JPH0463028B2 - - Google Patents

Info

Publication number
JPH0463028B2
JPH0463028B2 JP60006673A JP667385A JPH0463028B2 JP H0463028 B2 JPH0463028 B2 JP H0463028B2 JP 60006673 A JP60006673 A JP 60006673A JP 667385 A JP667385 A JP 667385A JP H0463028 B2 JPH0463028 B2 JP H0463028B2
Authority
JP
Japan
Prior art keywords
silicon carbide
weight
sintered body
boron
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60006673A
Other languages
Japanese (ja)
Other versions
JPS61168567A (en
Inventor
Hidetoshi Yamauchi
Haruhisa Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP60006673A priority Critical patent/JPS61168567A/en
Publication of JPS61168567A publication Critical patent/JPS61168567A/en
Publication of JPH0463028B2 publication Critical patent/JPH0463028B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、炭化珪素焼結体の製造方法に関し、
特に本発明は、耐酸化性に優れた炭化珪素焼結体
の製造方法に関する。 炭化珪素は、高い強度、優れた耐摩耗性、優れ
た耐酸化性、優れた耐食性、良好な熱伝導率、低
い熱膨張率、高い耐熱衝撃性並びに高温での高い
強度等の化学的および物理的に優れた特性を有
し、メカニカルシールや軸受け等の耐摩耗材料、
高温炉用の耐火材、熱交換器、燃焼管等の耐熱構
造材料、酸およびアルカリ等の強い腐食性を有す
る溶液のポンプ部品等の耐食性材料として広く使
用することのできる材料である。 〔従来の技術〕 ところで、炭化珪素は従来難焼結性の材料とし
て知られている。すなわち、この材料は酸化物セ
ラミツクスを製造するのに一般に用いられている
常温成形後無加圧下で焼結する無加圧焼結方法に
よつて高密度の焼結体を得ることは近年まで困難
であつた。しかしながら、最近になつて炭化珪素
粉末とホウ素含有添加剤および炭素質添加剤など
焼結助剤から成る混合粉末を成形し、不活性雰囲
気中で焼結する無加圧焼結方法が種々提案されて
いる。 例えば、特開昭50−78609号公報記載の発明に
よれば、(a)炭化珪素と、0.3〜3.0重量%の硼素に
相当する量における硼素含有化合物と、そして
0.1〜1.0重量%の炭素に相当する量における炭素
質添加剤とから成るミクロン以下の粉末の均質分
散体を形成する段階、(b)該粉末混合物を生の物体
に賦形する段階、及び(c)該生の物体を1900〜2100
℃の温度において不活性雰囲気中で理論密度の少
なくとも85%の密度を持つセラミツク物品を得る
に充分の時間焼結する段階を包含する高密度炭化
珪素セラミツクを製造する方法が開示されてい
る。 特開昭54−67599号公報記載の発明によれば、
珪素と炭素を主な骨格成分とする有機珪素高分子
化合物を真空または不活性ガス雰囲気中で1600〜
2200℃の温度で熱分解して主としてβ−SiCを主
成分とする粉末を得、この粉末を酸化性雰囲気中
で500〜800℃の温度に加熱した後、少なくとも弗
酸を含む酸で処理して不純物を溶解除去し高純度
β−SiCより成る粉末とし、該粉末を用いた原料
粉末に炭素および硼素を混合物中のそれぞれの含
有量が0.1〜5重量%となるまで添加し、該混合
物を所定形状に成形した後、真空中、COガス雰
囲気中または不活性ガス雰囲気中で2000〜2300℃
の温度で密度が小なくとも2.60g/cm3以上となる
のに充分な時間焼結することを特徴とする炭化珪
素焼結体の製造方法が開示されている。 特開昭56−169181号公報記載の発明によれば、
炭化珪素微粉とホウ素含有添加剤と炭素質添加剤
とを混合し成形した後、無加圧焼結する炭化珪素
焼結体の製造方法において、β型結晶の炭化珪素
85重量%以上と残部が2H型結晶の炭化珪素から
実質的になる炭化珪素微粉100重量部とホウ素含
有量に換算して0.1〜3.0重量部のホウ素含有添加
剤と固定炭素質含有量に換算して1.0重量部を越
え4.0重量部以下の炭素質添加剤とを均質混合す
る第1工程;前記均質混合物を任意の生成形体に
成形する第2工程;前記生成形体をアルゴン、ヘ
リウム、ネオン、クリプトン、キセノン、水素の
なかから選択されるいずれか少なくとも1種から
なるガス雰囲気中で2050〜2200℃で焼結する第3
工程;上記第1〜3工程の組合せからなりβ型結
晶を50〜85重量%、残留遊離炭素を1.0重量%を
越え3.0重量%以下含有し、3.0g/cm3以上の密度
を有する高強度炭化珪素焼結体の製造方法が開示
されている。 〔発明が解決しようとする問題点〕 ところで、前記特開昭50−78609号公報記載の
発明によれば、ホウ素を焼結助剤として炭化珪素
に対し、0.3〜3.0重量%と比較的多量に含有させ
るため、得られた焼結体は耐酸化性に劣るという
欠点がある。 また前記特開昭54−67599号公報記載の発明に
よれば、有機珪素高分子化合物を熱分野して得ら
れる極めて高価なβ−SiC粉末を出発原料として
用いる方法であるため、工業用材料として広く使
用することが困難であるという欠点がある。 前記特開昭56−169181号公報記載の発明は本願
人の出願に係る発明であり、その目的は炭化珪素
無加圧焼結法を改良し、高強度の焼結体を得るた
めに、炭素質添加剤を炭化珪素微粉の酸化含有量
によつて必要とされる量よりも過剰に添加し、積
極的に炭化珪素焼結体内に遊離炭素の形態で含有
させることによつてβ型結晶のα型結晶への相変
態を適正化し、β型結晶のα型化に伴う粗大な微
細結晶となるようにしたものである。しかしなが
ら前記公報記載の発明は高強度の焼結体を得る上
で出発原料として85重量%以上がβ型結晶よりな
る炭化珪素を必要としたり、焼結助剤としてのホ
ウ素や炭素の添加量などに種々の制約を受ける欠
点がある。 本発明は、前述の如き従来知られた炭化珪素無
加圧焼結方法の欠点を除去し、特にガスタービン
部品、高温熱交換器、炉構造材料のような過酷な
条件下で使用することのできる高密度でかつ耐酸
化性に優れた炭化珪素無加圧焼結体を安価にかつ
容易に製造することのできる方法を提供すること
を目的とする。 〔問題を解決するための手段〕 本発明によれば、炭化珪素微粉を無加圧焼結す
る炭化珪素焼結体の製造方法において、結晶の格
子定数の平均値が4.3584Å以上のβ型炭化珪素を
50重量%以上含有する炭化珪素微粉100重量部と
ホウ酸含有量に換算して0.01〜0.25重量部のホウ
素含有添加剤と固定炭素含有量に換算して0.3〜
5.0重量部の炭素質添加剤と均質混合した後、任
意の形状を有する生成形体に成形し、次いで非酸
化性雰囲気中で1700〜2300℃で焼結し、2.8g/
cm3以上の密度を有する炭化珪素焼結体を製造する
ことを特徴とする炭化珪素焼結体の製造方法によ
つて前記目的を達成することができる。 次に本発明を詳細に説明する。 従来、炭化珪素の無加圧焼結法によれば、炭化
珪素粉末にホウ素および炭素を混合し焼結して焼
結体が製造されている。ところで、前記ホウ素は
焼結体内に残留して焼結体表面のシリカ層の融点
を低下させて焼結体の耐酸化性を劣化させるた
め、その添加量はなるべく少ないほうが望まし
い。しかしながら、従来知られた炭化珪素の無加
圧焼結法によれば、一部の特定の炭化珪素微粉例
えば特開昭54−67599号公報に記載されている有
機珪素高分子化合物を熱分解して得られる極めて
高価なβ型炭化珪素粉末および特開昭56−169181
号公報に記載されている85重量%以上がβ型結晶
で残部が2H型結晶から実質的になる炭化珪素微
粉を除いては、少量のホウ素添加量でもつて高密
度の炭化珪素無加圧焼結体を得ることは困難であ
り、しかもそのホウ素添加量の最少値はいずれも
0.1重量%であり、それ程少量ではなかつた。 本発明者らは、結晶の格子定数の平均値が
4.3584Å以上のβ型炭化珪素を主体とする炭化珪
素微粉が焼結性に極めて優れており、無加圧焼結
法における出発原料として使用することにより、
極めて少量のホウ素添加量で炭化珪素粒子間にネ
ツクを多数均一に発生させることができ、高密度
で均一な微細構造を有し、耐酸化性に優れた炭化
珪素焼結体を得ることのできることを新規に知見
した。 本発明によれば、炭化珪素微粉は結晶の格子定
数の平均値が4.3484Å以上のβ型炭化珪素を50重
量%以上含有したものであることが必要である。
その理由は、前記結晶の格子定数の平均値が
4.3584Å以上のβ型炭化珪素は極めて焼結性に優
れており、前記β型炭化珪素を50重量%以上含有
する炭化珪素微粉を出発原料として使用すること
により、極めて少量のホウ素添加量でもつて高密
度の焼結体を得ることができるからであり、なか
でも70重量%以上含有する炭化珪素微粉がより有
利である。 本発明において使用されるβ型炭化珪素は、シ
リカと炭素を出発原料として高温焼成してなるβ
型炭化珪素であることが好ましく、本出願人が先
に出願した発明である特公昭57−48485号公報に
記載の製造装置を使用して製造されるものが経済
的に有利である。 なお、結晶の格子定数の平均値が4.3584Å以上
のβ型炭化珪素が焼結特性に優れている理由とし
ては、結晶の格子定数の平約値が4.3584Å以上の
β型炭化珪素は焼結過程におけるネツク形成時に
粒子相互にネツクが形成される確率が高く、しか
も粒界を通しての元素拡散が容易であることによ
るものと考えられる。 本発明において使用される結晶の格子定数の平
均値が4.3584Å以上のβ型炭化珪素は、炭化珪素
の生成反応時にアルミニウムを固溶させることに
よつて製造することができ、例えばシリカと炭素
と必要に応じて添加されるアルミニウム含有添加
剤とを出発原料として1800〜2200℃の高温域で焼
成することによつて製造することができる。 前記アルミニウム含有添加剤としては各種のア
ルミニウム含有塩や金属アルミニウムを使用する
こともできるが、アルミナ(酸化アルミニウム)、
ムライト等を使用することが有利である。 本発明によれば、前記β型炭化珪素はアルミニ
ウムを0.02〜1.0重量%含有したものであること
が好ましい。その理由は、0.02重量%より少ない
と結晶の格子定数を4.3584Åよりも大きくするこ
とが困難であるし、一方1.0重量%より多いと炭
化珪素中に固溶されないアルミニウムが多くなる
ため、焼結時における板状結晶の異常粒成長が起
こり易く、高密度の焼結体を得ることが困難にな
るばかりでなく、焼結体の高温特性が劣化するか
らであり、なかでも0.1〜〜0.5重量%の範囲がよ
り有利である。 ところで、本出願人は先に特開昭57−17465号
公報により下記の発明を開示した。 「炭化珪素微粉を無加圧焼結する炭化珪素焼結
体の製造方法において、アルミニウムを0.1〜1.0
重量%含有し、β型結晶の炭化珪素が90%以上で
ある炭化珪素微粉100重量部とホウ素含有量に換
算して0.1〜3.0重量部のホウ素含有添加剤と固定
炭素含有量に換算して1.0重量部を越え4.0重量部
以下の炭素質添加剤を均質混合する第1工程;前
記均質混合物を任意の形状を有する生成形体に成
形する第2工程;前記生成形体をアルゴン、ヘリ
ウム、ネオン、クリプトン、キセノン、水素から
選択される少なくとも1種からなるガス雰囲気中
で1900〜2100℃で焼結する第3工程;前記第1〜
3工程の組合せからなる4H型結晶あるいは6H型
結晶のいずれか少なくとも1種が80〜95%、残部
は主としてβ型結晶よりなり、残留遊離炭素を
1.0重量%を越え3.0重量%以下含有し、少なくと
も3.0g/cm3の密度を有する高強度炭化珪素焼結体
の製造方法」。 しかしながら前記公報記載の発明はβ型結晶の
炭化珪素が90%以上である炭化珪素微粉を出発原
料として、焼結中にその結晶の大部分をα型結晶
の炭化珪素に相変態させα型結晶を80〜95%含有
する高密度の炭化珪素焼結体を製造する発明であ
るのに対して、本願発明は結晶の格子定数の平均
値が4.3584Å以上のβ型炭化珪素を50重量%以上
含有する炭化珪素微粉を出発原料とすることによ
り、極めて少量のホウ素添加量でもつて高密度の
耐酸化性に優れた炭化珪素焼結体を製造する方法
であり、発明の目的および構成において大きく異
なる。 本発明によれば、得られる炭化珪素焼結体は少
なくとも20重量%がβ型炭化珪素であることが好
ましい。その理由は、得られる炭化珪素焼結体に
含有されるβ型炭化珪素を20重量%よりも少なく
すると焼結時に伴う相変態が著しく、相変態に伴
つて板状結晶の異常粒成長が顕著になるため高密
度の焼結体を得ることが困難であるからである。 本発明によれば、前記炭化珪素微粉は比表面積
が5〜50m2/gであることが好ましい。その理由
は、前記比表面積が5m2/gより小さい炭化珪素
を出発原料とすると、焼結初期に形成されるネツ
クの発生箇所が少なく焼結時における収縮が不均
一となるからであり、一方50m2/gより大きな比
表面積を有する炭化珪素微粉はネツクの発生箇所
も多く、焼結性にも優れていると考えられるが、
このような炭化珪素微粉は入手が困難であるから
である。 本発明によれば、前記炭化珪素微粉は酸素含有
率が0.1〜1.0重量%であることが好ましい。前記
炭化珪素微粉に含有される酸素は焼結時に炭素と
反応し、次式に示される如き機構で除去される。 SiO2+C→SiO+CO (1) SiO+2C→SiO+CO (2) したがつて、前記酸素が1.0重量%よりも多量
に存在すると炭素質添加剤を多量に使用しなけれ
ばならないばかりでなく、焼結助剤としてのホウ
素が酸化してしまつたり、COガスが大量に発生
するため焼結時にガス抜きの必要が生じる等焼結
が困難になるからである。一方前記酸素量が0.1
重量%よりも少ない炭化珪素微粉は例えば弗酸と
硝酸の混酸で処理することによつて得ることがで
きるが、このようにして得た高純度の炭化珪素微
粉は極めて活性であり、空気雰囲気中で乾燥した
りすると常温でも容易に酸化してしまうため、酸
素含有量を低く維持するには酸処理後の雰囲気を
非酸化性に保持したりしなければならず実用的で
ないからである。 本発明によれば、炭化珪素微粉100重量部に対
してホウ素含有添加剤をホウ素含有量に換算して
0.01〜0.25重量部添加することが必要である。前
記ホウ素含有添加剤をホウ素含有量に換算して
0.01〜0.25重量部にする理由は0.01重量部より少
ないとネツク形成時の接着作用が充分でなく高密
度化が困難であるからであり、一方0.25重量部よ
り多いと焼結体内に残留するホウ素が焼結体表面
のシリカ層の融点を低下させて焼結体の耐酸化性
を劣化させるからである。前記ホウ素含有添加剤
としては、例えばホウ素、炭化ホウ素あるいはそ
れらの混合物から選択される少なくとも1種を用
いることが好ましい。 なお、本発明によれば、ホウ素含有添加剤の添
加量がホウ素含有量に換算して0.1重量部より少
ない場合に特に耐酸化性に優れた炭化珪素焼結体
を得ることができる。 本発明によれば、炭化珪素微粉100重量部に対
して炭素質添加剤を固定炭素含有量を換算して
0.3〜5.0重量部添加することが必要である。前記
炭素質添加剤は炭化珪素微粉に含有される酸素を
除去し、かつ炭化珪素粒子間に介在してSiCの拡
散を適正化させるために用いられる。したがつて
炭素質添加剤は酸素含有量にみあう量を少なくと
も添加し、さらに炭化珪素粒子間に均一に介在す
るに充分な量を添加することが有利である。前記
炭素質添加剤の添加量を固定炭素含有量に換算し
て0.3〜5.0重量部にする理由は0.3重量部より少な
いと炭素質添加剤の大部分が酸素によつて消費さ
れるためSiCの拡散を適正化する作用が充分に発
揮できないからであり、一方5.0重量部よりも多
いと炭化珪素粒子間に過剰の炭素が存在し、焼結
を著しく阻害するからである。 前記炭素質添加剤は、焼結開始時に少なくとも
100m2/gの比表面積を有するものであることが
好ましい。その理由は前記焼結開始時における比
表面積が100m2/gよりも小さいとSiCの拡散を
適正化する作用が弱いため、充分にSiCの拡散を
適正化する作用を発揮させるには大量に添加しな
ければならず、焼結体中の介在物層を増加させる
結果となり高強度の焼結体を得難いからである。 前記炭素質添加剤としては、焼結開始時に炭素
を存在させられるものであれば使用でき、例えば
フエノール樹脂、リグニンスルホン酸塩、ポリビ
ニルアルコール、コンスターチ、糖蜜、コールタ
ールピツチ、アルギン酸塩、ポリフエニレンのよ
うな各種有機物質あるいは、カーボンブラツク、
アセチレンブラツクのような熱分解炭素が有利に
使用できる。 本発明によれば、炭化珪素微粉とホウ素含有添
加剤と炭素質添加剤を均質混合した後、任意の形
状を有する生成形体に成形し、次いで非酸化性雰
囲気中で1700〜2300℃で焼結し、2.8g/cm3以上の
密度を有する炭化珪素焼結体が製造される。 本発明によれば、前記非酸化性雰囲気としては
アルゴン、ヘリウム、ネオン、クリプトン、キセ
ノン、水素から選ばれるいずれか少なくとも1種
からなるガス雰囲気であることが有利である。 ところで、本発明における焼結時には先にも記
載した如く、前記式(1),(2)に従つてCOガスが発
生する。前記COガスが多量に存在すると前記式
の反応が抑制され炭化珪素表面のシリカ膜除去が
不充分となり、充分な焼結収縮が得られないし、
シリカ膜が残存すると炭化珪素焼結体内で介在相
を形成し焼結体の物性特に機械的強度を劣化させ
るため、COガスを炉内より除去しなければなら
ない。従つて本発明によれば炉内を前記ガス気流
雰囲気とすることが有利である。なお前記焼結時
の炉内雰囲気のCOガス分圧は10KPa以下に維持
することが有利である。 本発明によれば、前記生成形体を1700〜2300℃
の範囲内で焼結することが必要である。その理由
は焼結温度が1700℃より低いと本発明の2.8g/cm3
以上の密度を有する焼結体を得ることが困難であ
り、逆に2300℃より高い温度では結晶粒の成長が
著しく、焼結体の物性例えば機械的強度が低下す
るからであり、特に均一な微細構造でかつ高強度
の焼結体を得る上では1900〜2100℃の温度範囲内
で焼結することが有利である。 本発明によれば、前記焼結温度に至る昇温過程
のうち1500〜1700℃の温度範囲内において、前記
シリカ膜の除去反応を速やかに進行させてネツク
の生成反応を均一に発生させるために充分時間前
記温度範囲におけるCOガス分圧を1KPaより低く
維持することが有利である。 次に本発明を実施例および比較例について具体
的に説明する。 実施例 1 珪砂粉末(SiO2=99.6%、全Al=0.1%、80メ
ツシユ以下)、無煙炭粉末(C=87.8%、全Al=
0.4%、325メツシユ以下)およびピツチ粉末(C
=50.4%、200メツシユ以下、珪砂に対して7重
量%配合)をC/SiO2モル比が3.8になるように
配合し、縦型スクリユー混合機に入れて10分間混
合した。前記配合原料にCMC0.5%水溶液をスプ
レーしながら皿型造粒機を用いて成形し、篩とバ
ーグリズリーで整粒した後、乾燥して平均粒径
10.5mm、嵩比重0.6の成形原料を得た。次いで前
記成形原料を前記特公昭57−48485号公報に記載
したと同様の製造装置の上部より装入し、間接電
気加熱して約1900℃の温度でSiC化反応を行なわ
せた。さらに得られた生成物を精製、粒度分級し
て炭化珪素微粉を調製した。 前記炭化珪素微粉は96.7%がβ型結晶で残部が
2H型結晶よりなり、β型結晶の格子定数は
4.3609Åであり、0.31重量%のアルミニウム、
0.32重量%の遊離炭素、0.18重量%の酸素を含有
し、15.8m2/gの比表面積を有していた。 なお、前記β型結晶の格子定数は(420)の回
折線より求めた。 前記炭化珪素微粉99.9gと比表面積が27.8m2
gの炭化ホウ素粉末0.1gと固定炭素含有率51.6重
量%のノボラツク型フエノール樹脂2.0gとの混合
物に対し、アセトン150mlを添加し、振動ミルを
使用して2時間混合処理した。前記振動ミルより
混合物スラリーを排出し噴霧乾燥して、平均粒径
が0.09mm、粉体嵩密度が35%(1.12g/cm3)の顆
粒を得た。 この顆粒から適量を採取し、金属性押し型を用
いて0.15t/cm2の圧力で仮成形し、次に静水圧プ
レス機を用いて1.8t/cm2の圧力で成形した。前記
成形によつて得られた生成形体の密度は61%
(1.95g/cm3)であることが認められた。 前記生成形体をタンマン型焼結炉に装入し、大
気圧下のアルゴンガス気流中で焼結した。昇温過
程は常温〜1650℃は5℃/min.1650℃にて40分
間保持した後、さらに5℃/min.で昇温し最高
温度2000℃で30分間保持した。焼結中のCOガス
分圧は常温〜1650℃が5KPa以下、1650℃で保持
する際は0.5KPa以下、1650℃より高温域では
5KPa以下となるようにアルゴンガス流量を適宜
調整した。 得られた焼結体はアルミニウムを0.31重量%、
遊離炭素を1.0重量%含有し、3.12g/cm3(相対理
論密度率98.0%)の密度を有していた。またこの
焼結体の粉末X線回折測定の結果、この焼結体は
92.1%がβ型結晶であることが認められた。 前記焼結体を30×30×1mmの板状に加工し、ア
セトンで洗浄して耐酸化性テスト用試料を作成し
た。前記試料を1400℃の空気雰囲気に保持された
加熱炉中で20時間処理し、処理前後の重量増加量
を測定したところ処理前に比較して0.02mg/cm2
割合であり、耐酸化性に優れていることが認めら
れた。 実施例2、比較例1 実施例1に記載したと同様であるが、無煙炭粉
末に換えて第1表に示した如くアルミニウム含有
量の異なるオイルコークス粉末を使用して第1表
に示した温度で炭化珪素微粉を調製した。 得られた炭化珪素微粉の物性は第1表に示し
た。 前記第1表に示した炭化珪素微粉を使用し、実
施例1と同様であるが第1表に示した如く炭化ホ
ウ素の添加量を変えて焼結体を得た。得られた焼
結体の物性は実施例1に示したと同様の方法で測
定し、第1表に示した。
[Industrial Application Field] The present invention relates to a method for manufacturing a silicon carbide sintered body,
In particular, the present invention relates to a method for manufacturing a silicon carbide sintered body having excellent oxidation resistance. Silicon carbide has chemical and physical properties such as high strength, good wear resistance, good oxidation resistance, good corrosion resistance, good thermal conductivity, low coefficient of thermal expansion, high thermal shock resistance and high strength at high temperatures. It has excellent physical properties and is a wear-resistant material for mechanical seals, bearings, etc.
It is a material that can be widely used as a refractory material for high-temperature furnaces, a heat-resistant structural material for heat exchangers, combustion tubes, etc., and a corrosion-resistant material for pump parts for highly corrosive solutions such as acids and alkalis. [Prior Art] By the way, silicon carbide is conventionally known as a material that is difficult to sinter. In other words, until recently, it has been difficult to obtain a high-density sintered body of this material using the pressureless sintering method, which is generally used to produce oxide ceramics, in which the material is molded at room temperature and then sintered under no pressure. It was hot. However, recently, various pressureless sintering methods have been proposed in which a mixed powder consisting of silicon carbide powder and sintering aids such as boron-containing additives and carbonaceous additives is compacted and sintered in an inert atmosphere. ing. For example, according to the invention described in JP-A-50-78609, (a) silicon carbide, a boron-containing compound in an amount corresponding to 0.3 to 3.0% by weight of boron, and
and a carbonaceous additive in an amount corresponding to 0.1 to 1.0% by weight of carbon; (b) forming the powder mixture into a green body; c) 1900~2100 of the raw object
A method of making a high-density silicon carbide ceramic is disclosed which includes sintering in an inert atmosphere at a temperature of 0.degree. C. for a time sufficient to obtain a ceramic article having a density of at least 85% of the theoretical density. According to the invention described in JP-A-54-67599,
Organosilicon polymer compounds whose main skeleton components are silicon and carbon are heated to 1600 ~
Pyrolysis is performed at a temperature of 2200°C to obtain a powder mainly composed of β-SiC, which is heated in an oxidizing atmosphere to a temperature of 500 to 800°C, and then treated with an acid containing at least hydrofluoric acid. Impurities are dissolved and removed to obtain a powder made of high-purity β-SiC, and carbon and boron are added to the raw material powder using this powder until the content of each in the mixture becomes 0.1 to 5% by weight. After forming into the specified shape, heat at 2000 to 2300℃ in vacuum, CO gas atmosphere, or inert gas atmosphere.
A method for producing a sintered silicon carbide body is disclosed, which comprises sintering at a temperature of at least 2.60 g/cm 3 for a time sufficient to achieve a density of at least 2.60 g/cm 3 or more. According to the invention described in JP-A-56-169181,
In a method for producing a silicon carbide sintered body in which silicon carbide fine powder, a boron-containing additive, and a carbonaceous additive are mixed, molded, and then sintered without pressure,
100 parts by weight of silicon carbide fine powder consisting essentially of 85% by weight or more and the remainder being 2H-type crystalline silicon carbide, a boron-containing additive of 0.1 to 3.0 parts by weight, and fixed carbon content in terms of boron content. A first step of homogeneously mixing more than 1.0 parts by weight and not more than 4.0 parts by weight of a carbonaceous additive; a second step of molding the homogeneous mixture into an arbitrary formed body; The third step is sintering at 2050 to 2200°C in a gas atmosphere consisting of at least one selected from krypton, xenon, and hydrogen.
Process: A high-strength product consisting of a combination of steps 1 to 3 above, containing 50 to 85% by weight of β-type crystals, more than 1.0% by weight and less than 3.0% of residual free carbon, and having a density of 3.0g/cm 3 or more. A method for manufacturing a silicon carbide sintered body is disclosed. [Problems to be Solved by the Invention] According to the invention described in JP-A-50-78609, boron is used as a sintering aid in a relatively large amount of 0.3 to 3.0% by weight based on silicon carbide. Because of the presence of oxidation, the resulting sintered body has a disadvantage of poor oxidation resistance. Furthermore, according to the invention described in JP-A-54-67599, the extremely expensive β-SiC powder obtained by thermally fielding an organosilicon polymer compound is used as a starting material, so it can be used as an industrial material. The disadvantage is that it is difficult to widely use. The invention described in JP-A-56-169181 is an invention filed by the applicant, and its purpose is to improve the pressureless sintering method of silicon carbide and to obtain a high-strength sintered body. By adding the quality additive in excess of the amount required depending on the oxidation content of the silicon carbide fine powder and actively incorporating it in the form of free carbon into the silicon carbide sintered body, β-type crystals can be formed. The phase transformation to the α-type crystal is optimized, and the β-type crystal becomes coarse and fine crystals as it changes to the α-type. However, in order to obtain a high-strength sintered body, the invention described in the above publication requires silicon carbide containing 85% by weight or more of β-type crystals as a starting material, and the amount of boron and carbon added as sintering aids. However, it has the disadvantage of being subject to various restrictions. The present invention eliminates the drawbacks of the previously known pressureless sintering methods for silicon carbide as described above, and is particularly suitable for use under harsh conditions such as gas turbine parts, high temperature heat exchangers, and furnace structural materials. It is an object of the present invention to provide a method that can inexpensively and easily produce a pressureless sintered body of silicon carbide having high density and excellent oxidation resistance. [Means for Solving the Problem] According to the present invention, in a method for producing a silicon carbide sintered body in which fine silicon carbide powder is sintered without pressure, β-type carbide having an average crystal lattice constant of 4.3584 Å or more is used. silicon
100 parts by weight of silicon carbide fine powder containing 50% by weight or more, a boron-containing additive of 0.01 to 0.25 parts by weight in terms of boric acid content, and 0.3 to 0.3 parts by weight in terms of fixed carbon content.
After homogeneously mixing with 5.0 parts by weight of carbonaceous additive, it is molded into a formed body having an arbitrary shape, and then sintered at 1700-2300°C in a non-oxidizing atmosphere to produce 2.8 g/
The above object can be achieved by a method for producing a silicon carbide sintered body, which is characterized by producing a silicon carbide sintered body having a density of cm 3 or more. Next, the present invention will be explained in detail. Conventionally, according to a pressureless sintering method of silicon carbide, a sintered body is manufactured by mixing silicon carbide powder with boron and carbon and sintering the mixture. By the way, since the boron remains in the sintered body and lowers the melting point of the silica layer on the surface of the sintered body, thereby deteriorating the oxidation resistance of the sintered body, it is desirable that the amount added is as small as possible. However, according to the conventionally known pressureless sintering method for silicon carbide, some specific silicon carbide fine powders, such as the organosilicon polymer compound described in JP-A No. 54-67599, cannot be thermally decomposed. Extremely expensive β-type silicon carbide powder obtained by
Except for the silicon carbide fine powder that is substantially composed of 85% by weight or more of β-type crystals and the remainder of 2H-type crystals as described in the publication, high-density silicon carbide can be produced by pressureless sintering even with a small amount of boron added. It is difficult to obtain solids, and the minimum amount of boron added is
It was 0.1% by weight, which was not a very small amount. The present inventors have determined that the average value of the lattice constant of the crystal is
Silicon carbide fine powder, mainly composed of β-type silicon carbide with a diameter of 4.3584 Å or more, has extremely excellent sinterability, and by using it as a starting material in the pressureless sintering method,
It is possible to uniformly generate many nets between silicon carbide particles with an extremely small amount of boron added, and it is possible to obtain a silicon carbide sintered body that has a high density and uniform microstructure and has excellent oxidation resistance. We discovered something new. According to the present invention, the silicon carbide fine powder must contain 50% by weight or more of β-type silicon carbide having an average crystal lattice constant of 4.3484 Å or more.
The reason is that the average value of the lattice constant of the crystal is
β-type silicon carbide with a diameter of 4.3584 Å or more has extremely excellent sinterability, and by using silicon carbide fine powder containing 50% by weight or more of the β-type silicon carbide as a starting material, it can be sintered even with an extremely small amount of boron added. This is because a high-density sintered body can be obtained, and among them, silicon carbide fine powder containing 70% by weight or more is more advantageous. The β-type silicon carbide used in the present invention is a β-type silicon carbide obtained by firing silica and carbon at a high temperature as starting materials.
Type silicon carbide is preferable, and it is economically advantageous to use the manufacturing apparatus described in Japanese Patent Publication No. 57-48485, which is an invention previously filed by the present applicant. The reason why β-type silicon carbide with a crystal lattice constant of 4.3584 Å or more has excellent sintering properties is that β-type silicon carbide with a crystal lattice constant of 4.3584 Å or more has excellent sintering properties. This is thought to be due to the fact that there is a high probability that nets will be formed between particles during the formation of nets in the process, and that elements can easily diffuse through grain boundaries. The β-type silicon carbide whose crystal lattice constant has an average value of 4.3584 Å or more used in the present invention can be produced by dissolving aluminum as a solid solution during the silicon carbide production reaction, for example, by combining silica and carbon. It can be produced by firing at a high temperature range of 1,800 to 2,200°C using as a starting material an aluminum-containing additive added as necessary. Various aluminum-containing salts and metallic aluminum can be used as the aluminum-containing additive, but alumina (aluminum oxide),
It is advantageous to use mullite or the like. According to the present invention, the β-type silicon carbide preferably contains 0.02 to 1.0% by weight of aluminum. The reason for this is that if it is less than 0.02% by weight, it is difficult to make the crystal lattice constant larger than 4.3584 Å, while if it is more than 1.0% by weight, there will be a large amount of aluminum that will not be dissolved in silicon carbide, so the sintering This is because abnormal grain growth of plate-like crystals is likely to occur at times, which not only makes it difficult to obtain a high-density sintered body, but also deteriorates the high-temperature properties of the sintered body. % ranges are more advantageous. By the way, the present applicant previously disclosed the following invention in Japanese Unexamined Patent Publication No. 17465/1983. "In the method for manufacturing silicon carbide sintered bodies in which silicon carbide fine powder is sintered without pressure, aluminum is
100 parts by weight of silicon carbide fine powder containing 90% or more of silicon carbide in the form of β-type crystals, a boron-containing additive of 0.1 to 3.0 parts by weight in terms of boron content, and a boron-containing additive in terms of fixed carbon content. A first step of homogeneously mixing more than 1.0 parts by weight and not more than 4.0 parts of a carbonaceous additive; a second step of molding the homogeneous mixture into a formed body having an arbitrary shape; A third step of sintering at 1900 to 2100°C in a gas atmosphere consisting of at least one selected from krypton, xenon, and hydrogen;
80 to 95% of at least one type of 4H type crystal or 6H type crystal consisting of a combination of 3 steps, the remainder mainly consists of β type crystal, and residual free carbon is removed.
A method for producing a high-strength silicon carbide sintered body containing more than 1.0% by weight and less than 3.0% by weight and having a density of at least 3.0g/cm 3 . However, the invention described in the above publication uses silicon carbide fine powder containing 90% or more of β-type crystal silicon carbide as a starting material, and phase-transforms most of the crystals into α-type crystal silicon carbide during sintering. In contrast, the present invention produces a high-density silicon carbide sintered body containing 80 to 95% of β-type silicon carbide having an average crystal lattice constant of 4.3584 Å or more by 50% or more by weight. This is a method for producing a silicon carbide sintered body with high density and excellent oxidation resistance even with an extremely small amount of boron added by using the contained silicon carbide fine powder as a starting material, and it differs greatly in the purpose and structure of the invention. . According to the present invention, it is preferable that at least 20% by weight of the obtained silicon carbide sintered body is β-type silicon carbide. The reason for this is that if the amount of β-type silicon carbide contained in the obtained silicon carbide sintered body is less than 20% by weight, phase transformation during sintering will be significant, and abnormal grain growth of plate-like crystals will be noticeable due to phase transformation. This is because it is difficult to obtain a high-density sintered body. According to the present invention, the silicon carbide fine powder preferably has a specific surface area of 5 to 50 m 2 /g. The reason for this is that when silicon carbide with a specific surface area smaller than 5 m 2 /g is used as a starting material, there are fewer places where the necks are formed in the initial stage of sintering, and shrinkage during sintering becomes uneven. Silicon carbide fine powder with a specific surface area larger than 50 m 2 /g has many places where necks occur and is considered to have excellent sinterability.
This is because such silicon carbide fine powder is difficult to obtain. According to the present invention, the silicon carbide fine powder preferably has an oxygen content of 0.1 to 1.0% by weight. Oxygen contained in the silicon carbide fine powder reacts with carbon during sintering and is removed by a mechanism as shown in the following equation. SiO 2 +C→SiO+CO (1) SiO+2C→SiO+CO (2) Therefore, if the oxygen is present in an amount greater than 1.0% by weight, not only a large amount of carbonaceous additive must be used, but also a sintering aid. This is because sintering becomes difficult, such as when the boron as a material oxidizes or because a large amount of CO gas is generated, which requires degassing during sintering. On the other hand, the amount of oxygen is 0.1
Silicon carbide fine powder with less than 1% by weight can be obtained, for example, by treatment with a mixed acid of hydrofluoric acid and nitric acid, but the high purity silicon carbide fine powder obtained in this way is extremely active and cannot be used in an air atmosphere. This is because if the acid treatment is dried, it is easily oxidized even at room temperature, so in order to maintain a low oxygen content, the atmosphere after the acid treatment must be kept non-oxidizing, which is not practical. According to the present invention, the boron-containing additive is converted into boron content based on 100 parts by weight of silicon carbide fine powder.
It is necessary to add 0.01 to 0.25 parts by weight. The above boron-containing additive is converted into boron content.
The reason why it should be 0.01 to 0.25 part by weight is that if it is less than 0.01 part by weight, the adhesive effect during the formation of the net will be insufficient and it will be difficult to achieve high density. This is because the melting point of the silica layer on the surface of the sintered body is lowered and the oxidation resistance of the sintered body is deteriorated. As the boron-containing additive, it is preferable to use at least one selected from, for example, boron, boron carbide, or a mixture thereof. According to the present invention, a silicon carbide sintered body particularly excellent in oxidation resistance can be obtained when the amount of the boron-containing additive added is less than 0.1 part by weight in terms of boron content. According to the present invention, the carbonaceous additive is added to 100 parts by weight of silicon carbide fine powder in terms of fixed carbon content.
It is necessary to add 0.3 to 5.0 parts by weight. The carbonaceous additive is used to remove oxygen contained in the silicon carbide fine powder and to be interposed between the silicon carbide particles to optimize the diffusion of SiC. Therefore, it is advantageous to add the carbonaceous additive at least in an amount matching the oxygen content, and further in an amount sufficient to be uniformly interposed between silicon carbide particles. The reason why the amount of the carbonaceous additive added is set to 0.3 to 5.0 parts by weight in terms of fixed carbon content is that if it is less than 0.3 parts by weight, most of the carbonaceous additive will be consumed by oxygen. This is because the effect of optimizing diffusion cannot be sufficiently exerted, and on the other hand, if the amount exceeds 5.0 parts by weight, excessive carbon will exist between silicon carbide particles, significantly inhibiting sintering. The carbonaceous additive is added at least at the beginning of sintering.
Preferably, it has a specific surface area of 100 m 2 /g. The reason for this is that if the specific surface area at the start of sintering is smaller than 100 m 2 /g, the effect of optimizing the diffusion of SiC is weak, so in order to fully exhibit the effect of optimizing the diffusion of SiC, it is necessary to add a large amount. This is because the inclusion layer in the sintered body increases, making it difficult to obtain a high-strength sintered body. As the carbonaceous additive, any material that can cause carbon to be present at the start of sintering can be used, such as phenolic resin, lignin sulfonate, polyvinyl alcohol, cornstarch, molasses, coal tar pitch, alginate, and polyphenylene. various organic substances or carbon black,
Pyrolytic carbon such as acetylene black can be advantageously used. According to the present invention, silicon carbide fine powder, a boron-containing additive, and a carbonaceous additive are homogeneously mixed, then formed into a formed body having an arbitrary shape, and then sintered at 1700 to 2300°C in a non-oxidizing atmosphere. However, a silicon carbide sintered body having a density of 2.8 g/cm 3 or more is produced. According to the present invention, it is advantageous that the non-oxidizing atmosphere is a gas atmosphere consisting of at least one selected from argon, helium, neon, krypton, xenon, and hydrogen. By the way, during sintering in the present invention, as described above, CO gas is generated according to the above equations (1) and (2). If the CO gas is present in a large amount, the reaction of the above formula will be suppressed, and the silica film on the silicon carbide surface will not be removed sufficiently, making it impossible to obtain sufficient sintering shrinkage.
If the silica film remains, it will form an intervening phase within the silicon carbide sintered body and deteriorate the physical properties, especially the mechanical strength, of the sintered body, so the CO gas must be removed from the furnace. Therefore, according to the present invention, it is advantageous to provide the above-mentioned gas flow atmosphere inside the furnace. Note that it is advantageous to maintain the CO gas partial pressure in the furnace atmosphere during the sintering to 10 KPa or less. According to the present invention, the formed body is heated at 1700 to 2300°C.
It is necessary to sinter within the range of The reason for this is that when the sintering temperature is lower than 1700℃, the sintering temperature of 2.8g/cm 3 of the present invention is lower than 1700℃.
It is difficult to obtain a sintered body with a density higher than 2,300°C, and conversely, at temperatures higher than 2300℃, crystal grains grow significantly and the physical properties of the sintered body, such as mechanical strength, decrease. In order to obtain a sintered body with a fine structure and high strength, it is advantageous to sinter within a temperature range of 1900 to 2100°C. According to the present invention, in the temperature range of 1500 to 1700°C during the temperature increase process leading to the sintering temperature, the silica film removal reaction can be rapidly progressed to uniformly generate the neck formation reaction. It is advantageous to maintain the partial pressure of CO gas below 1 KPa in said temperature range for a sufficient period of time. Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. Example 1 Silica sand powder (SiO 2 = 99.6%, total Al = 0.1%, 80 mesh or less), anthracite powder (C = 87.8%, total Al =
0.4%, 325 mesh or less) and pitch powder (C
= 50.4%, 200 mesh or less, 7% by weight based on silica sand) was blended so that the C/SiO 2 molar ratio was 3.8, and the mixture was placed in a vertical screw mixer and mixed for 10 minutes. While spraying a 0.5% CMC aqueous solution onto the above-mentioned blended raw materials, the mixture is molded using a dish-type granulator, sized using a sieve and Burr Grizzly, and then dried to obtain an average particle size.
A molding raw material of 10.5 mm and bulk specific gravity of 0.6 was obtained. The molding raw material was then charged from the top of a manufacturing apparatus similar to that described in Japanese Patent Publication No. 57-48485, and subjected to indirect electrical heating to carry out the SiC formation reaction at a temperature of about 1900°C. Furthermore, the obtained product was purified and classified for particle size to prepare silicon carbide fine powder. The silicon carbide fine powder is 96.7% β-type crystals and the rest is
It consists of 2H type crystal, and the lattice constant of β type crystal is
4.3609Å, 0.31% by weight aluminum,
It contained 0.32% by weight of free carbon, 0.18% by weight of oxygen, and had a specific surface area of 15.8 m 2 /g. The lattice constant of the β-type crystal was determined from the (420) diffraction line. The silicon carbide fine powder is 99.9g and the specific surface area is 27.8m 2 /
150 ml of acetone was added to a mixture of 0.1 g of boron carbide powder and 2.0 g of novolac type phenolic resin having a fixed carbon content of 51.6% by weight, and mixed for 2 hours using a vibrating mill. The mixture slurry was discharged from the vibration mill and spray-dried to obtain granules having an average particle diameter of 0.09 mm and a powder bulk density of 35% (1.12 g/cm 3 ). An appropriate amount of the granules was taken and pre-molded using a metal mold at a pressure of 0.15 t/cm 2 , and then molded using a hydrostatic press at a pressure of 1.8 t/cm 2 . The density of the formed body obtained by the above molding is 61%
(1.95g/cm 3 ). The formed body was placed in a Tammann type sintering furnace and sintered in an argon gas stream under atmospheric pressure. The temperature raising process was from room temperature to 1650°C at 5°C/min. After holding at 1650°C for 40 minutes, the temperature was further raised at 5°C/min and the maximum temperature was 2000°C and held for 30 minutes. The partial pressure of CO gas during sintering is 5KPa or less from room temperature to 1650℃, 0.5KPa or less when held at 1650℃, and at higher temperatures than 1650℃.
The argon gas flow rate was adjusted appropriately so that it was 5KPa or less. The obtained sintered body contains 0.31% by weight of aluminum,
It contained 1.0% by weight of free carbon and had a density of 3.12 g/cm 3 (98.0% relative theoretical density). In addition, as a result of powder X-ray diffraction measurement of this sintered body, this sintered body
It was found that 92.1% were β-type crystals. The sintered body was processed into a plate shape of 30×30×1 mm and washed with acetone to prepare a sample for oxidation resistance test. The sample was treated in a heating furnace maintained in an air atmosphere at 1400°C for 20 hours, and the weight increase before and after the treatment was measured, and the weight increase was 0.02 mg/cm 2 compared to before treatment, indicating that the oxidation resistance was recognized as being excellent. Example 2, Comparative Example 1 Same as described in Example 1, but using oil coke powder with different aluminum content as shown in Table 1 instead of anthracite powder, and at the temperature shown in Table 1. A silicon carbide fine powder was prepared. The physical properties of the obtained silicon carbide fine powder are shown in Table 1. Using the silicon carbide fine powder shown in Table 1 above, sintered bodies were obtained in the same manner as in Example 1, except that the amount of boron carbide added was changed as shown in Table 1. The physical properties of the obtained sintered body were measured in the same manner as shown in Example 1, and are shown in Table 1.

【表】【table】

【表】 第1表によれば、実施例2−1および2−2は
全Al量がそれぞれ異なつているが、何れも高密
度の焼結体が得られており、また耐酸化性もそれ
ぞれ優れていることが判る。また実施例2−3は
特にSiC化反応温度を2100℃に高めた例である
が、得られた炭化珪素粉末の格子定数4.3618Åで
あり、この粉末から製造された焼結体は特に高密
度になり、また耐酸化性が最も優れていた。実施
例2−4および2−5では実施例1で使用した炭
化珪素粉末を使用したが炭化ホウ素添加量をそれ
ぞれ0.05g、0.15gとして焼結体を製造した。得ら
れた焼結体は何れも高密度であり、耐酸化性に優
れていた。 一方比較例1は炭化珪素粉末の結晶の格子定数
の平均値が4.3580Åであり、これを用いて製造さ
れた焼結体の密度は2.72g/cm3と低く、また耐酸
化性も実施例と比較して極めて劣つていた。 実施例 3 出発原料として実施例1に記載した炭化珪素微
粉99.9gと実施例1に記載した炭化ホウ素粉末を
さらに粒度分級し、比表面積を47.8m2/gに調製
した炭化ホウ素0.1gと平均粒径210Å、比表面積
128m2/gのカーボンブラツク1.5gとの混合物に
対し、アセトン150ml、ポリエチレングリコール
0.7mlを添加し、10時間ボールミル処理した後ス
ラリーを噴霧乾燥した。この乾燥粉末を適量採取
して実施例1と同様に生成形体を作成し、焼結体
を得た。 得られた焼結体の密度は3.01g/cm3と高く、
94.0%がβ型結晶であることが認められた。 また実施例1と同同様にして測定した耐酸化性
テストによる重量増加量は0.03mg/cm2と少なく耐
酸化性に優れていた。 実施例 4 実施例1と同様であるが出発原料として実施例
1に記載した炭化珪素微粉60重量部に市販のα型
炭化珪素を粉砕、精製、粒度分級して製造したα
型炭化珪素微粉を40重量部の割合で混合した炭化
珪素微粉を使用して焼結体を得た。 なお、前記α型炭化珪素微粉は比表面積が14.8
m2/gであり、アルミニウムを0.1重量%、遊離
炭素を0.3重量%、酸素を0.2重量%含有してい
た。 得られた焼結体の密度は2.90g/cm3で、β型炭
化珪素の含有率は40.4%であつた。 また実施例1と同様にして測定した耐酸化性テ
ストによる重量増加量は0.04mg/cm2と少なく、耐
酸化性に優れていた。 以上本発明によれば、高密度でかつ耐酸化性に
優れた炭化珪素無加圧焼結体を安価に製造するこ
とができる。
[Table] According to Table 1, although Examples 2-1 and 2-2 differ in total Al content, high-density sintered bodies were obtained in both cases, and the oxidation resistance was also different. It turns out to be excellent. Furthermore, in Example 2-3, the SiC formation reaction temperature was particularly raised to 2100°C, and the obtained silicon carbide powder had a lattice constant of 4.3618 Å, and the sintered body produced from this powder had a particularly high density. It also had the best oxidation resistance. In Examples 2-4 and 2-5, the silicon carbide powder used in Example 1 was used, but the amounts of boron carbide added were changed to 0.05 g and 0.15 g, respectively, to produce sintered bodies. All of the obtained sintered bodies had high density and excellent oxidation resistance. On the other hand, in Comparative Example 1, the average value of the lattice constant of the silicon carbide powder crystal is 4.3580 Å, the density of the sintered body manufactured using this is as low as 2.72 g/cm 3 , and the oxidation resistance is also lower than that of the example. It was extremely inferior compared to Example 3 As starting materials, 99.9 g of the silicon carbide fine powder described in Example 1 and the boron carbide powder described in Example 1 were further classified by particle size, and 0.1 g of boron carbide was prepared to have a specific surface area of 47.8 m 2 /g. Particle size 210Å, specific surface area
150 ml of acetone and polyethylene glycol to a mixture of 1.5 g of carbon black at 128 m 2 /g.
After adding 0.7 ml and ball milling for 10 hours, the slurry was spray dried. An appropriate amount of this dry powder was collected and a green body was prepared in the same manner as in Example 1 to obtain a sintered body. The density of the obtained sintered body is as high as 3.01g/ cm3 .
It was found that 94.0% were β-type crystals. Further, the weight increase in the oxidation resistance test measured in the same manner as in Example 1 was as small as 0.03 mg/cm 2 and the oxidation resistance was excellent. Example 4 α was produced in the same manner as in Example 1, but by pulverizing, refining, and classifying commercially available α-type silicon carbide into 60 parts by weight of the silicon carbide fine powder described in Example 1 as a starting material.
A sintered body was obtained using silicon carbide fine powder mixed with type silicon carbide fine powder at a ratio of 40 parts by weight. Note that the α-type silicon carbide fine powder has a specific surface area of 14.8.
m 2 /g, and contained 0.1% by weight of aluminum, 0.3% by weight of free carbon, and 0.2% by weight of oxygen. The density of the obtained sintered body was 2.90 g/cm 3 and the content of β-type silicon carbide was 40.4%. Further, the weight increase in the oxidation resistance test measured in the same manner as in Example 1 was as small as 0.04 mg/cm 2 , indicating excellent oxidation resistance. As described above, according to the present invention, a pressureless sintered body of silicon carbide having high density and excellent oxidation resistance can be manufactured at low cost.

Claims (1)

【特許請求の範囲】 1 炭化珪素微粉を無加圧焼結する炭化珪素焼結
体の製造方法において、 結晶の格子定数の平均値が4.3584Å以上のβ型
炭化珪素を50重量%以上含有する炭化珪素微粉
100重量部とホウ素含有量に換算して0.01〜0.25
重量部のホウ素含有添加剤と固定炭素含有量に換
算して0.3〜5.0重量部の炭素質添加剤と均質混合
した後、任意の形状を有する生成形体に成形し、
次いで非酸化性雰囲気中で1700〜2300℃で焼結
し、2.8g/cm3以上の密度を有する炭化珪素焼結
体を製造することを特徴とする炭化珪素焼結体の
製造方法。 2 前記β型炭化珪素はシリカと炭素を出発原料
として高温焼成してなるβ型炭化珪素である特許
請求の範囲第1項記載の方法。 3 前記β型炭化珪素はアルミニウムを0.02〜
1.0重量%含有したものである特許請求の範囲第
1あるいは2項記載の方法。 4 前記炭化珪素微粉は比表面積が5〜50m2/g
である特許請求の範囲第1〜3項のいずれかに記
載の方法。 5 前記炭化珪素微粉は酸素含有率が0.1〜1.0重
量%である特許請求の範囲第1〜4項のいずれか
に記載の方法。 6 ホウ素含有添加剤はホウ素、炭化ホウ素ある
いはそれらの混合物から選択される少なくとも1
種である特許請求の範囲第1〜5項のいずれかに
記載の方法。 7 炭素質添加剤は焼結開始時に少なくとも100
m2/gの比表面積を有するものである特許請求の
範囲第1〜6項のいずれかに記載の方法。 8 前記炭化珪素焼結体は少なくとも20重量%が
β型炭化珪素である特許請求の範囲第1〜7項の
いずれかに記載の方法。
[Claims] 1. A method for producing a silicon carbide sintered body by pressure-free sintering of silicon carbide fine powder, which contains 50% by weight or more of β-type silicon carbide having an average crystal lattice constant of 4.3584 Å or more. silicon carbide fine powder
0.01 to 0.25 in terms of 100 parts by weight and boron content
After homogeneously mixing part by weight of a boron-containing additive with a carbonaceous additive in an amount of 0.3 to 5.0 parts by weight in terms of fixed carbon content, the mixture is formed into a formed body having an arbitrary shape,
A method for producing a silicon carbide sintered body, which comprises then sintering at 1700 to 2300°C in a non-oxidizing atmosphere to produce a silicon carbide sintered body having a density of 2.8 g/cm 3 or more. 2. The method according to claim 1, wherein the β-type silicon carbide is a β-type silicon carbide obtained by firing silica and carbon at a high temperature as starting materials. 3 The β-type silicon carbide contains aluminum from 0.02 to
The method according to claim 1 or 2, wherein the content is 1.0% by weight. 4. The silicon carbide fine powder has a specific surface area of 5 to 50 m 2 /g.
The method according to any one of claims 1 to 3. 5. The method according to any one of claims 1 to 4, wherein the silicon carbide fine powder has an oxygen content of 0.1 to 1.0% by weight. 6. The boron-containing additive is at least one selected from boron, boron carbide, or mixtures thereof.
6. The method according to any one of claims 1 to 5, which is a species. 7 The carbonaceous additive must be at least 100% at the start of sintering.
The method according to any one of claims 1 to 6, which has a specific surface area of m 2 /g. 8. The method according to any one of claims 1 to 7, wherein at least 20% by weight of the silicon carbide sintered body is β-type silicon carbide.
JP60006673A 1985-01-19 1985-01-19 Manufacture of silicon carbide sintered body Granted JPS61168567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60006673A JPS61168567A (en) 1985-01-19 1985-01-19 Manufacture of silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60006673A JPS61168567A (en) 1985-01-19 1985-01-19 Manufacture of silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS61168567A JPS61168567A (en) 1986-07-30
JPH0463028B2 true JPH0463028B2 (en) 1992-10-08

Family

ID=11644887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60006673A Granted JPS61168567A (en) 1985-01-19 1985-01-19 Manufacture of silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS61168567A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256371A (en) * 1985-09-06 1987-03-12 株式会社東芝 Manufacture of silicon carbide sintered body
JPH0829986B2 (en) * 1986-06-05 1996-03-27 株式会社ブリヂストン Method for producing cubic silicon carbide sintered body
DE3718095A1 (en) * 1987-05-29 1988-12-08 Hutschenreuther POLYCRYSTALLINE MOLDED BODY FROM SILICON CARBIDE AND METHOD FOR THE PRODUCTION THEREOF
US20110175264A1 (en) * 2009-07-24 2011-07-21 Pujari Vimal K High Toughness Ceramic Composites

Also Published As

Publication number Publication date
JPS61168567A (en) 1986-07-30

Similar Documents

Publication Publication Date Title
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
JPS5934147B2 (en) Silicon carbide sintered ceramic body and its manufacturing method
JPS6228109B2 (en)
JPS5814390B2 (en) Manufacturing method of silicon carbide sintered body
JPH0769731A (en) High-strength, high-density conductive ceramic
JPWO2013146713A1 (en) Method for producing silicon nitride powder, silicon nitride powder, silicon nitride sintered body, and circuit board using the same
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPH0228539B2 (en)
JP2000016872A (en) Porous silicon carbide sintered body and its production
JPS6152106B2 (en)
JPH0463028B2 (en)
JP4348429B2 (en) Porous silicon nitride and method for producing the same
JPH07165467A (en) Production of isotropic graphite material
JPH0532346B2 (en)
JPH0662286B2 (en) Method for producing silicon carbide
JPS5849509B2 (en) Manufacturing method of silicon nitride sintered body
JPS6253473B2 (en)
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS6126514B2 (en)
JPS6360158A (en) Manufacture of silicon carbide sintered body
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JPH0224782B2 (en)
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2510251B2 (en) Method for manufacturing silicon carbide sintered body
JPH02229767A (en) Process for sintered molding having controlled grain size

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term