JPH01169757A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH01169757A
JPH01169757A JP32528887A JP32528887A JPH01169757A JP H01169757 A JPH01169757 A JP H01169757A JP 32528887 A JP32528887 A JP 32528887A JP 32528887 A JP32528887 A JP 32528887A JP H01169757 A JPH01169757 A JP H01169757A
Authority
JP
Japan
Prior art keywords
magneto
layer
zns
optical recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32528887A
Other languages
Japanese (ja)
Other versions
JP2526615B2 (en
Inventor
Shunichi Hashimoto
俊一 橋本
Yoshitaka Ochiai
落合 祥隆
Koichi Aso
阿蘇 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62325288A priority Critical patent/JP2526615B2/en
Publication of JPH01169757A publication Critical patent/JPH01169757A/en
Application granted granted Critical
Publication of JP2526615B2 publication Critical patent/JP2526615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve coercive force and the square shape of a magnetic Kerr curve by forming a recording layer of artificial lattice films which are alternately laminated with a specific atomic layer number of Co and Pt and are specified in the total thickness thereof on a substrate on which an underlying ZnS film is formed. CONSTITUTION:The underlying ZnS layer 2 is formed on the glass substrate 1 and the recording layer 3 consisting of the Co-Pt artificial lattice films which are alternately laminated with Co 0.5-2.5atom. layers and Pt 1-7atom. layers and have 50-500Angstrom total thickness is formed on this layer 2. The range of the atomic layer number of the respective layers and the total thickness suppresses generation of an intra-surface magnetization component and optimizes magneto-optical characteristics. The coercive force and the square shape of the magnetic Kerr curve are improved and the shape of pits at the time of recording is sharpened; in addition, the S/N of reading out is improved by forming the recording layer 3 via the underlying ZnS layer 2 on the substrate in such a manner. The magneto-optical recording with high quality at a high density is thereby enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気光学効果を利用してレーザー光等により
情報の記録・再生を行う光磁気記録媒体に関し、特に耐
蝕性および磁気光学特性に優れる光磁気記録媒体に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magneto-optical recording medium that uses magneto-optic effects to record and reproduce information using laser beams, etc. Concerning an excellent magneto-optical recording medium.

〔発明の概要) 本発明は、Co0.5〜2.5原子層とF’dおよび/
またはPtl〜7原子層とが交互に積層された全厚50
〜500人の人工格子膜を記録層とする光磁気記録媒体
において、該記録層をZnS下地膜を介して基板上に形
成することにより、保磁力および磁気カー曲線の角形を
向」ニさせ、続出し時のS/N比を高めることを可能と
するものである。
[Summary of the invention] The present invention provides a 0.5 to 2.5 atomic layer of Co, F'd and/or
Or Ptl~7 atomic layers are alternately laminated with a total thickness of 50
~500 In a magneto-optical recording medium having an artificial lattice film as a recording layer, the recording layer is formed on a substrate via a ZnS undercoating film to align the coercive force and the square shape of the magnetic Kerr curve, This makes it possible to increase the S/N ratio during continuous output.

〔従来の技術〕[Conventional technology]

近年、書換え可能な高密度記録方式として、半導体レー
ザー光等により記録・再生を行う光磁気記録方式が注目
されている。
2. Description of the Related Art In recent years, a magneto-optical recording method in which recording and reproduction is performed using semiconductor laser light or the like has been attracting attention as a rewritable high-density recording method.

この光磁気記録方式に使用される記録材料としては、G
d、Tb、Dy等の希土類元素とFe。
The recording material used in this magneto-optical recording method is G
Rare earth elements such as d, Tb, and Dy, and Fe.

Co等の遷移元素とを組み合わせた非晶質合金が従来の
代表例である。しかし、これらの非晶質合金薄膜を構成
している希土類元素やFeは非常に酸化され易く、空気
中の酸素とも容易に結合して酸化物を形成する性質があ
る。このような酸化が進行して腐食や孔食に至ると信号
の脱落を誘起し、また特に希土類元素が酸化されると、
保磁力と残留磁気カー回転角の減少に伴ってS/N比が
劣化する。このような問題は、光磁気記録媒体の記録層
の材料に希土類元素が使用されている限り避けられない
ものである。
A typical conventional example is an amorphous alloy in combination with a transition element such as Co. However, the rare earth elements and Fe that constitute these amorphous alloy thin films are highly oxidized and have the property of easily combining with oxygen in the air to form oxides. If such oxidation progresses and leads to corrosion or pitting, it will cause the signal to drop out, and especially if rare earth elements are oxidized,
The S/N ratio deteriorates as the coercive force and the Kerr rotation angle of the residual magnetic field decrease. Such problems are unavoidable as long as rare earth elements are used as the material for the recording layer of a magneto-optical recording medium.

これに対し本発明者らは先に、希土類元素を含有せず、
耐蝕性に優れ、しかも500Å以下の膜厚にて良好な磁
気光学特性を有する光磁気記録媒体として、CONとP
t層および/またはPdNとを積層した超格子金属膜を
記録層とする光磁気記録媒体を特訓昭62−21156
9号明細書等において開示している。
In contrast, the present inventors have previously developed a method that does not contain rare earth elements,
CON and P
Special training on magneto-optical recording media whose recording layer is a superlattice metal film laminated with t-layer and/or PdN
It is disclosed in Specification No. 9 etc.

(発明が解決しようとする問題点〕 しかしながら、光磁気記録媒体を今後実用化するにあた
っては、より一層の保磁力、磁気カー回転角、磁気カー
曲線における角形の向上環が必要である。
(Problems to be Solved by the Invention) However, in order to put magneto-optical recording media into practical use in the future, it is necessary to further improve the coercive force, the magnetic Kerr rotation angle, and the rectangular shape of the magnetic Kerr curve.

そこで本発明は、かかる光磁気記録媒体の磁気光学特性
のより一層の改善を目的とし、特に保磁力と磁気カー曲
線の角形の向上を目的とする。
Therefore, the present invention aims to further improve the magneto-optical properties of such a magneto-optical recording medium, and particularly aims to improve the coercive force and the squareness of the magnetic Kerr curve.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、前述の目的を達成すべく鋭意研究を重ね
た結果、ZnSを光磁気記録媒体の下地膜として積層す
ることにより、保磁力および磁気カー曲線の角形が大幅
に向上することを見出した。
As a result of intensive research to achieve the above-mentioned objective, the present inventors have found that by laminating ZnS as an underlayer of a magneto-optical recording medium, the coercive force and the squareness of the magnetic Kerr curve can be significantly improved. I found it.

本発明にかかる光磁気記録媒体はかかる知見にもとづい
て完成されたものであって、Co0.5〜2.5原子層
とPdおよび/またはPtl〜7原子層とが交互に積層
された全厚50〜500人の人工格子膜を記録層とし、
該記録層がZnS下地膜を介して基板上に形成されてな
るものである。
The magneto-optical recording medium according to the present invention has been completed based on this knowledge, and has a total thickness of 0.5 to 2.5 atomic layers of Co and 7 to 7 atomic layers of Pd and/or Ptl alternately laminated. An artificial lattice film of 50 to 500 people is used as a recording layer,
The recording layer is formed on a substrate with a ZnS underlayer interposed therebetween.

まず、本発明にかかる光磁気記録媒体において記録層と
して利用できる人工格子膜は、Co層とPtlとを積層
したGo−PL系人工格子膜、Co層とPd層とを積層
したCo−Pd系人工格子膜、Co層とPt−Pd合金
層を積層するかあるいはCo層、Pt層、Pd層の王者
を積層したCo−Pt−Pd系人工格子膜である。ここ
で、上述の各層の原子層数の範囲は磁気光学特性を最適
化する観点から設定されたものであり、いずれの場合も
上記範囲外では面内磁化成分が発生して磁気光学特性が
劣化する。さらに、記録層の全厚は50〜500 人で
あること力9子ましい。
First, the artificial lattice film that can be used as a recording layer in the magneto-optical recording medium according to the present invention is a Go-PL superlattice film in which a Co layer and a Ptl are laminated, and a Co-Pd-based artificial lattice film in which a Co layer and a Pd layer are laminated. The superlattice film is a Co-Pt-Pd system superlattice film in which a Co layer and a Pt-Pd alloy layer are laminated, or a combination of a Co layer, a Pt layer, and a Pd layer is laminated. Here, the range of the number of atomic layers in each layer mentioned above was set from the perspective of optimizing the magneto-optical properties, and in any case, outside the above range, an in-plane magnetization component will occur and the magneto-optical properties will deteriorate. do. Furthermore, it is preferable that the total thickness of the recording layer is 50 to 500 mm.

なお、上述の人工格子膜を構成する各金属層の界面は、
異種金属原子が互いに入り乱れずに平坦に形成され、い
わゆる超格子構造とされていることが理想的であるが、
界面にやや乱れを生じながらも全体としては一定の周期
を保って組成が変動する、いわゆる変調構造(&lll
変成構造)を有するものであっても良い。
Note that the interface between each metal layer constituting the above-mentioned superlattice film is
Ideally, atoms of different metals should be formed flat without mixing with each other, creating a so-called superlattice structure.
The so-called modulation structure (&llll
may have a metamorphic structure).

上記人工格子膜はスパッタリング、真空蒸着あるいは分
子線エピタキシー(MBE)等によって形成することが
できる。
The artificial lattice film can be formed by sputtering, vacuum deposition, molecular beam epitaxy (MBE), or the like.

また上記人工格子膜には、キュリー点を下げる等の目的
でAf、Si、Ti、V、Cr、Mn。
The superlattice film also contains Af, Si, Ti, V, Cr, and Mn for the purpose of lowering the Curie point.

Fe、Ni、Cu、Zn、Ga、Ge、Zr。Fe, Ni, Cu, Zn, Ga, Ge, Zr.

Nb、Mo、Ru、Rh、Ag、In、Sn。Nb, Mo, Ru, Rh, Ag, In, Sn.

Sb、Hf、Ta、W、Re、Os、Ir、Au。Sb, Hf, Ta, W, Re, Os, Ir, Au.

Pb、Biの元素のうち少なくとも1種を適宜添加して
も良い。
At least one of the elements Pb and Bi may be added as appropriate.

本発明にかかる光磁気記録媒体においては、上述のよう
な記録層を形成するに先立って、ガラス等の適当な基板
の上にまずZnS下地膜がスパッタリング、真空蒸着あ
るいはMBE等により形成される。このZnS下地膜の
膜厚は5〜5000人の範囲で選ばれる。上記範囲より
小さい場合には下地膜としての所望の効果が得られず、
また上記範囲より大きい場合には磁気光学特性の劣化が
生ずる虞れがあり、また生産性・経済性の観点からも実
用的とは言えない。より好ましい範囲は5〜1000人
である。
In the magneto-optical recording medium of the present invention, prior to forming the recording layer as described above, a ZnS base film is first formed on a suitable substrate such as glass by sputtering, vacuum evaporation, MBE, or the like. The thickness of this ZnS base film is selected within the range of 5 to 5,000 layers. If it is smaller than the above range, the desired effect as a base film cannot be obtained,
Moreover, if it is larger than the above range, there is a risk that the magneto-optical properties will deteriorate, and it is not practical from the viewpoint of productivity and economy. A more preferable range is 5 to 1000 people.

このような光磁気記録媒体の基本的な構成を第1図に示
す、ここでは、基板(1)の上にZnS下地膜(2)を
介して記録層(3)が形成されている。
The basic structure of such a magneto-optical recording medium is shown in FIG. 1, in which a recording layer (3) is formed on a substrate (1) with a ZnS underlayer (2) interposed therebetween.

しかし、実用上は第2図に示すように上記記録層(3)
の上にさらにAl、Au、Pt、Cu等の金属反射膜(
4)を設けるのが一般的である。さらに磁気光学特性を
改善する目的で、第3図に示すように上記記録層(3)
の上に別の誘電体層(5)を設けても良い。このときの
誘電体層(5)の材料としてはZnSを使用しても良い
が、A2□Os、TaxOs、 Mg O,S i O
t、 T i Ox、  F egos。
However, in practice, as shown in FIG.
On top of this, a metal reflective film such as Al, Au, Pt, Cu, etc.
4) is generally provided. In order to further improve the magneto-optical properties, as shown in FIG.
Another dielectric layer (5) may be provided on top. ZnS may be used as the material for the dielectric layer (5) at this time, but A2□Os, TaxOs, MgO, SiO
t, T i Ox, F egos.

Z r Ox、 B i g03等の酸化物系誘電体、
あるいはZ r N、 T i N、 S 1sNa、
 Al1N、 BN。
Oxide-based dielectrics such as Z r Ox, B i g03,
Or Z r N, T i N, S 1sNa,
Al1N, BN.

TaN、NbN等の窒化物系誘電体等も使用できる。こ
のような場合にも、実用上は第4図に示すようにさらに
上記誘電体層(5)の上に金属反射膜(4)が設けられ
ることが望ましい。
Nitride-based dielectrics such as TaN and NbN can also be used. Even in such a case, it is practically desirable to further provide a metal reflective film (4) on the dielectric layer (5) as shown in FIG.

上述のような構成を有する光磁気記録媒体の記録層への
書込み方法は、光ビームの他、釘型磁気ヘッド、熱ペン
、電子ビームなど、反転磁区を生じさせるのに必要なエ
ネルギーを供給できるものであれば、いかなるものでも
良いことは言うまでもない。
In addition to a light beam, a method for writing to the recording layer of a magneto-optical recording medium having the above-mentioned configuration uses a nail-shaped magnetic head, a thermal pen, an electron beam, etc., which can supply the energy necessary to generate reversed magnetic domains. Needless to say, anything is fine as long as it is something.

〔作用〕[Effect]

本発明にかかる光磁気記録媒体は、記録層に希土類元素
を含まないため耐蝕性に優れる。さらに該記録層がZn
S下地膜を介して基板上に形成されているため、保磁力
および磁気カー曲線の角形が向上する。このように保磁
力および磁気カー曲線の角形が向上すれば、記録時のビ
ットの形状がよりシャープになり、読出し時のS/N比
が向上する。さらに、上記ZnS下地膜の膜厚が最適に
選択された場合には、干渉による磁気カー回転角の増大
(エンハンスメント効果)も期待できる。
The magneto-optical recording medium according to the present invention has excellent corrosion resistance because the recording layer does not contain a rare earth element. Furthermore, the recording layer is made of Zn.
Since it is formed on the substrate via the S underlayer, the coercive force and the squareness of the magnetic Kerr curve are improved. If the coercive force and the square shape of the magnetic Kerr curve are improved in this way, the shape of the bit during recording becomes sharper, and the S/N ratio during reading improves. Furthermore, if the thickness of the ZnS underlayer is optimally selected, an increase in the magnetic Kerr rotation angle (enhancement effect) due to interference can be expected.

〔実施例〕〔Example〕

以下、本発明の好適な実施例について図面を参照しなが
ら説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本実施例は、Go−Pt系人工格子膜を記録層とし、該
記録層がガラス基板上にZnS下地膜を介して形成され
てなる光磁気記録媒体の例である。
This example is an example of a magneto-optical recording medium in which a Go--Pt superlattice film is used as a recording layer, and the recording layer is formed on a glass substrate with a ZnS underlayer interposed therebetween.

まず、高真空蒸着装置内にZnS焼結タブレットを載置
し、2 Xl0−’ Torrの真空下でガラス基板上
に種々の膜厚のZnS下地膜を被着形成した。
First, a ZnS sintered tablet was placed in a high vacuum evaporation apparatus, and ZnS base films of various thicknesses were deposited on a glass substrate under a vacuum of 2 Xl0-' Torr.

次に、マグネトロン・スパッタリング装置内に100m
m径のCOおよびPLの各ターゲットを設置し、これら
のターゲットと対向させた水冷装置付きの回転基台にZ
nS下地膜を形成した上記ガラス基板を載置した。ここ
でガス圧5 Xl0−’Torrのアルゴン雰囲気中に
おいて二元同時マグネトロン・スパッタリングを行い、
上記ZnS下地膜の上に記録層となるCo−Pt系人工
格子膜を形成した。この装置によれば、各ターゲットへ
の投入電流や投入電力、あるいはガラス基板を載置した
回転基台の回転数を変化させることにより、人工格子膜
の周期を任意に決定することができる。本実施例ではC
Oターゲットに対しては投入電流0.40Aの直流スパ
ッタリング、Ptツタ−ットに対しては投入電力400
 Wの高周波スパッタリングを行い、回転基台の回転数
を16rp11として全厚100人のCo−Pt系人工
格子膜を作成し、各光磁気記録媒体の各サンプルを調製
した。
Next, a 100 m
CO and PL targets with a diameter of m were installed, and the Z
The above glass substrate on which the nS base film was formed was placed. Here, binary simultaneous magnetron sputtering was performed in an argon atmosphere with a gas pressure of 5 Xl0-'Torr.
A Co--Pt based superlattice film, which will become a recording layer, was formed on the ZnS base film. According to this device, the period of the artificial lattice film can be arbitrarily determined by changing the current or power applied to each target or the rotational speed of the rotating base on which the glass substrate is placed. In this example, C
DC sputtering with input current of 0.40A for O target, input power of 400A for Pt target.
A Co--Pt superlattice film with a total thickness of 100 layers was prepared by high-frequency sputtering of W, and the rotational speed of the rotating base was set at 16 rpm to prepare each sample of each magneto-optical recording medium.

なお、作成されたCo−Pt系人工格子膜の周期は、X
線小角散乱におけるピーク角度から求めた。
The period of the created Co-Pt superlattice film is X
It was determined from the peak angle in small-angle line scattering.

また比較のために、ZnS下地膜を設けない光磁気記録
媒体も同様に作成した。
For comparison, a magneto-optical recording medium without a ZnS underlayer was also produced in the same manner.

これらの各光磁気記録媒体の磁気光学特性を基板側から
磁気カー曲線測定装置を使用して測定した結果を第5図
(A)および第5図(B)に示す。
The magneto-optical characteristics of each of these magneto-optical recording media were measured from the substrate side using a magnetic Kerr curve measuring device, and the results are shown in FIGS. 5(A) and 5(B).

第5図(A)は600人のZnS下地膜を設けた場合、
第5図(B)は比較例としてZnS下地膜を設けなかっ
た場合に相当し、図中の縦軸は磁気カー回転角θ、(°
)、横軸は磁化の強さH(Oe)をそれぞれ表す。まず
、Zn5T地膜を設けなかった場合の磁気カー回転角θ
、は0,58°、保磁力は162.50 eである。こ
れに対し、ZnS下地膜を設けた場合には保磁力および
磁気カー回転角が増大するのみならず、角形も向上して
いることが明らかである。
Figure 5 (A) shows the case where 600 ZnS base films are provided.
FIG. 5(B) corresponds to a case where no ZnS underlayer is provided as a comparative example, and the vertical axis in the figure is the magnetic Kerr rotation angle θ, (°
), the horizontal axis represents the magnetization strength H (Oe), respectively. First, the magnetic Kerr rotation angle θ when no Zn5T layer is provided.
, is 0,58° and the coercive force is 162.50 e. On the other hand, it is clear that when a ZnS underlayer is provided, not only the coercive force and the magnetic Kerr rotation angle increase, but also the squareness is improved.

第6図には同じ光磁気記録媒体におけるZnS下地膜の
膜厚と保磁力との関係を示す。図中、縦軸は保磁力(O
e)、横軸は ZnS下地膜の++り厚(人)をそれぞ
れ表す。この図より、ZnS下地膜は50人程度に薄く
設けられた場合にすでにト分な保磁力の増大効果を有し
ていることがわかる。
FIG. 6 shows the relationship between the thickness of the ZnS underlayer and the coercive force in the same magneto-optical recording medium. In the figure, the vertical axis is the coercive force (O
e) The horizontal axis represents the thickness (in thickness) of the ZnS base film. From this figure, it can be seen that the ZnS underlayer already has a significant coercive force increasing effect when it is formed as thin as about 50 layers.

第7図にはさらに、同じ光磁気記録媒体におけるZnS
下地膜の膜厚と磁気カー回転角との関係を示す。図中、
縦軸は保磁力(Oe)、横軸はZnS下地膜の膜厚(人
)をそれぞれ表す、この図をみると、第5図(A)に示
した場合に相当する膜厚600人付近において磁気カー
回転角が極大値を示し、ZnS下地膜の膜厚が最適に選
ばれた場合には磁気カー回転角の増大効果が期待できる
ことを示唆している。
FIG. 7 further shows ZnS in the same magneto-optical recording medium.
The relationship between the thickness of the base film and the magnetic Kerr rotation angle is shown. In the figure,
The vertical axis represents the coercive force (Oe), and the horizontal axis represents the film thickness (Oe) of the ZnS underlayer. Looking at this figure, it can be seen that at a film thickness of around 600 Oe, which corresponds to the case shown in Figure 5 (A), The magnetic Kerr rotation angle shows a maximum value, suggesting that an effect of increasing the magnetic Kerr rotation angle can be expected when the thickness of the ZnS underlayer is optimally selected.

なお、同様の効果はCo−Pd系人工格子膜を記録層と
する光磁気記録媒体においても観察された。
Incidentally, a similar effect was also observed in a magneto-optical recording medium having a Co--Pd superlattice film as a recording layer.

さらに上記ZnS下地膜は、Go−PL−Pd系人工格
子膜を記録層とする光磁気記録媒体にも適用可能である
Further, the above ZnS underlayer can also be applied to a magneto-optical recording medium having a Go-PL-Pd based artificial lattice film as a recording layer.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明にかかる光磁
気記録媒体においては保磁力および磁気カー曲線の角形
が向上しているため、記録時のビットの形状がよりシャ
ープになり、続出し時のS/N比が向上する。さらに、
上記ZnS下地膜の膜厚が最適に選択された場合には、
干渉による磁気カー回転角の増大(エンハンスメント効
果)も期待できる。したがって、高品質かつ高密度の光
磁気記録が可能となる。
As is clear from the above explanation, in the magneto-optical recording medium according to the present invention, the coercive force and the squareness of the magnetic Kerr curve are improved, so the shape of the bit during recording becomes sharper, and when The S/N ratio of is improved. moreover,
If the thickness of the ZnS base film is optimally selected,
An increase in the magnetic Kerr rotation angle due to interference (enhancement effect) can also be expected. Therefore, high-quality and high-density magneto-optical recording becomes possible.

また、上記人工格子膜には今後世界的に供給が逼迫する
と予想される希土類元素が使用されていないため、光磁
気記録媒体の安定かつ経済的な供給が期待できる。
Furthermore, since the artificial lattice film does not contain rare earth elements whose supply is expected to become tight worldwide in the future, a stable and economical supply of magneto-optical recording media can be expected.

このような光磁気記録媒体を、たとえば光ビームを用い
て書込み、磁気カー効果を利用して読出しを行ういわゆ
るビーム・アドレッサブル・ファイル・メモリ等の光磁
気メモリの貯蔵媒体として使用すれば、極めて高密度で
S/N比が大きく、かつ長期にわたって高い信頼性を保
つメモリ装置を実現することができる。
If such a magneto-optical recording medium is used as a storage medium for a magneto-optical memory such as a so-called beam-addressable file memory, which writes using a light beam and reads using the magnetic Kerr effect, it can achieve extremely high performance. It is possible to realize a memory device that has a high density, a high S/N ratio, and maintains high reliability over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる光磁気記録媒体の最も基本的な
構成を示す概略断面図である。第2図ないし第4図は本
発明にかかる光磁気記録媒体の他の構成例を示す概略断
面図であり、第2図は記録層の上に金属反射膜を設けた
例、第3図は記録層の上に誘電体層を設けた例、第4図
は記録層の上に誘電体層および金属反射膜をこの順序で
設けた例をそれぞれ表す。第5図(A)および第5図(
B)はガラス基板上にCo−PL系人工格子膜が形成さ
れた光磁気記録媒体におけるZnS下地膜の有無による
磁気光学特性の変化を示す磁気カー曲線であり、第5図
(A)は膜厚600 人のZnS下地膜を有する場合、
第5図(B)はZnS下地膜を存しない場合をそれぞれ
表す。第6図は回し磁気記録媒体におけるZnS下地膜
の膜厚による保磁力の変化を示す特性図である。第7図
は同じ光磁気記録媒体におけるZnS下地膜のW!厚に
よる磁気カー回転角の変化を示す特性図である。 1・・・基板 2・・・ ZnS下地膜 3・・・記録層 4・・・金属反射膜 5・・・誘電体層 特許出願人   ソニー株式会社 代理人 弁理士   小 池   見 回   田村榮− 同   佐藤 勝 第1図 第3図 第2図 第4図 磁張カー回転山(0) 保磁n (Oe)
FIG. 1 is a schematic sectional view showing the most basic structure of a magneto-optical recording medium according to the present invention. 2 to 4 are schematic sectional views showing other configuration examples of the magneto-optical recording medium according to the present invention, in which FIG. 2 shows an example in which a metal reflective film is provided on the recording layer, and FIG. 3 shows an example in which a metal reflective film is provided on the recording layer. FIG. 4 shows an example in which a dielectric layer is provided on the recording layer, and FIG. 4 shows an example in which a dielectric layer and a metal reflective film are provided in this order on the recording layer. Figure 5 (A) and Figure 5 (
B) is a magnetic Kerr curve showing the change in magneto-optical properties depending on the presence or absence of a ZnS underlayer in a magneto-optical recording medium in which a Co-PL superlattice film is formed on a glass substrate; When having a ZnS base film with a thickness of 600 mm,
FIG. 5(B) shows the case where no ZnS base film is present. FIG. 6 is a characteristic diagram showing the change in coercive force depending on the thickness of the ZnS underlayer in a rotary magnetic recording medium. Figure 7 shows the W! FIG. 3 is a characteristic diagram showing changes in magnetic Kerr rotation angle depending on thickness. 1...Substrate 2...ZnS base film 3...Recording layer 4...Metal reflective film 5...Dielectric layer Patent applicant Sony Corporation representative Patent attorney Koike Mimi Ei Tamura - Same Masaru Sato Figure 1 Figure 3 Figure 2 Figure 4 Magnetic tension car rotation mountain (0) Coercion n (Oe)

Claims (1)

【特許請求の範囲】[Claims]  Co0.5〜2.5原子層とPdおよび/またはPt
1〜7原子層とが交互に積層された全厚50〜500Å
の人工格子膜を記録層とし、該記録層がZnS下地膜を
介して基板上に形成されてなる光磁気記録媒体。
Co0.5-2.5 atomic layer and Pd and/or Pt
Total thickness of 50 to 500 Å with 1 to 7 atomic layers stacked alternately
A magneto-optical recording medium comprising an artificial lattice film as a recording layer, and the recording layer is formed on a substrate with a ZnS underlayer interposed therebetween.
JP62325288A 1987-12-24 1987-12-24 Magneto-optical recording medium Expired - Fee Related JP2526615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62325288A JP2526615B2 (en) 1987-12-24 1987-12-24 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62325288A JP2526615B2 (en) 1987-12-24 1987-12-24 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH01169757A true JPH01169757A (en) 1989-07-05
JP2526615B2 JP2526615B2 (en) 1996-08-21

Family

ID=18175142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62325288A Expired - Fee Related JP2526615B2 (en) 1987-12-24 1987-12-24 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2526615B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251356A (en) * 1987-12-29 1989-10-06 Sony Corp Magneto-optical recording medium
JPH0256752A (en) * 1987-08-26 1990-02-26 Sony Corp Magneto-optical recording medium
JPH03183046A (en) * 1989-12-11 1991-08-09 Sanyo Electric Co Ltd Magneto-optical recording medium
EP0595636A2 (en) * 1992-10-29 1994-05-04 Canon Kabushiki Kaisha Magneto-optical recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256752A (en) * 1987-08-26 1990-02-26 Sony Corp Magneto-optical recording medium
JPH01251356A (en) * 1987-12-29 1989-10-06 Sony Corp Magneto-optical recording medium
JP2701337B2 (en) * 1987-12-29 1998-01-21 ソニー株式会社 Magneto-optical recording medium
JPH03183046A (en) * 1989-12-11 1991-08-09 Sanyo Electric Co Ltd Magneto-optical recording medium
EP0595636A2 (en) * 1992-10-29 1994-05-04 Canon Kabushiki Kaisha Magneto-optical recording medium
EP0595636A3 (en) * 1992-10-29 1994-10-12 Canon Kk Magneto-optical recording medium.
US5521006A (en) * 1992-10-29 1996-05-28 Canon Kabushiki Kaisha Magneto-optical recording medium

Also Published As

Publication number Publication date
JP2526615B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
US6893746B1 (en) Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
US5400307A (en) Magneto-optical recording medium with stacked layer structure
US6863998B2 (en) Magnetic recording medium, method for producing the same, and magnetic recording apparatus
JPH01169757A (en) Magneto-optical recording medium
JP2701337B2 (en) Magneto-optical recording medium
JP4319059B2 (en) Magnetic film forming method, magnetic pattern forming method, and magnetic recording medium manufacturing method
JP2844604B2 (en) Magneto-optical recording medium
JPH056820A (en) Magneto-optical recording medium
JP2596073B2 (en) Magneto-optical recording medium
JPH0198144A (en) Magneto-optical recording medium
JP2809049B2 (en) Magnetic recording media
JPH0757312A (en) Magneto-optical thin film and magneto-optical recording medium
JP3113069B2 (en) Magnetic recording film, magnetic recording medium, and magneto-optical recording medium
JPH01162257A (en) Magneto-optical recording medium
JP2727582B2 (en) Perpendicular magnetization film
JPH0198143A (en) Magneto-optical recording medium
JPH0230104A (en) Vertically magnetized film
JPH0380445A (en) Magneto-optical recording medium
JP2507574B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and recording / reproducing apparatus using the same
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
JPH056589A (en) Production of magneto-optical recording medium
JPH07141708A (en) Magneto-optical thin film and magneto-optical recording medium
JPH06112044A (en) Magnetic recording film, magnetic recording medium and optical magnetic recording medium
JP2657243B2 (en) Magneto-optical recording medium
JP2770515B2 (en) Magneto-optical recording medium and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees