JPH03162736A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH03162736A
JPH03162736A JP30176689A JP30176689A JPH03162736A JP H03162736 A JPH03162736 A JP H03162736A JP 30176689 A JP30176689 A JP 30176689A JP 30176689 A JP30176689 A JP 30176689A JP H03162736 A JPH03162736 A JP H03162736A
Authority
JP
Japan
Prior art keywords
oxygen
magneto
thin film
ptmnsb
kerr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30176689A
Other languages
Japanese (ja)
Inventor
Akira Kunimoto
晃 国元
Yukio Nakanouchi
中野内 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP30176689A priority Critical patent/JPH03162736A/en
Publication of JPH03162736A publication Critical patent/JPH03162736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve magnetic characteristics and magneto-optical characteristics of a medium having a PtMnSb thin film of C1b crystalline struc ture by subjecting the film to heat treatment in gaseous oxygen or in a mixture gas atmosphere of oxygen and inert gas. CONSTITUTION:The PtMnSb thin film is heat treated in a proper oxygen partical pressure in vaccum chamber after formed. Usually, the pressure of gaseous oxygen or the partial pressure of oxygen in the mixture gas of oxygen and inert gas is about at 5 X 10<-5> - 5 X 10<-3> Torr for treatment at 450 deg.C for one hour, and the heat treatment is performed usually at 300 - 600 deg.C. By this method, the medium has large coercive force and perpendicular magnetic anisotropy and squareness ratio, because each grain is magnetically isolated by selective intergranular oxidation of fine grains. With improvement of mag netic characteristics, the squareness ratio of Kerr hysterisys can be also im proved following to the improvement in the magnetic characteristics. Thus, magnetic characteristics and magneto-optical characteristics can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光磁気記録媒体の製造方法に関するもので
ある.さらに詳しくは、この発明は、垂直磁化記録され
、レーザー光により記録ビットからの読取り再生可能な
高性能光磁気記録媒体の製造法に関するものである. (従来の技術とその課題) 従来より、磁気あるいは光磁気による記録媒体の開発が
精力的に進められてきており、記録密度の向上、記録・
再生精度の向上等について様々な角度からの検討が加え
られてきている.このうち、レーザー光を利用しての光
磁気記録が近年注目されており、このための記録媒体に
ついての検討が進んでもいる. 一般的に、光磁気記録のための媒体としては、(1)垂
直磁気異方性を有すること、(2)保磁力が大きいこと
、(3)力一回転角が大きいことが最も重要な特性要件
となっている.もちろん、その他の、反射率、粒界サイ
ズ、耐久性等も大切な要件である. これらの特性要件を満たすために、これまでは、TbF
eCo、I)yFeCoなどの遷移金属と希土類金属と
の合金薄膜が使用されてきており、この合金薄膜は、ア
モルファス状態で非常に保磁力が大きく(数KOe)、
さらに磁化曲線およびカーヒステリシスにおいて角型比
がほぼ1.0であることを特徴としている. しかしながら、これらの合金薄膜の場合、一方では、力
一回転角が最大でも0.45゜と非常に小さく、通常S
10やAjNなどのエンハンス層を設けて見かけ上のカ
ー回転角を大きくしている.また、耐久性の点でも希土
類元素を含んでいるために非常に酸化されやすく、保護
膜なしでは使用できないという欠点を有している. 一方、このような欠点のない記録媒体として、Clk結
晶構造を有するPtMnSbl膜が注目されている. この薄膜は、力一回転角が1〜2゜と大きく、しかも合
金状態ではptが数10wt%含有されているために、
上記のTbFeCoなどに比べて耐酸化性が非常に良好
で、保護膜なしでもある程度使用され得るという特徴を
有している.しかしながら、このPtMnSb薄膜には
これらの利点がある反面で、その磁気特性においては面
内磁化優位性を持ち、また、保磁力がせいぜい2000
eと小さく、光磁気記録媒体としては実用に供すること
はできない.その上、この薄膜は、カー回転角が非常に
大きいとはいえ、それは5KOe以上も磁場をかけた場
合であり、外部磁場ゼロでのPtMnSb薄膜の残留カ
ー回転角はその角型性が悪いためにT b F e C
 o薄膜に比べてさらに小さくなってしまう.カーヒス
テレシスはその磁化曲線に相似することから、その磁気
特性を改善しない限りいくら飽和カー回転角が大きくて
も意味がないことになる.第6図および第7図は、’I
” b F e C o系合金薄膜の磁化曲線とカール
ープ、およびこれまでのPtMnSb系合金薄膜の磁化
曲線とカーループとを対比して示したものである. ここに見られるように、第6図のTbFeCo系などの
磁化曲線とカーループは非常に角型性がよいが、力一回
転角度自体の大きさは、前述のごとく、最大でも0.4
5゜程度である.一方の第7図の従来のPtMnSb系
では、角型性は悪いが、カー回転角度は印加磁場1 0
 K O eが必要といえども最大で1〜2°にも達す
る.すなわち、磁化曲線の角型性をあげることができれ
ばそれに対応してカーループの角型性もあがり、磁場ゼ
ロでの力一回転角も著しく増大することになる.この発
明は以上の通りの事情に鑑みてなされたものであり、そ
の特性が注目されるPtNnSb薄膜の欠点を改善し、
磁気特性を向上させ、がっ、カーヒステレシスの角型性
向上を可能としたPtMnSb薄膜系がらなる光磁気記
録媒体の製造方法を提供することを目的としている.(
課題を解決するための手段) この発明は、上記の課題を解決するものとして、Clk
結晶構造を有するPtMnSb合金薄膜をその成膜後に
酸素ガス、あるいは酸素ガスと不活性ガスとの混合ガス
雰囲気下に熱処理することを特徴とする光磁気記録媒体
を提供する. この発明の製造方法においては、PtMnSb合金薄膜
の成WA後に、上記の酸素雰囲気下に熱処理することに
より、Mnまたはsbの酸化物相、もしくはMn−Sb
の複合酸化物相をwi細析出させて混和結晶状態とする
ことを特徴としており、この処理方法によって製造した
記録媒体は、従来のPtMnSb薄膜に比べて保磁力が
大きく、垂直異方性も大きい.また、保磁力が大きくな
るに従って、角型比も増大する. このような優れた磁気特性を有する光磁気記録媒体は、
PtMnSb薄膜を真空槽中で、適度な酸素分圧を与え
て熱処理するが、酸素ガス、あるいは酸素ガスと不活性
ガスとの混合ガス中の酸素分圧は、通常、450℃、1
時間の処理の場合では5 X 1 0−’Torr〜5
 x 1 0−’Torr程度とすることができる. 熱処理の条件としては、通常、300〜600℃に加熱
することができる. なお、この熱処理時の温度一時間一酸素分圧の関係につ
いては、温度を一定とした場合には、高い酸素分圧ほど
処理時間を短くし、酸素分圧を一定とした場合には、高
温度ほど処理時間を短くする. 処理対象としてのPtMnSb合金薄膜は、スパッタリ
ング等の通常の気相蒸着の方法により製造することがで
きる. この発明の方法により製造される記録媒体の磁気特性お
よび磁気光学特性は、従来のものに比べて著しく向上す
るが、これは、微細結晶粒界の選択的な酸化により個々
の結晶粒が磁気的に孤立されて保磁力と垂直異方性が大
きくなることに由来するものと推察される.磁気特性が
改善されればカーヒステレシスの角型比もこれに相似す
ることから改善される. 以下、実施例を示し、さらに詳しくこの発明の光磁気記
録媒体の製造方法についてさらに詳しく説明する. 実龍例1 通常のR.Fスパッタリング法により石英基板上に展厚
が1500人になるようにPtMnSb薄膜を成膜した
.この時使用したターゲットは、Mnsb合金ターゲッ
ト(6インチ径)上に5關角のptチップを均一に分布
させた複合ターゲットである. また、基板温度を100℃とし、到達真空度1.5 x
 1 0−’Torrで純アルゴンガスを導入し、チャ
ンバー内圧力を4 X 1 0−’Torrとする,こ
の状態でスパッタリング出力200Wで10分間成膜す
る. 成膜後に、その基板を取り出し、続いて熱処理を行う.
これは別の真空槽において、まず2×1 0−’Tor
rにまで排気し、続いてArと酸素の混合ガス(02:
20%)を導入する.真空槽内の圧力を4 X 1 0
−’Torrに保ちながら、ヒーターにて450 ’C
まで加熱し、その温度で1時間保持する.この処理によ
って得られる薄膜のX線回折パターンを示したものが第
1図である.従来のPtMnSb単相の回折パターンは
Clbllfiをとるので明瞭なピーク(111 )、
(220)、(311 )、(400 )・・・等が現
われるが、この第1図から明らかなように、低角度側で
PtMnSb相とは別のピークが現れる.これらは、M
nあるいはsbの酸化物相、もしくは、Mn−Sbの複
合酸化物相を示している.実際に、この第1図には、P
tMnSb相の他にsb酸化物相とMn−sb複合酸化
物相が確認される. また、第2図は、この薄膜の磁気特性(M−Hループ)
を示したものである.この磁気特性の評価結果を従来の
PtMnSb薄膜の場合と比較したものが次の表1であ
る. この表1から明らかなように保磁力( H c上)が9
000eと従来のものに比べて約4.5倍にも大きくな
っている.また角型比(Rs)も著しく増大している. 表 1 実施例2 実施例1と同様にして、PtMnSb薄膜をガラス基板
上に堆積させた.X線回折法により00結晶椙造を持つ
ことを確認した.他の結晶相は見られなかった. 次いで、成膜面を雰囲気に接するようにセットし、熱処
理炉内を1 0−’Torr台の真空度に排気する.そ
の後、ガス導入口よりA r +02  ( Ox =
20%)の混合ガスを流入させ、一方で真空ポンプによ
り少量づつ排気して炉内圧力を3×1 0 −’Tor
r (酸素分圧6 X 1 0−’Torr)に、一定
に保つ. 次にヒーターの通電を開始し、5℃/分の速度で昇温さ
せ、450℃で1時間保つ. 室温近くまで徐冷し、材料を炉内より取出す.このよう
にして熱処理した薄膜をX線回折により分析すると、P
tMnSb相の他に、sb酸化物、Mn−Sb複合酸化
物が認められた. この時の保磁力(Hc上)は8500eと大きく、角型
比も大幅に増大している.第3図はこの試料のカーヒス
テレシスである.このように、力一回転角も1.94°
と大きく、さらにカーヒステレシスの角型性が0.44
と大幅に改善された結果、磁場ゼロでの残留θkが0.
85°となり、T b F e C o系の0.45’
に比べて2倍近い増大がみられる(レーザー波長690
nn ) , 実施例3 実施例1と同様にして、PtMnSbi’W膜の熱処理
を行った.450℃、1時間の処理において、保磁力(
HCJL)、磁化(Ms)の酸素分圧依存性について評
価した.その結果を示したものが第4図である.保磁力
(Hcp )は、酸素分圧が大きくなるに従って増大し
、P 02 =4 X 1 0−’To『『において1
.1kOeにも達した.一方、飽和磁化(Ms)は、P
 O 2 = 5 X 1 0−’Torrまでほぼ一
定であるが、酸素分圧の過度の上昇によって酸化物相が
多くなり過ぎると飽和磁下が低下することがわかる, 
5 x 1 0 −’Torr 〜8 x 1 0 −
’Torr程度の適度な酸素分圧が優れた磁気特性を示
す.実鉋例4 実施例2と同様にして、450℃、1時間の熱処理にお
いて、飽和カー回転角と残留カー回転角との酸素分圧依
存性について評価した.その結果を示したものが第5図
である. 飽和カー回転角はPo2=6X1 0−’TOrr″′
C′最大になるが、飽和カー回転角と角型比との積(外
部磁場ゼロでのカー回転角)では、P o x = 5
 X1 0−’Torr以下であれば酸素分圧の差によ
る違いはほとんどみられない.このため、光学特性に関
してだけみると、P ox =8X 1 0−’TOr
r近傍が最適条件となり、記録再生時のC/N比は最良
となる. (発明の効果) この発明の方法により、以上詳しく説明した通り、磁気
特性および磁気光学特性を著しく向上させた新規なPt
MnSb系光磁気記録媒体が実現される.
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a method of manufacturing a magneto-optical recording medium. More specifically, the present invention relates to a method for manufacturing a high-performance magneto-optical recording medium that is recorded with perpendicular magnetization and is capable of reading and reproducing recorded bits using laser light. (Conventional technology and its issues) The development of magnetic or magneto-optical recording media has been actively pursued for some time, and improvements in recording density, recording and
Studies have been conducted from various angles to improve playback accuracy. Among these, magneto-optical recording using laser light has attracted attention in recent years, and research into recording media for this purpose is progressing. Generally, the most important characteristics for a medium for magneto-optical recording are (1) having perpendicular magnetic anisotropy, (2) having a large coercive force, and (3) having a large force/rotation angle. It is a requirement. Of course, other important requirements include reflectance, grain boundary size, and durability. To meet these property requirements, TbF
Alloy thin films of transition metals and rare earth metals such as eCo and I)yFeCo have been used, and this alloy thin film has a very large coercive force (several KOe) in an amorphous state.
Furthermore, it is characterized by a squareness ratio of approximately 1.0 in the magnetization curve and Kerr hysteresis. However, in the case of these alloy thin films, on the one hand, the rotation angle per force is very small at the maximum of 0.45°, and usually S
An enhancement layer such as 10 or AjN is provided to increase the apparent Kerr rotation angle. In addition, in terms of durability, it has the disadvantage that it is extremely susceptible to oxidation because it contains rare earth elements, and cannot be used without a protective film. On the other hand, a PtMnSbl film having a Clk crystal structure is attracting attention as a recording medium free of such drawbacks. This thin film has a large force-to-rotation angle of 1 to 2 degrees, and contains several tens of wt% of PT in the alloy state.
It has very good oxidation resistance compared to the above-mentioned TbFeCo, etc., and can be used to some extent even without a protective film. However, while this PtMnSb thin film has these advantages, its magnetic properties include superior in-plane magnetization, and its coercive force is at most 2000
e, and cannot be used practically as a magneto-optical recording medium. Furthermore, although this thin film has a very large Kerr rotation angle, this is only when a magnetic field of 5 KOe or more is applied, and the residual Kerr rotation angle of the PtMnSb thin film with no external magnetic field is due to its poor squareness. ni T b F e C
oIt is even smaller than a thin film. Since the Kerr hysteresis is similar to the magnetization curve, it is meaningless no matter how large the saturation Kerr rotation angle is unless the magnetic properties are improved. Figures 6 and 7 show 'I
” b This shows a comparison of the magnetization curve and Kerr loop of a F e Co alloy thin film and the magnetization curve and Kerr loop of a conventional PtMnSb alloy thin film. Although the magnetization curve and Kerr loop of the TbFeCo system have very good squareness, the magnitude of the force-rotation angle itself is 0.4 at most, as mentioned above.
It is about 5°. On the other hand, in the conventional PtMnSb system shown in FIG. 7, the squareness is poor, but the Kerr rotation angle is 10 in the applied magnetic field.
Even though K O e is required, it reaches a maximum of 1 to 2 degrees. In other words, if the squareness of the magnetization curve can be increased, the squareness of the Kerr loop will correspondingly increase, and the force-per-rotation angle at zero magnetic field will also increase significantly. This invention was made in view of the above circumstances, and aims to improve the drawbacks of the PtNnSb thin film, which is attracting attention for its characteristics.
The object of the present invention is to provide a method for manufacturing a magneto-optical recording medium made of a PtMnSb thin film system, which has improved magnetic properties and is capable of improving the squareness of Kerr hysteresis. (
Means for Solving the Problems) This invention solves the above problems by using Clk
A magneto-optical recording medium is provided in which a PtMnSb alloy thin film having a crystalline structure is heat-treated in an atmosphere of oxygen gas or a mixed gas of oxygen gas and an inert gas after the film is formed. In the manufacturing method of the present invention, after the formation of the PtMnSb alloy thin film, heat treatment is performed in the above oxygen atmosphere to form an oxide phase of Mn or sb, or an Mn-Sb
The recording medium produced by this processing method has a higher coercive force and a higher perpendicular anisotropy than a conventional PtMnSb thin film. .. Furthermore, as the coercive force increases, the squareness ratio also increases. Magneto-optical recording media with such excellent magnetic properties are
The PtMnSb thin film is heat-treated in a vacuum chamber by applying an appropriate oxygen partial pressure, but the oxygen partial pressure in oxygen gas or a mixed gas of oxygen gas and inert gas is usually 450°C and 1.
In the case of time processing, 5 X 1 0-'Torr ~ 5
It can be set to about x 1 0-'Torr. The heat treatment conditions are usually 300 to 600°C. Regarding the relationship between temperature, hour, and oxygen partial pressure during this heat treatment, when the temperature is held constant, the higher the oxygen partial pressure, the shorter the treatment time, and when the oxygen partial pressure is held constant, the higher the The higher the temperature, the shorter the processing time. The PtMnSb alloy thin film to be processed can be manufactured by a normal vapor phase deposition method such as sputtering. The magnetic properties and magneto-optical properties of the recording medium manufactured by the method of this invention are significantly improved compared to conventional ones, and this is because the selective oxidation of fine grain boundaries causes individual crystal grains to become magnetically This is presumed to be due to the fact that the coercive force and perpendicular anisotropy increase due to the isolation of the magnetic field. If the magnetic properties are improved, the squareness ratio of Kerr hysteresis will also be improved because it is similar to this. Hereinafter, examples will be shown and the method for manufacturing the magneto-optical recording medium of the present invention will be explained in more detail. Jitsuru Example 1 Normal R. A PtMnSb thin film was deposited on a quartz substrate using the F sputtering method to a thickness of 1500 nm. The target used at this time was a composite target in which PT chips of 5 angles were uniformly distributed on a Mnsb alloy target (6 inch diameter). In addition, the substrate temperature was 100°C, and the ultimate vacuum was 1.5 x
Pure argon gas is introduced at 10-' Torr, and the pressure inside the chamber is set to 4 x 10-' Torr. In this state, a film is formed at a sputtering output of 200 W for 10 minutes. After film formation, the substrate is taken out and then heat treated.
In a separate vacuum chamber, first 2×1 0-'Tor
The mixture gas of Ar and oxygen (02:
20%). The pressure inside the vacuum chamber is 4 x 1 0
-450'C with heater while maintaining at 'Torr'
Heat to temperature and hold at that temperature for 1 hour. Figure 1 shows the X-ray diffraction pattern of the thin film obtained by this treatment. The conventional PtMnSb single phase diffraction pattern has a clear peak (111),
(220), (311), (400), etc. appear, but as is clear from Fig. 1, a peak different from that of the PtMnSb phase appears on the low angle side. These are M
It shows an oxide phase of n or sb, or a composite oxide phase of Mn-Sb. In fact, in this Figure 1, P
In addition to the tMnSb phase, an sb oxide phase and a Mn-sb composite oxide phase are confirmed. In addition, Figure 2 shows the magnetic properties of this thin film (M-H loop).
This is what is shown. Table 1 below compares the evaluation results of magnetic properties with those of conventional PtMnSb thin films. As is clear from Table 1, the coercive force (on H c) is 9
000e, which is approximately 4.5 times larger than the conventional model. The squareness ratio (Rs) also increased significantly. Table 1 Example 2 A PtMnSb thin film was deposited on a glass substrate in the same manner as in Example 1. It was confirmed by X-ray diffraction that it had a 00 crystal structure. No other crystalline phases were observed. Next, the film-forming surface is set so as to be in contact with the atmosphere, and the inside of the heat treatment furnace is evacuated to a degree of vacuum on the order of 10-' Torr. After that, A r +02 (Ox =
A mixed gas of 20%) was introduced, while the furnace was evacuated little by little using a vacuum pump to raise the pressure inside the furnace to 3×10-'Tor.
r (oxygen partial pressure 6 x 10-'Torr). Next, turn on the heater, raise the temperature at a rate of 5°C/min, and keep it at 450°C for 1 hour. After slowly cooling to near room temperature, the material is removed from the furnace. When the thin film heat-treated in this way was analyzed by X-ray diffraction, it was found that P
In addition to the tMnSb phase, sb oxide and Mn-Sb composite oxide were observed. The coercive force (on Hc) at this time is as large as 8500e, and the squareness ratio has also increased significantly. Figure 3 shows the Kerr hysteresis of this sample. In this way, the rotation angle per force is also 1.94°
The squareness of the Kerr hysteresis is 0.44.
As a result of this significant improvement, the residual θk at zero magnetic field is now 0.
85°, 0.45' of T b Fe Co system
(laser wavelength 690
nn), Example 3 A PtMnSbi'W film was heat-treated in the same manner as in Example 1. In the treatment at 450℃ for 1 hour, the coercive force (
HCJL) and evaluated the dependence of magnetization (Ms) on oxygen partial pressure. Figure 4 shows the results. The coercive force (Hcp) increases as the oxygen partial pressure increases, and P 02 = 4
.. It reached 1kOe. On the other hand, the saturation magnetization (Ms) is P
Although it is almost constant until O 2 = 5 X 1 0-'Torr, it can be seen that the saturation magnetic field decreases when the oxide phase increases too much due to an excessive increase in the oxygen partial pressure.
5 x 1 0 −'Torr ~ 8 x 1 0 −
'A moderate oxygen partial pressure of about Torr shows excellent magnetic properties. Practical Plane Example 4 In the same manner as in Example 2, the oxygen partial pressure dependence of the saturated Kerr rotation angle and the residual Kerr rotation angle was evaluated in a heat treatment at 450° C. for 1 hour. Figure 5 shows the results. The saturated Kerr rotation angle is Po2=6X1 0-'TOrr'''
C' becomes maximum, but at the product of the saturation Kerr rotation angle and the squareness ratio (Kerr rotation angle with zero external magnetic field), P o x = 5
If X1 is below 0-'Torr, there is almost no difference due to the difference in oxygen partial pressure. Therefore, if we look only at the optical properties, P ox =8X 1 0-'Tor
The optimal condition is near r, and the C/N ratio during recording and reproduction is the best. (Effects of the Invention) As explained in detail above, the method of this invention produces a novel Pt with significantly improved magnetic properties and magneto-optical properties.
A MnSb-based magneto-optical recording medium is realized.

【図面の簡単な説明】 第1図および第2図は、各々、この発明の一実施例につ
いてのX線回折パターン図と磁気特性(M−Hループ)
図を示したものである.第3図は、この発明の記録媒体
のカーヒステレシス図を示したものである. 第4図および第5図は、各々、この発明の記録媒体につ
いて、保磁力と磁化、およびカー回転角の酸素分圧との
関係を示した相関図である.第6図は、従来のTbFe
Co薄膜の磁化曲線とカーループを示した特性図であり
、また第7図は従来のPtMnSb薄膜の磁化曲線とカ
ーループとを示した特性図である.
[Brief Description of the Drawings] Figures 1 and 2 are an X-ray diffraction pattern diagram and magnetic properties (M-H loop) of an embodiment of the present invention, respectively.
The diagram is shown below. FIG. 3 shows a Kerr hysteresis diagram of the recording medium of this invention. FIGS. 4 and 5 are correlation diagrams showing the relationship between coercive force and magnetization, and Kerr rotation angle and oxygen partial pressure, respectively, for the recording medium of the present invention. Figure 6 shows conventional TbFe
FIG. 7 is a characteristic diagram showing the magnetization curve and Kerr loop of a Co thin film, and FIG. 7 is a characteristic diagram showing the magnetization curve and Kerr loop of a conventional PtMnSb thin film.

Claims (1)

【特許請求の範囲】[Claims] (1)C_1_b結晶構造を有するPtMnSb合金薄
膜を、その成膜後に酸素ガス、あるいは酸素ガスと不活
性ガスとの混合ガス雰囲気下に熱処理することを特徴と
する光磁気記録媒体の製造方法。
(1) A method for producing a magneto-optical recording medium, which comprises heat-treating a PtMnSb alloy thin film having a C_1_b crystal structure in an atmosphere of oxygen gas or a mixed gas of oxygen gas and an inert gas after the film is formed.
JP30176689A 1989-11-20 1989-11-20 Production of magneto-optical recording medium Pending JPH03162736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30176689A JPH03162736A (en) 1989-11-20 1989-11-20 Production of magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30176689A JPH03162736A (en) 1989-11-20 1989-11-20 Production of magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH03162736A true JPH03162736A (en) 1991-07-12

Family

ID=17900917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30176689A Pending JPH03162736A (en) 1989-11-20 1989-11-20 Production of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH03162736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008008A1 (en) * 1994-09-06 1996-03-14 Migaku Takahashi Magnetooptic thin film, magnetooptic recording medium and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008008A1 (en) * 1994-09-06 1996-03-14 Migaku Takahashi Magnetooptic thin film, magnetooptic recording medium and production method thereof
US6190763B1 (en) 1994-09-06 2001-02-20 Migaku Takahashi Magnetooptic thin film, magnetoopic record medium

Similar Documents

Publication Publication Date Title
US9899050B2 (en) Multiple layer FePt structure
JPS609855A (en) Magnetic alloy
JPS5963026A (en) Vertical magnetic recording medium
JP3108637B2 (en) Method for manufacturing soft magnetic thin film
JPH07141641A (en) Magnetic recording medium and its production
JPH03162736A (en) Production of magneto-optical recording medium
JP2579184B2 (en) Magnetic recording media
JPH0230104A (en) Vertically magnetized film
JP2817870B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPS6044813B2 (en) Manufacturing method of alloy thin film for magnetic recording
JPH03162735A (en) Magneto-optical recording medium
JP2935606B2 (en) Manufacturing method of magnetic disk
JPS63269354A (en) Magneto-optical recording medium
JPH03265105A (en) Soft magnetic laminate film
JPH0757237A (en) Magnetic recording medium and its production
JPS6180637A (en) Manufacture of photomagnetic recording medium
JPH1092640A (en) Ultra high-density magnetic recording medium and its manufacture
JPH03208321A (en) Manufacture of magnetic film
JPH04285153A (en) Multi-layer magnetic film and its formation
JPS60173745A (en) Photoelectromagnetic recording medium
JPH0536134A (en) Magneto-optical recording medium
JPS6022722A (en) Thin film magnetic head
JPH03208311A (en) Magnetic substance film laminate body and manufacture thereof
JPH04274039A (en) Production of magneto-optical recording medium
JPH03203308A (en) Thin magnetic film laminate