JPS6287462A - Silicon nitride sintered body and manufacture - Google Patents

Silicon nitride sintered body and manufacture

Info

Publication number
JPS6287462A
JPS6287462A JP60226971A JP22697185A JPS6287462A JP S6287462 A JPS6287462 A JP S6287462A JP 60226971 A JP60226971 A JP 60226971A JP 22697185 A JP22697185 A JP 22697185A JP S6287462 A JPS6287462 A JP S6287462A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
crystal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60226971A
Other languages
Japanese (ja)
Inventor
本多 康二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60226971A priority Critical patent/JPS6287462A/en
Publication of JPS6287462A publication Critical patent/JPS6287462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化ケイ素焼結体およびその製法に係り、特に
高温で高強度の窒化ケイ素焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon nitride sintered body and a method for producing the same, and particularly relates to a silicon nitride sintered body that has high strength at high temperatures.

〔従来の技術〕[Conventional technology]

窒化ケイ素焼結体は高温強度に優れているので自動車エ
ンジン部品その他の耐熱性が要求される構造材料用セラ
ミックスの最も有力なものとして開発が進められている
Since silicon nitride sintered bodies have excellent high-temperature strength, they are being developed as the most promising ceramics for structural materials such as automobile engine parts that require heat resistance.

窒化ケイ素の焼結法としては、窒化ケイ素の焼結性が悪
いため、金属ケイ素成形体を窒素雰囲気中で焼成する反
応焼結法と、窒化ケイ素粉末に焼結助剤を添加して成形
し、不活性雰囲気中で焼成する方法がある。しかしなが
ら、焼結晶の強度の点から特に構造用セラミックスには
焼結助剤を用いる方法が主として利用されている。そし
て、焼結助剤としては、アルミナ(八j! z(h)、
イツトリア(yzos) 、マグネシア(MgO)など
の酸化物が多い。
Since silicon nitride has poor sintering properties, there are two methods for sintering silicon nitride: a reactive sintering method in which a metal silicon compact is fired in a nitrogen atmosphere, and a method in which a sintering aid is added to silicon nitride powder. There is a method of firing in an inert atmosphere. However, from the viewpoint of the strength of the sintered crystal, a method using a sintering aid is mainly used especially for structural ceramics. As a sintering aid, alumina (8j!z(h),
There are many oxides such as yzos and magnesia (MgO).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

焼結助剤を用いて焼結した窒化ケイ素は、比較的高強度
であるが、1000℃以上、特に1200℃以上の高温
になるとその強度が低下するという問題点がある。
Silicon nitride sintered using a sintering aid has relatively high strength, but there is a problem in that its strength decreases at high temperatures of 1000° C. or higher, especially 1200° C. or higher.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による上記問題点を解決するための手段は、β−
Si3N、を主成分とし、第2相として一般式YX/2
Si6□□7□八7!y−Xoy N5−y(式中、0
〈Xくy〈8)で表わされるイツトリウムサイアロン結
晶、(Ca 、 re 、 Mg) Sin、結晶およ
びMgYSiO,結晶のうち1種以上を含む窒化ケイ素
焼結体にある。
Means for solving the above problems according to the present invention are β-
The main component is Si3N, and the general formula YX/2 is used as the second phase.
Si6□□7□87! y-Xoy N5-y (in the formula, 0
The present invention is a silicon nitride sintered body containing one or more of yttrium sialon crystals, (Ca, re, Mg)Sin crystals, and MgYSiO crystals represented by <Xxy<8).

すなわち、焼結助剤を加えて焼結する窒化ケイ素の焼結
法は、焼結助剤が窒化ケイ素より低温で溶融し、その液
相の存在によって窒化ケイ素の焼結を促進するのである
が、従来、得られる窒化ケイ素焼結体においてそれらの
焼結助剤にもとづく相は窒化ケイ素の粒界にガラス相と
して存在している。そして、このガラス相の存在が窒化
ケイ素焼結体の高温強度の低下の原因である。そこで、
本発明では、これらの焼結助剤にもとづくガラス相を結
晶質に変換することによって窒化ケイ素の焼結体高温強
度を高めるものである。
In other words, in the silicon nitride sintering method in which a sintering aid is added and sintered, the sintering aid melts at a lower temperature than silicon nitride, and the presence of the liquid phase promotes the sintering of silicon nitride. Conventionally, in the silicon nitride sintered body obtained, the phase based on these sintering aids exists as a glass phase at the grain boundaries of silicon nitride. The presence of this glass phase is the cause of the decrease in high temperature strength of the silicon nitride sintered body. Therefore,
In the present invention, the high-temperature strength of the silicon nitride sintered body is increased by converting the glass phase based on these sintering aids into a crystalline state.

窒化ケイ素焼結体の粒界相を結晶質にするために、本発
明では、焼結助剤としてY2O3、A # 20゜およ
びMgO(A ll 2ozおよびMgO全部または一
部に代えてMgA j! z04でもよい)を選択しか
つ焼成後に熱処理を行なう。より詳しくは、Si3Ng
粉末に焼結助剤としてY20* 、  ^1203およ
びMgOをそれぞれ2〜5重量%(各焼結助剤が等重量
%であることが好ましい)添加し、成形し、加圧または
無加圧の不活性雰囲気中1600〜1900℃、好まし
くは1700〜1750℃で1〜10時間、好ましくは
2〜6時間焼成してSi 3N、焼結体を得た後、N2
ガス、不活性ガス、真空などの不活性雰囲気下1〜10
気圧、好ましくは1〜2気圧の圧力、1100〜140
0℃、好ましくは1300〜1350℃の温度で、30
分〜5時間、好ましくは2〜4時間熱処理を行なう。
In order to make the grain boundary phase of the silicon nitride sintered body crystalline, the present invention uses Y2O3, A # 20° and MgO (All 2oz and MgA j! in place of all or part of MgO) as sintering aids. z04) is selected, and heat treatment is performed after firing. For more details, see Si3Ng
Y20*, ^1203, and MgO are added to the powder as sintering aids in an amount of 2 to 5% by weight (preferably, each sintering aid is in an equal weight%), molded, and then subjected to pressure or non-pressure treatment. After baking in an inert atmosphere at 1600 to 1900°C, preferably 1700 to 1750°C for 1 to 10 hours, preferably 2 to 6 hours to obtain a Si3N, sintered body, N2
1 to 10 under inert atmosphere such as gas, inert gas, vacuum, etc.
Atmosphere, preferably 1 to 2 atm pressure, 1100 to 140
At a temperature of 0°C, preferably 1300-1350°C, 30
The heat treatment is carried out for 5 minutes to 5 hours, preferably 2 to 4 hours.

本発明の方法において、粒界相はSi3N4の焼成段階
では結晶化されず、その後の熱処理によって結晶化され
る。
In the method of the present invention, the grain boundary phase is not crystallized during the Si3N4 sintering step, but is crystallized by the subsequent heat treatment.

本発明において得られる窒化ケイ素焼結体中のイツトリ
ウムサイアロン結晶 (Yx/zSi6−y+xzz A l1V−X 0I
INII−F )においてXとyの比が0.8 <x 
/ Y < 1.0であることが好ましい。
Yttrium sialon crystal (Yx/zSi6-y+xzz A l1V-X 0I
INII-F), the ratio of X and y is 0.8 <x
/Y<1.0 is preferable.

x/yが0.8未満では高温でガラス化し易いからであ
る。Y3八e 5itOJ 、 YzSis^7!05
N3は0.8 < x/yくt、oき条件を満たす安定
な結晶であり、好ましい。
This is because if x/y is less than 0.8, vitrification is likely to occur at high temperatures. Y38e 5itOJ, YzSis^7!05
N3 is a stable crystal that satisfies the condition 0.8 < x/y xt, and is therefore preferable.

(Ca 、 Fe 、 Mg) SiO+結晶のCa 
、 Feは炉内の不純物が混入するものと考えられ、こ
の結晶は主に焼結体の表面に見られる。MgYSi(h
結晶はMgOの添加によって生成する相でイツトリウム
サイアロンとともに粒界の結晶の主成分をなすものであ
る。
(Ca, Fe, Mg) SiO + crystalline Ca
, Fe is thought to be mixed with impurities in the furnace, and these crystals are mainly found on the surface of the sintered body. MgYSi(h
The crystal is a phase generated by the addition of MgO, and together with yttrium sialon, it is a main component of the grain boundary crystal.

〔実施例〕〔Example〕

平均粒径0.84μm、純度98%以上の窒化ケイ素原
料粉末に、4wt%vzOsと4wt%MgA 7!O
aを配合し、金型プレスにて試験片を成形した。得られ
試験片を9気圧に加圧した窒素雰囲気中で1750℃で
4時間程度焼成して窒化ケイ素焼結体を得た。
Silicon nitride raw material powder with an average particle size of 0.84 μm and a purity of 98% or more, 4 wt% vzOs and 4 wt% MgA 7! O
a was blended and a test piece was molded using a mold press. The obtained test piece was fired at 1750° C. for about 4 hours in a nitrogen atmosphere pressurized to 9 atmospheres to obtain a silicon nitride sintered body.

焼成体の表面および内部をX線回折で分析したところ、
結晶相としてはβ−SiJ4だけが固定され、粒界相は
ガラス化していることが認められた。
When the surface and interior of the fired body were analyzed by X-ray diffraction,
It was observed that only β-SiJ4 was fixed as the crystalline phase, and the grain boundary phase was vitrified.

焼成体の相対密度92%で、1200℃に於る4点曲げ
強度は60kg/1Ill11!であった。
The relative density of the fired body is 92%, and the 4-point bending strength at 1200°C is 60kg/1Ill11! Met.

次いで、この焼成体を常圧の窒素雰囲気中で次の条件で
熱処理した。
Next, this fired body was heat treated in a nitrogen atmosphere at normal pressure under the following conditions.

(11昇温速度15℃/分で800℃に昇温(2180
0℃に30分間保持 (3)昇温速度15℃/分で1150℃に昇温(4)続
けて昇温速度5℃/分で1300℃に昇温(51130
0℃に4時間保持 (6)炉内放冷 昇温の途中800℃および1150℃で30分間保持す
るのは、昇温速度が15℃/分と速いので歪を取るため
である。また、1150℃から1300℃への昇温速度
を小さくしたのは、結晶化がはじまるのでゆっくり昇温
する必要があるからである。そして、1300℃X4h
rで結晶化が完結される。
(11 Heating up to 800°C at a heating rate of 15°C/min (2180°C)
Hold at 0°C for 30 minutes (3) Raise the temperature to 1150°C at a heating rate of 15°C/min (4) Continue to raise the temperature to 1300°C at a heating rate of 5°C/min (51130°C)
Hold at 0°C for 4 hours (6) Cooling in the furnace The reason why the temperature is held at 800°C and 1150°C for 30 minutes during the temperature rise is to remove distortion since the temperature rise rate is as fast as 15°C/min. Furthermore, the temperature increase rate from 1150° C. to 1300° C. was made small because crystallization begins, so it is necessary to raise the temperature slowly. And 1300℃×4h
Crystallization is completed at r.

熱処理後の焼成体の表面及び内部をX線回折で分析した
ところ、β−Si3Na とY3八j!Si、 O,N
、(Ca 、 Fe 、 Mg) Sin、、YSiO
,の結晶が同定された。
Analysis of the surface and interior of the fired body after heat treatment by X-ray diffraction revealed that it was β-Si3Na and Y38j! Si, O, N
, (Ca, Fe, Mg) Sin,, YSiO
, crystals were identified.

(Ca 、 Fe 、 Mg) SiO+は表面層にの
み検出された。
(Ca, Fe, Mg) SiO+ was detected only in the surface layer.

焼成体の相対密度95%以上で、1200℃に於る4点
曲げ強度は68kg/mm”であった。
The relative density of the fired body was 95% or more, and the four-point bending strength at 1200°C was 68 kg/mm''.

〔発明の効果〕〔Effect of the invention〕

本発明により、高温で高強度の窒化ケイ素焼結体が得ら
れ、セラミックスの信顛性が向上する。
According to the present invention, a silicon nitride sintered body having high strength at high temperatures can be obtained, and the reliability of ceramics can be improved.

Claims (1)

【特許請求の範囲】 1、β−Si_3N_4を主成分とし、第2相として一
般式Y_x_/_2Si_6_−_y_+_x_/_2
Al_y_−_xO_yN_8_−_y(式中、0<x
<y≦8)で表わされるイットリウムサイアロン結晶、
(Ca、Fe、Mg)SiO_3結晶およびMgYSi
O_4結晶のうち1種以上を含むことを特徴とする窒化
ケイ素焼結体。 2、Si_3N_4粉末に焼結助剤としてY_2O_3
、Al_2O_3およびMgOを添加し、成形後、焼成
してSi_3N_4焼結体を得、然る後熱処理して、β
−Si_3N_4を主成分とし、第2相として一般式 Y_x_/_zSi_6_−_y_+_x_/_zAl
_y_−_xO_yN_8_−_y(式中、0<x<y
≦8)で表わされるイットリウムサイアロン結晶、(C
a、Fe、Mg)SiO_3結晶およびMgYSiO_
4結晶のうち1種以上を含むSi_3N_4焼結体を得
ることを特徴とする窒化ケイ素焼結体の製法。
[Claims] 1. β-Si_3N_4 is the main component, and the second phase is expressed by the general formula Y_x_/_2Si_6_-_y_+_x_/_2
Al_y_-_xO_yN_8_-_y (where 0<x
<y≦8) Yttrium SiAlON crystal,
(Ca, Fe, Mg)SiO_3 crystal and MgYSi
A silicon nitride sintered body characterized by containing one or more types of O_4 crystals. 2. Y_2O_3 as a sintering aid to Si_3N_4 powder
, Al_2O_3 and MgO are added, molded and fired to obtain a Si_3N_4 sintered body, and then heat-treated to obtain β
-Si_3N_4 is the main component, and the second phase is the general formula Y_x_/_zSi_6_-_y_+_x_/_zAl
_y_-_xO_yN_8_-_y (where 0<x<y
≦8) Yttrium SiAlON crystal, (C
a, Fe, Mg) SiO_3 crystal and MgYSiO_
A method for producing a silicon nitride sintered body, characterized by obtaining a Si_3N_4 sintered body containing one or more of four crystals.
JP60226971A 1985-10-14 1985-10-14 Silicon nitride sintered body and manufacture Pending JPS6287462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226971A JPS6287462A (en) 1985-10-14 1985-10-14 Silicon nitride sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226971A JPS6287462A (en) 1985-10-14 1985-10-14 Silicon nitride sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS6287462A true JPS6287462A (en) 1987-04-21

Family

ID=16853485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226971A Pending JPS6287462A (en) 1985-10-14 1985-10-14 Silicon nitride sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS6287462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252141A (en) * 1991-02-20 1993-10-12 Canon Kabushiki Kaisha Modular solar cell with protective member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888175A (en) * 1981-11-19 1983-05-26 株式会社神戸製鋼所 Manufacture of high strength silicon nitride ceramics
JPS6259572A (en) * 1985-09-09 1987-03-16 株式会社豊田中央研究所 Silicon nitride sintered body and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888175A (en) * 1981-11-19 1983-05-26 株式会社神戸製鋼所 Manufacture of high strength silicon nitride ceramics
JPS6259572A (en) * 1985-09-09 1987-03-16 株式会社豊田中央研究所 Silicon nitride sintered body and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252141A (en) * 1991-02-20 1993-10-12 Canon Kabushiki Kaisha Modular solar cell with protective member

Similar Documents

Publication Publication Date Title
JPH0256311B2 (en)
US5759933A (en) Gas pressure sintered silicon nitride having high strength and stress rupture resistance
JPS6287462A (en) Silicon nitride sintered body and manufacture
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JPS63112471A (en) Silicon nitride base ceramics and manufacture
JP2732078B2 (en) Silicon nitride sintered body
JPH1179848A (en) Silicon carbide sintered compact
JP3034106B2 (en) Method for producing silicon nitride based sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPH06287066A (en) Silicon nitride sintered compact and its production
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JPH06100376A (en) Sintered beta-sialon and its production
JP2783720B2 (en) Silicon nitride sintered body and method for producing the same
JP3003000B2 (en) Aluminum nitride polytype sintered body and method for producing the same
JPH042664A (en) High-strength sialon based sintered compact
JPH0269359A (en) Production of sintered silicon nitride body
JPH04292466A (en) Silicon nitride sintered compact and its production
JPH0513905B2 (en)