JPH0380445A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0380445A
JPH0380445A JP21502589A JP21502589A JPH0380445A JP H0380445 A JPH0380445 A JP H0380445A JP 21502589 A JP21502589 A JP 21502589A JP 21502589 A JP21502589 A JP 21502589A JP H0380445 A JPH0380445 A JP H0380445A
Authority
JP
Japan
Prior art keywords
magneto
layers
film
coercive force
artificial lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21502589A
Other languages
Japanese (ja)
Inventor
Shunichi Hashimoto
俊一 橋本
Yoshitaka Ochiai
落合 祥隆
Koichi Aso
阿蘇 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21502589A priority Critical patent/JPH0380445A/en
Publication of JPH0380445A publication Critical patent/JPH0380445A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the coercive force of the magneto-optical recording medium by parting the artificial lattice films alternately laminated with Co layers and Pt layers and/or Pd layers to crystal grain lumps of <=500Angstrom diameter at <=10Angstrom spacing, thereby forming a recording layer. CONSTITUTION:The artificial lattice films which can be utilized as the recording layer are formed of any of a Co-Pd system and Co-Pt-Pd system (the former two may be formed as a Pt-Pd alloy layer and may be in arbitrary order) similar to the Co-Pt system alternately laminated with the Co and Pt and the total film thickness is preferably 50 to 1,000Angstrom for practicability. The lattice films are parted by having the <=10Angstrom spacing as opposed to the continuous structure, by which the good magneto-optical characteristics are obtd. at <=500Angstrom diameter of the respective crystal grain lumps. The crystal grain lumps are isolated in the form of islands and good characteristics are not obtainable in the spacings larger than the above-mentioned range. Magnetic domains increase and the increase in the coercive force is not expected if the grain lumps are larger than the above-mentioned range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気光学効果を利用してレーザー光等により
情報の記録・再生を行う光磁気記録媒体に関し、特に高
保磁力と高磁気カー回転角を有する光磁気・記録媒体に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magneto-optical recording medium that uses magneto-optic effects to record and reproduce information using laser beams, etc. It relates to magneto-optical/recording media with corners.

〔発明の概要〕[Summary of the invention]

本発明は、Co層とPt層および/またはPd層とが交
互に積層された人工格子膜を光磁気記録媒体の記録層と
して底膜するにあたり、上記人工格子膜を10Å以下の
隙間により直径500Å以下の結晶粒塊に分断した構造
とすることにより、特に保磁力の向上を図るものである
In the present invention, when forming an artificial lattice film in which Co layers, Pt layers, and/or Pd layers are alternately laminated as a bottom film as a recording layer of a magneto-optical recording medium, the above artificial lattice film is separated by a gap of 10 Å or less to a diameter of 50 Å. By creating a structure divided into the following crystal grain clusters, the coercive force is particularly improved.

〔従来の技術〕[Conventional technology]

近年、書換え可能な高密度記録方式として、半導体レー
ザー光等の熱エネルギーを用いて磁性薄膜に磁区を書き
込んで情報を記録し、磁気光学効果を用いてこの情報を
読み出す光磁気記録方式が注目されている。
In recent years, magneto-optical recording has attracted attention as a rewritable, high-density recording method in which information is recorded by writing magnetic domains in a magnetic thin film using thermal energy such as semiconductor laser light, and this information is read out using the magneto-optic effect. ing.

この光磁気記録方式に使用される記録材料としては、G
d、Tb、Dy等の希土類元素とFe。
The recording material used in this magneto-optical recording method is G
Rare earth elements such as d, Tb, and Dy, and Fe.

Co等の遷移元素とを組み合わせた非晶質合金が従来の
代表例であった。しかし、これらの非晶質合金を構成し
ている希土類元素やFeは非常に酸化され易く、空気中
の02とも容易に結合して酸化物を形成する性質がある
。このような酸化が進行して腐食や孔食に至と信号の脱
落を誘起し、また特に希土類元素が選択酸化を受けると
保磁力と残留磁気カー回転角の減少に伴ってC/N比が
劣化するという問題が生ずる。このような問題は、希土
類元素を使用する限り免れることができないものである
Conventionally, a typical example has been an amorphous alloy in combination with a transition element such as Co. However, the rare earth elements and Fe that constitute these amorphous alloys are very easily oxidized and have the property of easily combining with O2 in the air to form oxides. As such oxidation progresses, it leads to corrosion and pitting, leading to loss of signals. In particular, when rare earth elements undergo selective oxidation, the C/N ratio decreases as coercive force and residual magnetic Kerr rotation angle decrease. The problem arises of deterioration. Such problems cannot be avoided as long as rare earth elements are used.

一方、これに代わる記録材料として、本発明者らは先に
特願昭63−178135号明細書において、CoNと
Pt層および/またはPd層とが交互に積層された人工
格子膜を記録層とし、該記録層の全厚が50〜800人
であり、また必要に応じて金属下地膜が形成された光磁
気記録媒体を提案している。
On the other hand, as an alternative recording material, the present inventors previously proposed in Japanese Patent Application No. 63-178135 that an artificial lattice film in which CoN and Pt layers and/or Pd layers were alternately laminated was used as a recording layer. , proposes a magneto-optical recording medium in which the total thickness of the recording layer is 50 to 800 mm, and a metal underlayer is formed if necessary.

この光磁気記録媒体は、希土類元素を含まないために耐
蝕性に極めて優れ、また高い磁気カー回転角を有するも
のである。
This magneto-optical recording medium has excellent corrosion resistance because it does not contain rare earth elements, and also has a high magnetic Kerr rotation angle.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、今後の実用化に向けて光磁気記録方式における
高速化、高密度化、高信頼性を推進するためには、保磁
力の一層の向上が望まれている。
However, in order to promote higher speed, higher density, and higher reliability in the magneto-optical recording method for future practical use, further improvement in coercive force is desired.

そこで本発明は、高保磁力と高磁気カー回転角が達成で
きる光磁気記録媒体の提供を目的とする。
Therefore, an object of the present invention is to provide a magneto-optical recording medium that can achieve a high coercive force and a high magnetic Kerr rotation angle.

〔課題を解決するための手段] 本発明者らは上述の目的を達成するために鋭意検討を行
った結果、記録層をCONとPt層および/またはPd
層を交互に積層した人工格子膜で構威し、かつ上記人工
格子膜の微細構造を特定することにより優れた磁気光学
特性が発現することを見出し、本発明を完成するに至っ
たものである。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors found that the recording layer is composed of CON, Pt layer and/or Pd layer.
The inventors have discovered that excellent magneto-optical properties can be achieved by constructing an artificial lattice film consisting of alternately laminated layers and by specifying the fine structure of the artificial lattice film, leading to the completion of the present invention. .

本発明の光磁気記録媒体は、かかる知見にもとづいて提
案されるものであり、CoJiとPt層および/または
PdNとが交互に積層された人工格子膜を記録層とし、
上記人工格子膜が10Å以下の隙間により直径500Å
以下の結晶粒塊に分断されてなることを特徴とするもの
である。
The magneto-optical recording medium of the present invention is proposed based on such knowledge, and has an artificial lattice film in which CoJi, Pt layers and/or PdN are alternately laminated as a recording layer,
The above artificial lattice film has a diameter of 50 Å due to gaps of 10 Å or less.
It is characterized by being divided into the following crystal grain agglomerates.

まず、本発明の光磁気記録媒体において記録層として利
用できる人工格子膜は、00層とPt層を交互に積層し
たCo−Pt系人工格子膜、00層とPd層を交互に積
層したCo−Pd系人工格子膜、およびCo層、Pt層
、Pd層(ただし、後二者はPt−Pd合金層としても
良い。)を任意の順序にて積層したCo−Pt−Pd系
人工格子膜のいずれかである。
First, the artificial lattice film that can be used as a recording layer in the magneto-optical recording medium of the present invention is a Co--Pt based artificial lattice film in which 00 layers and Pt layers are alternately laminated, a Co-Pt-based artificial lattice film in which 00 layers and Pd layers are alternately laminated, and A Pd-based superlattice film, and a Co-Pt-Pd-based superlattice film in which a Co layer, a Pt layer, and a Pd layer (however, the latter two may be Pt-Pd alloy layers) are laminated in any order. Either.

いずれの場合にも人工格子膜の全厚は、実用上必要十分
な磁気光学特性を達成する観点から、50〜1000人
とすることが望ましい。
In either case, the total thickness of the superlattice film is desirably 50 to 1000 thick from the viewpoint of achieving practically necessary and sufficient magneto-optical properties.

さらに、Co−Pt系人工格子膜においては00層の層
厚を2〜8人、Pt層の層厚は3〜40人、またCo−
Pd系人工格子膜においては00層の層厚を1〜9人、
Pd層の層厚を2〜40人に選ぶことが望ましい。これ
らの層厚の範囲は、磁気光学特性を最適化する観点から
設定されたものであり、いずれの場合にも上記範囲外で
は満足な特性は得られない。
Furthermore, in the Co-Pt superlattice film, the thickness of the 00 layer is 2 to 8 people, the thickness of the Pt layer is 3 to 40 people, and the Co-
In the Pd-based superlattice film, the layer thickness of the 00 layer is 1 to 9 people,
It is desirable to choose the layer thickness of the Pd layer from 2 to 40 layers. These layer thickness ranges are set from the viewpoint of optimizing the magneto-optical properties, and in any case, satisfactory properties cannot be obtained outside the above ranges.

なお、上述の各人工格子膜は各金属層の界面が互いに入
り乱れずに平坦に形成された、いわゆる超格子構造とさ
れていることが理想的であるが、界面にやや乱れを生じ
ながらも全体としては一定の周期を保って組成が変動す
る組成変調構造を有するものであっても良い。たとえば
、上述の金属層の層厚の範囲をみると、各金属の金属結
合半径(Co =1.25人、Pd層1.38入、Pt
層1.39人)から考えて下限が1原子分に満たない場
合があるが、これも組成変調構造を考慮した結果である
Ideally, each of the superlattice films mentioned above should have a so-called superlattice structure, in which the interfaces of each metal layer are formed flat without interfering with each other, but even if the interfaces are slightly disordered, the overall Alternatively, it may have a composition modulation structure in which the composition changes while maintaining a constant period. For example, looking at the range of layer thicknesses of the metal layers mentioned above, the metal bond radius of each metal (Co = 1.25, Pd layer 1.38, Pt
In some cases, the lower limit is less than one atom, considering the layer thickness (1.39 people), but this is also a result of taking into consideration the compositional modulation structure.

本発明者らは、Co層とPt層および/またはPd層を
交互に積層した人工格子膜のうち、良好な磁気光学特性
を示すものについてその微細構造を透過型電子顕微鏡に
より観察した結果、人工格子膜が微細な隙間により分断
された構造を呈する場合に、連続的な構造を呈する場合
と比べて著しく良好な磁気光学特性が現れることを見出
した。
The present inventors used a transmission electron microscope to observe the fine structure of artificial lattice films that exhibit good magneto-optical properties among artificial lattice films in which Co layers, Pt layers, and/or Pd layers are alternately laminated. It has been found that when the grating film has a structure divided by minute gaps, significantly better magneto-optical properties appear than when the grating film has a continuous structure.

上記隙間は10Å以下であり、該隙間により分断された
結果生ずる結晶粒塊の直径は500Å以下である。隙間
が10人より大きいと、個々の結晶粒塊が島状に孤立し
、良好な特性が得られない。また、結晶粒塊の直径が5
00人より大きいと、磁区が大きくなり、保磁力の増大
が期待できなくなる。上記結晶粒塊は、単一の結晶粒子
で構成されるものであっても、あるいは複数の微小な粒
子の凝集により構成されるものであっても良い。
The above-mentioned gap is 10 Å or less, and the diameter of crystal grain agglomerates produced as a result of division by the gap is 500 Å or less. If the gap is larger than 10, individual crystal grain clusters become isolated in the form of islands, making it impossible to obtain good properties. In addition, the diameter of the crystal grain agglomerate is 5
If it is larger than 00, the magnetic domain becomes large and an increase in coercive force cannot be expected. The crystal grain agglomerate may be composed of a single crystal grain or may be composed of an agglomeration of a plurality of fine particles.

上記人工格子膜は、最も一般的にはスパッタリングによ
り作成されるが、本発明者らは成膜時のアルゴンガス圧
を15 mTorr以上の比較的高い領域に選んだ場合
に上述のような微細構造が容易に得られることも見出し
た。
The above-mentioned superlattice film is most commonly created by sputtering, but the present inventors found that when the argon gas pressure during film formation was selected to be in a relatively high range of 15 mTorr or more, the above-mentioned fine structure was created. It was also found that it can be easily obtained.

スパッタリングの際の蒸発源は、Co−Pt系。The evaporation source during sputtering is Co-Pt based.

Co−Pd系のような二元系の人工格子膜を作成する場
合には、各金属成分について独立に用意する必要がある
。また、Co−Pt−Pd系のような三元系の人工格子
膜を作成する場合には、各成分金属について独立に蒸発
源を用意する方法の他、特にPdおよびPtに関しては
これらを組み合わせて合金蒸発源とする方法や、どちら
か少ない方の成分のチップを多い方の成分のターゲット
の上に載置した複合蒸発源とする方法が考えられる。
When creating a binary superlattice film such as a Co--Pd system, it is necessary to prepare each metal component independently. In addition, when creating a ternary superlattice film such as the Co-Pt-Pd system, in addition to preparing evaporation sources independently for each component metal, it is also possible to use a combination of these for Pd and Pt in particular. Possible methods include using an alloy evaporation source, or using a composite evaporation source in which a chip with a smaller component is placed on a target with a larger component.

上記人工格子膜の成膜方法としては、上述のスパッタリ
ング以外にも、真空蒸着や分子線エピタキシー(MBE
)等が適用できる。
In addition to the above-mentioned sputtering, methods for forming the artificial lattice film include vacuum evaporation and molecular beam epitaxy (MBE).
) etc. can be applied.

さらに、上記人工格子膜を基板上に成膜するに先立ち、
必要に応じて金属下地膜を成膜し、人工格子膜の膜質を
制御しても良い。この場合の金属下地膜としては、面心
立方構造を有し、格子定数が人工格子膜を構成する金属
層に近似しているものが特に好ましい。
Furthermore, before forming the artificial lattice film on the substrate,
If necessary, a metal base film may be formed to control the film quality of the artificial lattice film. In this case, it is particularly preferable that the metal base film has a face-centered cubic structure and a lattice constant similar to that of the metal layer constituting the artificial lattice film.

〔作用〕[Effect]

本発明の光磁気記録媒体は、記録層がCo層とPt層お
よび/またはPd層を交互に積層した人工格子膜からな
り、しかも該人工格子膜が10Å以下の隙間により直径
500Å以下の結晶粒塊に分断された構造となっている
In the magneto-optical recording medium of the present invention, the recording layer is composed of an artificial lattice film in which a Co layer, a Pt layer, and/or a Pd layer are alternately laminated, and furthermore, the artificial lattice film has crystal grains with a diameter of 500 Å or less with gaps of 10 Å or less. It has a structure divided into blocks.

かかる人工格子膜においては、まず結晶粒塊が一定の大
きさ以下に形成されることにより、単磁区構造が達成さ
れ易くなる。一般に磁区の大きさや方向は磁化過程で変
化するが、さらに本発明では微細な隙間が上記結晶粒塊
中に形成される磁区の磁壁を強制的に固定する効果(い
わゆる磁壁のピン止め効果)を発揮する。したがって、
大きな垂直磁気異方性を有するという上記人工格子膜の
本来の特性に加えて、上述のような磁区の微細化と磁壁
移動の抑制が達成される結果、保磁力が大幅に増大する
ものと考えられる。
In such an artificial lattice film, a single magnetic domain structure is easily achieved by first forming crystal grain agglomerates to a certain size or less. Generally, the size and direction of magnetic domains change during the magnetization process, but in the present invention, the effect of forcibly fixing the magnetic domain wall of the magnetic domain formed in the crystal grain agglomeration by minute gaps (so-called domain wall pinning effect) can be improved. Demonstrate. therefore,
In addition to the above-mentioned original property of the superlattice film of having large perpendicular magnetic anisotropy, we believe that the above-mentioned miniaturization of magnetic domains and suppression of domain wall motion will result in a significant increase in coercive force. It will be done.

〔実施例〕〔Example〕

以下、本発明の好適な実施例について実験結果にもとづ
いて説明する。
Hereinafter, preferred embodiments of the present invention will be described based on experimental results.

本実施例は、光磁気記録媒体の記録層としてガラス基板
上にCo−Pt系人工格子膜を同時二元マグネトロン・
スパッタリングにより成膜した例である。
In this example, a Co-Pt based artificial lattice film is used as a recording layer of a magneto-optical recording medium on a glass substrate.
This is an example in which the film was formed by sputtering.

スパッタリング用ターゲットとしては100mm径のC
OディスクとPtディスクを用い、投入パワーは0.2
〜LA、300Vとした。
As a sputtering target, C with a diameter of 100 mm is used.
Using O disk and Pt disk, input power is 0.2
~LA, 300V.

まず、スパッタリング雰囲気中のアルゴンガス圧による
保磁力および磁気カー回転角の変化を検討した。すなわ
ち、アルゴンガス圧を4 mTorr。
First, we investigated changes in coercive force and magnetic Kerr rotation angle due to argon gas pressure in the sputtering atmosphere. That is, the argon gas pressure was 4 mTorr.

10 mTorr、 15 mTorr+ 20 mT
orr+ 25 tsTorrと変化させ、各アルゴン
ガス圧下で水冷ガラス基板上に層厚4人のCoNと層厚
9大のPt層を交互に積層して全厚120人のCo−P
t系人工格子膜を成膜した。
10 mTorr, 15 mTorr+20 mT
orr + 25 tsTorr, and under each argon gas pressure, CoN with a thickness of 4 and Pt layers with a thickness of 9 were alternately laminated on a water-cooled glass substrate to obtain a Co-P with a total thickness of 120.
A t-based superlattice film was formed.

これらのCo−Pt系人工格子膜について、ポーラーカ
ー測定装置により得られた磁気カー曲線から保磁力と磁
気カー回転角を求めた結果を第1図に示す。図中、縦軸
は保磁力(Oe)および磁気カー回転角(@)、横軸は
スパッタリング雰囲気中のアルゴンガス圧(mTorr
)を表し、黒丸(・)のプロットは保磁力、白丸(○)
のプロットは磁気カー回転角をそれぞれ表す。この図よ
り、アルゴンガス圧が10 mTorrを越えた領域で
保磁力が顕著に増大している様子がわかる。ただし、こ
の領域では磁気カー回転角は若干低下した。
FIG. 1 shows the coercive force and magnetic Kerr rotation angle of these Co--Pt superlattice films obtained from magnetic Kerr curves obtained using a polar Kerr measuring device. In the figure, the vertical axis is coercive force (Oe) and magnetic Kerr rotation angle (@), and the horizontal axis is argon gas pressure (mTorr) in the sputtering atmosphere.
), the plot of black circles (・) represents coercive force, and the plot of white circles (○)
The plots represent the magnetic Kerr rotation angle, respectively. From this figure, it can be seen that the coercive force increases significantly in the region where the argon gas pressure exceeds 10 mTorr. However, the magnetic Kerr rotation angle decreased slightly in this region.

上述のCo−Pt系人工格子膜のうち、アルゴンガス圧
を20 mTorrとした場合についての磁気カー曲線
を第2図に示す、保磁力は約6000e、角形比(飽和
磁気カー回転角θ、に対する残留磁気カー回転角θ貢の
比)はほぼ理想値の1が達成された。
Figure 2 shows the magnetic Kerr curve of the above-mentioned Co-Pt superlattice film when the argon gas pressure is 20 mTorr. The ratio of the residual magnetic Kerr rotation angle θ) was almost the ideal value of 1.

ところで、本発明者らは先に特願昭63−178135
号明細書において、Co−Pt系人工格子膜を記録層と
する光磁気記録媒体における金属下地膜の効果について
言及しているが、本発明にもかかる金属下地膜を適用し
、その効果について検討した。
By the way, the present inventors previously filed a patent application No. 63-178135.
In the specification of the issue, the effect of a metal underlayer in a magneto-optical recording medium having a Co-Pt superlattice film as a recording layer is mentioned, but the metal underlayer according to the present invention is also applied and its effects are studied. did.

すなわち、ガラス基板上に膜厚1000人のPt下地膜
を成膜した後に、上述と同し全厚120入のCo−Pt
系人工格子膜を成膜し、保磁力を測定した。
That is, after forming a Pt base film with a thickness of 1000 on a glass substrate, a Co-Pt base film with a total thickness of 120 as described above was formed.
A superlattice film was formed and the coercive force was measured.

結果を第3図に示す。図中、縦軸は保磁力(Oe)、横
軸はアルゴンガス圧(mTorr)を表す。これより、
保磁力がアルゴンガス圧IQ mTorr付近を境とし
て大幅に変化する傾向は第1図と同様であるが、その絶
対値は金属下地膜の存在により大幅に増大しており、ア
ルゴンガス圧が20 mTorr以上の領域では300
0〜50000eもの高保磁力が達成された。
The results are shown in Figure 3. In the figure, the vertical axis represents coercive force (Oe), and the horizontal axis represents argon gas pressure (mTorr). Than this,
The tendency for the coercive force to change significantly around the argon gas pressure IQ mTorr is similar to that shown in Figure 1, but its absolute value increases significantly due to the presence of the metal base film, and when the argon gas pressure is 20 mTorr 300 in the above areas
A high coercive force of 0 to 50,000 e was achieved.

そこで、次にアルゴンガス圧を20 mTorr 、人
工格子膜の全厚を120人に固定し、以下の第1表に示
す種々のCo層とPtlの層厚の組合せによる人工格子
膜1〜人工格子膜6を成膜し、保磁力の変化について検
討した。結果を第1表に示す。
Therefore, next, we fixed the argon gas pressure at 20 mTorr and the total thickness of the superlattice film at 120 mTorr, and created superlattice films 1 to 1 with various combinations of Co layer and Ptl layer thickness shown in Table 1 below. Film 6 was formed and the change in coercive force was examined. The results are shown in Table 1.

第1表 この表より明らかなように、20 mTorrと比較的
高いアルゴンガス圧下では、いずれの人工格子膜におい
ても500〜7000eの高保磁力が達成された。
Table 1 As is clear from this table, under a relatively high argon gas pressure of 20 mTorr, a high coercive force of 500 to 7000e was achieved in all the superlattice films.

次に、アルゴンガス圧を20 mTorr 、 Co層
の層厚を4人、Pt層の層厚を9人に固定し、全厚を8
0〜900人の範囲で変化させた場合の保磁力と磁気カ
ー回転角の変化について検討した。結果を第4図に示す
。図中、縦軸は保磁力(Oe)および角形比、横軸はC
o−Pt系人工格子膜の全厚(入)を表し、黒丸(・)
のプロットは保磁力、白丸(○)のプロットは角形比を
それぞれ表す。
Next, the argon gas pressure was fixed at 20 mTorr, the Co layer thickness was fixed at 4 layers, the Pt layer thickness was fixed at 9 layers, and the total thickness was 8 mm.
We investigated changes in coercive force and magnetic Kerr rotation angle when changing the number of people in the range of 0 to 900 people. The results are shown in Figure 4. In the figure, the vertical axis is coercive force (Oe) and squareness ratio, and the horizontal axis is C
The black circle (・) represents the total thickness (in) of the o-Pt superlattice film.
The plots with ◯ represent the coercive force, and the plots with white circles (○) represent the squareness ratio.

この図より、保磁力は全厚の増加にともなって増大する
傾向を示し、特に全厚220人付近までは顕著な増大傾
向、それ以降は漸増傾向を示した。−方の角形比は、全
厚220人までは理想値の1を維持し、それ以降の全厚
では漸減する傾向を示した。
From this figure, the coercive force showed a tendency to increase as the total thickness increased, and in particular, it showed a remarkable increasing tendency up to a total thickness of around 220 people, and a gradual increasing tendency after that. The - side squareness ratio maintained the ideal value of 1 until the total thickness of 220 people, and showed a tendency to gradually decrease at the total thickness thereafter.

つまりこの人工格子膜では、角形比1を満足した上で、
最大12000 eもの高保磁力が全厚220人にて達
成できることになる。全厚が900Åと大きい場合にも
、0.65と十分に大きい角形比が連成された。
In other words, in this artificial lattice film, after satisfying the squareness ratio of 1,
This means that a high coercive force of up to 12,000 e can be achieved with a total thickness of 220. Even when the total thickness was as large as 900 Å, a sufficiently large squareness ratio of 0.65 was achieved.

次に、人工格子膜の成膜時におけるバックグラウンド真
空度が磁気光学特性に及ぼす影響について検討した。す
なわち、アルゴンガス圧”lQ t*Torrにて層厚
4人のCo層と層厚9人のPt層を交互に積層して全厚
120人のGo−Pt系人工格子膜を成膜するに際し、
バックグラウンド真空度をlX 10−’〜5 X 1
0−’ Torrの範囲で変化させ、得られる人工格子
膜の保磁力と磁気カー回転角を測定した。結果を第5図
に示す。図中、縦軸は保磁力(Oe)および磁気カー回
転角(°)、横軸はバックグラウンド真空度(Torr
)を表し、黒丸(・)のプロットは保磁力、白丸(○)
のプロットは磁気カー回転角をそれぞれ表す。この図よ
り、保磁力および磁気カー回転角はバックグラウンド真
空度が高くなるにつれて増大する(噴量にあることがわ
かる。これは、スパッタリング前のチャンバー内の排気
がより十分に行われることにより、人工格子膜が酸素酸
化を受ける機会が減少するためである。低真空度下でも
偶発的に高保磁力の達成される場合が見受けられたが、
その多くは角形比が低く、優れた磁気光学特性が安定し
て達成されているとは言えなかった。したがって、比較
的高いアルゴンガス圧下でスパッタリングを行う場合に
は、バックグラウンド真空度を高く設定する方が望まし
い。
Next, we investigated the influence of the background vacuum degree on the magneto-optical properties during the deposition of the artificial lattice film. That is, when forming a Go-Pt superlattice film with a total thickness of 120 layers by alternately laminating Co layers with a thickness of 4 layers and Pt layers with a thickness of 9 layers at an argon gas pressure of 1Q t*Torr. ,
The background vacuum level is lX 10-' ~ 5 X 1
The coercive force and magnetic Kerr rotation angle of the obtained superlattice film were measured by varying the coercive force within a range of 0-' Torr. The results are shown in Figure 5. In the figure, the vertical axis is coercive force (Oe) and magnetic Kerr rotation angle (°), and the horizontal axis is background vacuum degree (Torr
), the plot of black circles (・) represents coercive force, and the plot of white circles (○)
The plots represent the magnetic Kerr rotation angle, respectively. From this figure, it can be seen that the coercive force and the magnetic Kerr rotation angle increase as the background vacuum level increases (this is due to the amount of spraying. This is due to the fact that the chamber is evacuated more thoroughly before sputtering. This is because the chance for the superlattice film to undergo oxygen oxidation is reduced.There have been cases where high coercive force was achieved accidentally even under low vacuum conditions.
Most of them had low squareness ratios, and it could not be said that excellent magneto-optical properties were stably achieved. Therefore, when sputtering is performed under relatively high argon gas pressure, it is desirable to set the background vacuum degree high.

最後に、本発明者らは、Co−Pt系人工格子膜の優れ
た磁気光学特性と微細構造との相関を探るため、代表的
なCo−Pt系人工格子膜の断面を透過型電子顕微鏡に
より観察した。観察試料は、前述の第1図に示したCo
−Pt系人工格子膜のうち、アルゴンガス圧4IITO
rrおよび25 mTorrにおいてそれぞれ得られた
ものである。写真を第6図(A)および第6図(B)に
示す、第6図(A)は成膜時のアルゴンガス圧が4 m
Torrの場合、第6図(B)は同じ< 25 mTo
rrの場合にそれぞれ対応している。成膜時のアルゴン
ガス圧が4 mTorrと低い場合には、人工格子膜は
直径数10〜80人の結晶粒塊が密に充填した一見連続
的な構造を呈している。これに対し、アルゴンガス圧が
25 mTorrと高い場合には、これら結晶粒塊間に
10人程度の隙間が発達している様子が明らかであり、
磁区の微小化と減磁の抑制に寄与していることが示唆さ
れる。
Finally, in order to explore the correlation between the excellent magneto-optical properties of the Co-Pt superlattice film and its fine structure, the present inventors examined a cross section of a typical Co-Pt superlattice film using a transmission electron microscope. Observed. The observed sample was the Co shown in Figure 1 above.
- Among Pt-based superlattice films, argon gas pressure 4IITO
rr and 25 mTorr, respectively. The photographs are shown in Fig. 6(A) and Fig. 6(B). Fig. 6(A) shows that the argon gas pressure during film formation was 4 m
In the case of Torr, Figure 6 (B) is the same < 25 mTo
This corresponds to the case of rr. When the argon gas pressure during film formation is as low as 4 mTorr, the artificial lattice film has a seemingly continuous structure densely packed with crystal grain aggregates with a diameter of several 10 to 80 particles. On the other hand, when the argon gas pressure is as high as 25 mTorr, it is clear that gaps of about 10 degrees have developed between these crystal grain agglomerates.
It is suggested that this contributes to miniaturization of magnetic domains and suppression of demagnetization.

なお、上述の説明はすべてCo−Pt系人工格子膜につ
いて行ったものであるが、Ptの代わりにPdを使用し
たCo−Pd系人工格子膜においてもほぼ同等の結果が
得られた。
Although all of the above explanations were made for Co--Pt based superlattice films, almost the same results were obtained with Co--Pd based super lattice films using Pd instead of Pt.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明にかかる光磁
気記録媒体は、比較的高いアルゴンガス圧下で成膜され
、結晶粒塊の間に隙間を有するco−Pt系人工格子膜
、あるいはCo−Pd系人工格子膜の優れた磁気光学効
果を利用したものである。上記光磁気記録媒体は、高保
磁力と高磁気カー回転角を有することから、周波数特性
、再生出力、感度、C/N比等に優れる高密度記録再生
を可能とするものである。特に、10000 e以上の
高保磁力も達成されることから、浮遊外部磁界に影響さ
れない安定な記録が可能となること、書込時のバイアス
磁界の広範囲な制御が可能となりノイズの低減が容易と
なること等の利点も生ずる。
As is clear from the above description, the magneto-optical recording medium according to the present invention is a co-Pt superlattice film or a Co-Pt superlattice film formed under relatively high argon gas pressure and having gaps between crystal grain aggregates. - This utilizes the excellent magneto-optical effect of the Pd-based superlattice film. The magneto-optical recording medium has a high coercive force and a high magnetic Kerr rotation angle, and therefore enables high-density recording and reproduction with excellent frequency characteristics, reproduction output, sensitivity, C/N ratio, etc. In particular, since a high coercive force of 10,000 e or more is achieved, stable recording is possible that is not affected by stray external magnetic fields, and the bias magnetic field during writing can be controlled over a wide range, making it easier to reduce noise. Other advantages also arise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCo−Pt系人工格子膜の保磁力と磁気カー回
転角がスパッタリング成膜時のアルゴンガス圧に依存す
る様子を示す特性図である。第2図はCo−Pt系人工
格子膜の一例についてそのCo−Pt系人工格子膜の保
磁力および角形比が全厚に依存する様子を示す特性図で
ある。第5図はCo−Pt系人工格子膜の保磁力および
磁気カー回転角がスパッタリング成膜時のバックグラウ
ンド真空度に依存する様子を示す特性図である。 第6図(A):j−3よび第6図(B)はCo−Pt系
人工格子膜の微細構造のアルゴンガス圧依存性を示す透
過型電子顕微鏡写真であり、第6図(A)はアルゴンガ
ス圧が4 mTorrの場合、第6図(B)は25mT
orrの場合にそれぞれ対応する。
FIG. 1 is a characteristic diagram showing how the coercive force and magnetic Kerr rotation angle of a Co--Pt based superlattice film depend on the argon gas pressure during sputtering film formation. FIG. 2 is a characteristic diagram showing how the coercive force and squareness ratio of an example of a Co--Pt-based super lattice film depend on the total thickness. FIG. 5 is a characteristic diagram showing how the coercive force and magnetic Kerr rotation angle of a Co--Pt superlattice film depend on the degree of background vacuum during sputtering film formation. Figure 6(A):j-3 and Figure 6(B) are transmission electron micrographs showing the dependence of the fine structure of the Co-Pt superlattice film on argon gas pressure; When the argon gas pressure is 4 mTorr, Fig. 6 (B) is 25 mT.
This corresponds to the case of orr, respectively.

Claims (1)

【特許請求の範囲】 Co層とPt層および/またはPd層とが交互に積層さ
れた人工格子膜を記録層とし、 上記人工格子膜が10Å以下の隙間により直径500Å
以下の結晶粒塊に分断されてなることを特徴とする光磁
気記録媒体。
[Claims] The recording layer is an artificial lattice film in which Co layers, Pt layers, and/or Pd layers are alternately laminated, and the artificial lattice film has a diameter of 50 Å with a gap of 10 Å or less.
A magneto-optical recording medium characterized by being divided into the following crystal grain agglomerates.
JP21502589A 1989-08-23 1989-08-23 Magneto-optical recording medium Pending JPH0380445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21502589A JPH0380445A (en) 1989-08-23 1989-08-23 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21502589A JPH0380445A (en) 1989-08-23 1989-08-23 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH0380445A true JPH0380445A (en) 1991-04-05

Family

ID=16665495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21502589A Pending JPH0380445A (en) 1989-08-23 1989-08-23 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0380445A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162737A (en) * 1989-11-20 1991-07-12 Sanyo Electric Co Ltd Magneto-optical recording medium
JPH03171450A (en) * 1989-11-29 1991-07-24 Kao Corp Optical recording medium
US6881497B2 (en) 2001-06-04 2005-04-19 Hitachi Global Storage Technologies Netherlands B.V. ‘Thermal spring’ magnetic recording media for writing using magnetic and thermal gradients

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162737A (en) * 1989-11-20 1991-07-12 Sanyo Electric Co Ltd Magneto-optical recording medium
JPH03171450A (en) * 1989-11-29 1991-07-24 Kao Corp Optical recording medium
US6881497B2 (en) 2001-06-04 2005-04-19 Hitachi Global Storage Technologies Netherlands B.V. ‘Thermal spring’ magnetic recording media for writing using magnetic and thermal gradients

Similar Documents

Publication Publication Date Title
US5834085A (en) Grain isolated multilayer perpendicular recording medium
JPH01158618A (en) Magnetic recording medium
US6863998B2 (en) Magnetic recording medium, method for producing the same, and magnetic recording apparatus
US4544591A (en) Perpendicular magnetic recording medium
US4609593A (en) Magnetic recording medium
JPH056738B2 (en)
JPH0380445A (en) Magneto-optical recording medium
US5244751A (en) Perpendicular magnetic recording medium, its fabrication method and read-write machine using it
JPS61194625A (en) Magnetic recording medium
JP2579184B2 (en) Magnetic recording media
JPH0785401A (en) Magnetic recording method
JPS6153769B2 (en)
JP3045797B2 (en) Perpendicular magnetic recording media
JPH023102A (en) Perpendicular magnetic recording medium
JPH01169757A (en) Magneto-optical recording medium
JPH0311531B2 (en)
JP3386270B2 (en) Magnetic head and magnetic recording device
JP2777594B2 (en) Magnetic film
JPS5948822A (en) Vertical magnetic recording medium and its production
JPS5868234A (en) Composite magnetic recording medium
JPS58171717A (en) Magnetic recording medium
JPH0380421A (en) Perpendicular magnetic recording medium
JPS5975428A (en) Vertically magnetized magnetic recording medium
JPH08316032A (en) Soft magnetic thin film, magnetic head using the film and magnetic recorder
JPH01143312A (en) Amorphous soft magnetic laminated film