうる
ものではない。また、焼結助剤としてY2O3
MgOなどの酸化物の粉末をβ―サイアロン原料
粉末に加えて焼結する方法があるが、この方法に
よつて得られた焼結体は、室温強度は改善される
が、高温における強度は低下し、β―サイアロン
焼結体が本来もつ優れた性質が失われるという欠
点を有している。
However, in conventional β-sialon sintered bodies, Si 3 N 4 -Al 2 O 3 -AlN system or SiO 2 -Al-
It is manufactured by heating a mixed powder having a composition such as Si-based at high temperature under normal pressure or pressure.
The strength of the β-sialon sintered body obtained by such a method is not sufficiently satisfactory as a high-temperature structural material. In addition, Y 2 O 3 and
There is a method of adding oxide powder such as MgO to β-SiAlON raw material powder and sintering it, but the sintered body obtained by this method has improved room temperature strength, but has decreased strength at high temperatures. However, it has the disadvantage that the excellent properties inherent to the β-sialon sintered body are lost.

本発明者らは、このような事情に鑑み、β―サ
イアロン焼結体が本来有する優れた性質を損なう
ことなく強度を向上させるような添加物について
鋭意研究を重ねた結果、炭化ケイ素の粉末をβ―
サイアロン原料粉末に対して所定量添加して得ら
れた粉末組成物を焼結することにより、目的とす
るβ―サイアロン焼結体が得られることを見出
し、この知見に基づいて本発明を完成するに至つ
た。
In view of these circumstances, the present inventors conducted extensive research on additives that would improve the strength of β-SiAlON sintered bodies without impairing their inherent excellent properties, and as a result, they discovered that silicon carbide powder β-
It has been discovered that the desired β-sialon sintered body can be obtained by sintering a powder composition obtained by adding a predetermined amount to sialon raw material powder, and based on this knowledge, the present invention has been completed. It came to this.

すなわち、本発明は、β―サイアロン生成用原
料粉末95〜60重量%と、炭化ケイ素粉末5〜40重
量%との粉末混合物を非酸化性の雰囲気下で焼結
することを特徴とする高強度耐熱セラミツクス焼
結体の製造方法を提供するものである。
That is, the present invention provides a high-strength product characterized by sintering a powder mixture of 95 to 60% by weight of raw material powder for β-sialon production and 5 to 40% by weight of silicon carbide powder in a non-oxidizing atmosphere. A method for manufacturing a heat-resistant ceramic sintered body is provided.

本発明方法において用いるβ―サイアロン生成
用原料粉末は、窒化ケイ素、窒化アルミニウム及
びアルミナの混合粉末、又は窒化ケイ素、窒化ア
ルミニウム及びシリカの混合粉末あるいはシリ
カ、アルミニウム及びシリコンの混合粉末であつ
て、これらの各成分はSi6-XAlXOXN8-X(ただし、
Z=0.25〜4.2)の組成になるような割合で配合
される。
The raw material powder for producing β-sialon used in the method of the present invention is a mixed powder of silicon nitride, aluminum nitride and alumina, or a mixed powder of silicon nitride, aluminum nitride and silica, or a mixed powder of silica, aluminum and silicon. Each component of is Si 6-X Al X O X N 8-X (however,
Z = 0.25 to 4.2).

前記各成分は、純度99%以上でかつ粒径が
50μm以下、好ましくは20μm以下の微粒子である
ことが望ましい。粒径が50μmより大きな粒子が
含まれていると、得られた焼結体中に未反応物と
して残存し、該焼結体の強度を著しく低下させ
る。
Each of the above ingredients must have a purity of 99% or more and a particle size of
It is desirable that the particles be 50 μm or less, preferably 20 μm or less. If particles with a particle size larger than 50 μm are contained, they remain as unreacted substances in the obtained sintered body, significantly reducing the strength of the sintered body.

本発明において用いる添加成分は、炭化ケイ素
SiCであり、このものはそれ自体硬度物質であ
り、かつ高温において強度が低下しないことは一
般によく知られている。しかしながら、この化合
物は、β―サイアロンと比較するとそのレベルは
著しく低いものであつて、添加量いかんによつて
はβ―サイアロンのもつ耐酸化性や溶融金属との
反応性が少ないという本来の特性を失わせること
になる。したがつて、本発明においては、該化合
物粉末は、全量を100重量部とするとβ―サイア
ロン原料粉末95〜60重量部に対して、5〜40重量
部の割合で配合される。
The additive component used in the present invention is silicon carbide.
It is generally well known that SiC is itself a hard material and does not lose strength at high temperatures. However, the level of this compound is significantly lower than that of β-sialon, and depending on the amount added, β-sialon's original characteristics of oxidation resistance and low reactivity with molten metal may be affected. will cause you to lose. Therefore, in the present invention, the compound powder is blended in an amount of 5 to 40 parts by weight to 95 to 60 parts by weight of the β-sialon raw material powder, assuming the total amount is 100 parts by weight.

このようにして、β―サイアロン原料粉末に、
炭化ケイ素粉末を配合した粉末混合物は、従来セ
ラミツクス焼結体の製造に用いられている方法、
例えば反応焼結法、ホツトプレス法、雰囲気加圧
焼結法、HIP法などによつて焼結することができ
る。
In this way, the β-sialon raw material powder is
A powder mixture containing silicon carbide powder can be prepared by a method conventionally used for producing ceramic sintered bodies.
For example, sintering can be performed by a reaction sintering method, a hot press method, an atmosphere pressure sintering method, a HIP method, or the like.

緻密な焼結体を得るためには、焼結条件とし
て、不活性雰囲気下、1600〜2200℃の温度、常
圧、好ましくは100〜500Kg/cm2の圧力で焼結を行
うことが望ましい。
In order to obtain a dense sintered body, it is desirable to carry out sintering under an inert atmosphere at a temperature of 1600 to 2200°C and normal pressure, preferably at a pressure of 100 to 500 kg/cm 2 .

焼結温度が1600℃未満では反応は十分に進行せ
ず、密度の低い焼結体となる。また通常の焼結法
においては、焼結温度が1900℃より高いと生成し
たβ―サイアロンが熱分解するために緻密な焼結
体が得られないが、雰囲気加圧焼結法及びHIP法
などにおいては、その雰囲気の圧力を、該β―サ
イアロンの分解を抑制しうる圧力まで高めること
によつて、該焼結温度を2200℃まで上昇させるこ
とが可能である。
If the sintering temperature is lower than 1600°C, the reaction will not proceed sufficiently, resulting in a sintered body with low density. In addition, in the normal sintering method, if the sintering temperature is higher than 1900℃, the generated β-sialon will thermally decompose, making it impossible to obtain a dense sintered body, but atmospheric pressure sintering method and HIP method In this case, the sintering temperature can be raised to 2200° C. by increasing the pressure of the atmosphere to a pressure that can suppress the decomposition of the β-sialon.

焼結時間は通常15時間内、好ましくは1〜8時
間の範囲である。低温で時間が短すぎると反応が
不十分で緻密化が進行していない焼結体となり、
また15時間を超えると結晶の粒子が異常に成長し
たり、あるいは分解が生じたりする。この焼結時
間は焼結時の温度及び圧力に依存するため、高温
高圧の条件下では焼結時間が短縮されることはも
ちろんのことである。
The sintering time is usually within 15 hours, preferably in the range of 1 to 8 hours. If the time is too short at a low temperature, the reaction will be insufficient and the sintered body will not be densified.
Moreover, if it exceeds 15 hours, the crystal particles may grow abnormally or decompose. Since this sintering time depends on the temperature and pressure during sintering, it goes without saying that the sintering time is shortened under high temperature and high pressure conditions.

本発明方法においては、焼結は非酸化性雰囲気
下、例えば窒素又は窒素を含む不活性雰囲気下、
あるいは窒素と一酸化炭素とを含む雰囲気下など
で行われる。これはβ―サイアロンを生成するに
当り、原料粉末の酸化を防ぎ、かつ生成したβ―
サイアロンの熱分解を防ぐためである。
In the method of the invention, sintering is carried out under a non-oxidizing atmosphere, for example under nitrogen or an inert atmosphere containing nitrogen.
Alternatively, it is carried out in an atmosphere containing nitrogen and carbon monoxide. This prevents the oxidation of the raw material powder and the produced β-sialon.
This is to prevent thermal decomposition of Sialon.

β―サイアロンの生成は、一般に酸素含有量の
多いx相にSi3N4やAlNが溶解反応することによ
つて起り、焼結体の緻密化が進行するものと考え
られている。このようなβ―サイアロンの生成及
び焼結過程において、炭化ケイ素のような炭化物
は少量の添加においても焼結を促進し、得られた
β―サイアロン焼結体の強度は著しく向上する。
さらにこの炭化ケイ素の添加量を任意に変化させ
ることによつて、強度面だけでなく、焼結体の熱
伝導性も大きく改善しうることが明らかとなつ
た。このような観点から、本発明方法における炭
化ケイ素の添加量は、焼結体の強度を向上させ、
かつβ―サイアロン焼結体の優れた性質を維持す
るために、β―サイアロン原料粉末95〜60重量%
に対して5〜40重量%の範囲であることが必要で
ある。
The formation of β-SiAlON is generally thought to occur due to the dissolution reaction of Si 3 N 4 and AlN in the x-phase, which has a high oxygen content, and the densification of the sintered body progresses. In the production and sintering process of β-sialon, carbides such as silicon carbide promote sintering even when added in small amounts, and the strength of the resulting β-sialon sintered body is significantly improved.
Furthermore, it has become clear that by arbitrarily changing the amount of silicon carbide added, not only the strength but also the thermal conductivity of the sintered body can be greatly improved. From this point of view, the amount of silicon carbide added in the method of the present invention improves the strength of the sintered body,
In addition, in order to maintain the excellent properties of the β-sialon sintered body, β-sialon raw material powder is added at 95 to 60% by weight.
It is necessary that the amount is in the range of 5 to 40% by weight.

このようにして、炭化ケイ素を添加して得られ
たβ―サイアロン焼結体においては、添加した炭
化ケイ素の一部が、生成したx相及び粒界相に拡
散し、粒界相でその結晶化が促進される。このよ
うに、粒界相での結晶化が促進されることによ
り、Y2O3やMgOなどの酸化物を添加剤として加
えたものに比べて、優れた高温特性をもつように
なり、高温における強度低下を生じない。
In this way, in the β-SiAlON sintered body obtained by adding silicon carbide, a part of the added silicon carbide diffuses into the generated x phase and grain boundary phase, and the crystals in the grain boundary phase development is promoted. In this way, by promoting crystallization at the grain boundary phase, it has superior high-temperature properties compared to products containing oxides such as Y 2 O 3 and MgO as additives. No decrease in strength occurs.

本発明方法によつて得られた高強度耐熱セラミ
ツクス焼結体は、耐酸化性に優れ、熱膨張率が小
さく、かつ熱衝撃抵抗及び溶融金属に対する耐食
性が高く、その上高温強度に優れるなどの性質を
有しており、高温構造材料として各種の機器や部
品に有効に用いられる。
The high-strength heat-resistant ceramic sintered body obtained by the method of the present invention has excellent oxidation resistance, low coefficient of thermal expansion, high thermal shock resistance and corrosion resistance against molten metal, and has excellent high-temperature strength. Due to its properties, it can be effectively used as a high-temperature structural material in various devices and parts.

次に実施例によつて本発明をさらに詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 平均粒径0.6μmの窒化ケイ素粉末、平均粒径
3.0μmの窒化アルミニウム粉末及び平均粒径
0.8μmの酸化アルミニウム粉末をそれぞれ83.4、
6.9及び9.7重量%の割合で混合したβ―サイアロ
ン原料粉末95重量部に、炭化ケイ素5重量部を添
加した混合粉末を、1800℃で300Kg/cm2の加圧下、
窒素雰囲気中で60分間加圧焼結してβ―サイアロ
ン焼結体を得た。この焼結体はZ=1のβ―サイ
アロンであり、このβ―サイアロン焼結体それぞ
れについて、室温及び1200℃における抗折強度の
測定を行つたところ、室温で59Kg/mm2、1200℃で
70Kg/mm2であつた。
Example 1 Silicon nitride powder with an average particle size of 0.6 μm, average particle size
3.0μm aluminum nitride powder and average particle size
83.4, respectively, of 0.8μm aluminum oxide powder
A mixed powder obtained by adding 5 parts by weight of silicon carbide to 95 parts by weight of β-SiAlON raw material powder mixed at a ratio of 6.9 and 9.7% by weight was heated at 1800°C under a pressure of 300 kg/cm 2 .
A β-sialon sintered body was obtained by pressure sintering in a nitrogen atmosphere for 60 minutes. This sintered body is β-sialon with Z=1, and the bending strength of each of these β-sialon sintered bodies was measured at room temperature and 1200℃.
It was 70Kg/ mm2 .

なお、比較のため、炭化ケイ素無添加の場合に
ついても、同様にして焼結体を製造し、抗折強度
を求めたところ、室温で45Kg/mm2、1200℃で48
Kg/mm2であつた。
For comparison, a sintered body without the addition of silicon carbide was produced in the same manner, and the bending strength was determined to be 45Kg/mm 2 at room temperature and 48Kg/mm 2 at 1200℃.
It was Kg/ mm2 .

Claims (1)

【特許請求の範囲】[Claims] 1 β―サイアロン生成用原料粉末95〜60重量%
と、炭化ケイ素粉末5〜40重量%との粉末混合物
を非酸化性の雰囲気下で焼結することを特徴とす
る高強度耐熱セラミツクス焼結体の製造方法。
1 Raw material powder for β-sialon production 95-60% by weight
and 5 to 40% by weight of silicon carbide powder is sintered in a non-oxidizing atmosphere.
JP58247421A 1983-12-31 1983-12-31 Manufacture of high strength heat resistant ceramic sinteredbody Granted JPS60145961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58247421A JPS60145961A (en) 1983-12-31 1983-12-31 Manufacture of high strength heat resistant ceramic sinteredbody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58247421A JPS60145961A (en) 1983-12-31 1983-12-31 Manufacture of high strength heat resistant ceramic sinteredbody

Publications (2)

Publication Number Publication Date
JPS60145961A JPS60145961A (en) 1985-08-01
JPS6343346B2 true JPS6343346B2 (en) 1988-08-30

Family

ID=17163184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58247421A Granted JPS60145961A (en) 1983-12-31 1983-12-31 Manufacture of high strength heat resistant ceramic sinteredbody

Country Status (1)

Country Link
JP (1) JPS60145961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990013525A1 (en) * 1989-04-28 1990-11-15 Nihon Cement Co., Ltd. PROCESS FOR PRODUCING β-SIALON SINTER
CN109207786A (en) * 2018-11-01 2019-01-15 西北工业大学 Zr3Al3C5-ZrAlxSiyComposite material and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186268A (en) * 1985-02-14 1986-08-19 工業技術院長 Manufacture of high strength beta-sialon silicon carbide composite body
US4881950A (en) * 1986-05-30 1989-11-21 Gte Valenite Corporation Silicon nitride cutting tool
US5034022A (en) * 1987-10-05 1991-07-23 Gte Valenite Corporation Silicon nitride cutting tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330612A (en) * 1976-09-03 1978-03-23 Toshiba Ceramics Co Manufacture of silicon nitride sintered articles
JPS5345313A (en) * 1976-10-06 1978-04-24 Tokyo Shibaura Electric Co Manufacture of high strength sintered bodies
JPS5450015A (en) * 1977-09-28 1979-04-19 Toshiba Ceramics Co Method of making refractory using betaasialon as binding matrix
JPS5450014A (en) * 1977-09-28 1979-04-19 Toshiba Ceramics Co Refractory using betaasialon as binding matrix and method of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330612A (en) * 1976-09-03 1978-03-23 Toshiba Ceramics Co Manufacture of silicon nitride sintered articles
JPS5345313A (en) * 1976-10-06 1978-04-24 Tokyo Shibaura Electric Co Manufacture of high strength sintered bodies
JPS5450015A (en) * 1977-09-28 1979-04-19 Toshiba Ceramics Co Method of making refractory using betaasialon as binding matrix
JPS5450014A (en) * 1977-09-28 1979-04-19 Toshiba Ceramics Co Refractory using betaasialon as binding matrix and method of making same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990013525A1 (en) * 1989-04-28 1990-11-15 Nihon Cement Co., Ltd. PROCESS FOR PRODUCING β-SIALON SINTER
GB2250284A (en) * 1989-04-28 1992-06-03 Nihon Cement Process for producing ¼-sialon sinter
GB2250284B (en) * 1989-04-28 1993-04-14 Nihon Cement Process for producing b-sialon based sintered bodies
US5302329A (en) * 1989-04-28 1994-04-12 Nihon Cement Co., Ltd. Process for producing β-sialon based sintered bodies
DE3991655C2 (en) * 1989-04-28 1994-07-21 Nihon Cement Process for producing a improved beta-sialon sinter
CN109207786A (en) * 2018-11-01 2019-01-15 西北工业大学 Zr3Al3C5-ZrAlxSiyComposite material and preparation method thereof
CN109207786B (en) * 2018-11-01 2020-08-07 西北工业大学 Zr3Al3C5-ZrAlxSiyMethod for preparing composite material

Also Published As

Publication number Publication date
JPS60145961A (en) 1985-08-01

Similar Documents

Publication Publication Date Title
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPS6343346B2 (en)
JPH0258233B2 (en)
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH09142935A (en) Silicon nitride sintered compact and its production
JPS62875B2 (en)
JP3034106B2 (en) Method for producing silicon nitride based sintered body
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2783720B2 (en) Silicon nitride sintered body and method for producing the same
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JPH0559073B2 (en)
JPH0463028B2 (en)
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH0559077B2 (en)
JPH03153574A (en) High strength sialon-based sintered body
JP3764497B2 (en) Sialon sintered body
JPS62148370A (en) Manufacture of high oxidation-resistance silicon nitride base ceramics
JPH06234571A (en) Silicon nitride sintered compact and its production
JPH05306172A (en) Silicon nitride sintered compact excellent in strength at high temperature and oxidation resistance and its production
JPH0535107B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term