JPH07141708A - Magneto-optical thin film and magneto-optical recording medium - Google Patents

Magneto-optical thin film and magneto-optical recording medium

Info

Publication number
JPH07141708A
JPH07141708A JP28928393A JP28928393A JPH07141708A JP H07141708 A JPH07141708 A JP H07141708A JP 28928393 A JP28928393 A JP 28928393A JP 28928393 A JP28928393 A JP 28928393A JP H07141708 A JPH07141708 A JP H07141708A
Authority
JP
Japan
Prior art keywords
magneto
film
thin film
optical
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28928393A
Other languages
Japanese (ja)
Inventor
Yoshihiko Takeda
良彦 武田
Tomokazu Umezawa
朋一 梅澤
Kiyoshi Chiba
潔 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP28928393A priority Critical patent/JPH07141708A/en
Publication of JPH07141708A publication Critical patent/JPH07141708A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain magneto-optic characteristics of a thin film formed at room temp. suitable for use in a short wavelength region by constituting the thin film of a ternary alloy having the axis of easy magnetization in the perpendicular direction to the film plane. CONSTITUTION:The magneto-optical thin film consists of a ternary alloy of cobalt Co, platinum Pt, and ruthenium Ru having a compsn. of CoaPtbRuc. In this formula, a, b, c represent atomic % of each element and satisfy 35<=a<=55, 25<=b<=40, 10<=c and a+b+c=100. The film has the axis of easy magnetization in the perpendicular direction to the film plane and the film thickness is <=50nm. When this thin film is to be used for the recording layer of a magneto-optical recording medium, the recording layer is preferably formed to such film thickness that light can enough transmit in order to increase signals for reproducing by using the optical interference effect of a multilayer structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光磁気記録媒体の記録
層などに有用な、磁気光学効果を利用する光磁気薄膜に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical thin film which is useful for a recording layer of a magneto-optical recording medium and which utilizes the magneto-optical effect.

【0002】[0002]

【従来の技術】光記録媒体は、高密度、大容量の情報記
録媒体として種々の研究開発が行われている。特に情報
の繰り返し記録消去が可能な光磁気記録媒体は応用分野
が広く、さまざまな光磁気記録媒体が発表されている。
ところでこれまでの光磁気記録システムでは、波長830
nmのレーザ光が通常用いられている。しかし、将来的
により高密度記録を実現するシステムでは、現在用いら
れているレーザ光波長よりもさらに短い400 〜550 nm
の短波長レーザ光の使用が考えられている。
2. Description of the Related Art Various researches and developments have been made on optical recording media as high-density, large-capacity information recording media. In particular, a magneto-optical recording medium capable of repeatedly recording and erasing information has a wide application field, and various magneto-optical recording media have been announced.
By the way, in the conventional magneto-optical recording system, the wavelength of 830
Laser light of nm is usually used. However, in the system that will realize higher density recording in the future, 400 to 550 nm, which is shorter than the wavelength of laser light currently used,
It is considered to use short wavelength laser light.

【0003】ところでこうした光磁気記録媒体には、磁
気光学効果を有する光磁気薄膜が記録層として用いられ
る。そして現在市販されている光磁気記録媒体において
は、通常記録層として膜面に対し垂直方向に磁気容易軸
を持ち、かつ飽和磁化と残留磁化の比である角形比が1
であるTbFeCo膜などの稀土類遷移金属非晶質合金が用い
られている。
By the way, in such a magneto-optical recording medium, a magneto-optical thin film having a magneto-optical effect is used as a recording layer. In the magneto-optical recording medium currently on the market, a normal recording layer has a magnetic easy axis in the direction perpendicular to the film surface and has a squareness ratio of 1 which is a ratio of saturation magnetization to residual magnetization.
A rare-earth transition metal amorphous alloy such as a TbFeCo film is used.

【0004】ただしこうした記録膜では、短波長領域で
は有効な磁気光学特性を得ることができない。それに対
し短波長領域における磁気光学特性と垂直磁気異方性と
を有し角形比1の光磁気薄膜として、白金(Pt)層とコ
バルト(Co)層とを交互に積層した構造のCo/Pt多層膜
が、実用化に向けてこれまで盛んに研究されて来た。し
かし、このCo/Pt多層膜は、多層膜構造を有するために
複雑な成膜を必要とするという欠点をもつ。これは生産
性等を考慮する場合、不都合である。またこの他に短波
長領域において優れた磁気光学特性を有する光磁気薄膜
としてはCoPt合金膜が広く知られている(例えばK.H.J.
Buschow et al., J. Magn. Magn. Mat., 38,1(198
3))。
However, such a recording film cannot obtain effective magneto-optical characteristics in the short wavelength region. On the other hand, as a magneto-optical thin film having a magneto-optical property in the short wavelength region and a perpendicular magnetic anisotropy and a squareness ratio of 1, Co / Pt having a structure in which platinum (Pt) layers and cobalt (Co) layers are alternately laminated. Multilayer films have been actively studied so far for practical use. However, this Co / Pt multilayer film has a drawback that it requires complicated film formation because it has a multilayer film structure. This is inconvenient when considering productivity and the like. In addition, a CoPt alloy film is widely known as a magneto-optical thin film having excellent magneto-optical characteristics in the short wavelength region (for example, KHJ
Buschow et al., J. Magn. Magn. Mat., 38,1 (198
3)).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このCo
Pt合金で垂直磁気異方性を有した光磁気薄膜を得るため
には、電子ビーム蒸着法で基板温度を200 ℃で製膜する
必要があった(C.-J.Linet al., Appl. Phys. Lett.,6
1,1600(1992))。これは生産性を考慮した場合、不都合
で、特に現在光磁気記録媒体で用いられているポリカー
ボネイト等のプラスチック基板上に製膜することは不可
能であった。また、室温で製膜が可能なCo/Pt多層膜
は、多層膜構造を有するために複雑な成膜を必要とする
という欠点をもつ。これも生産性等を考慮する場合、不
都合である。
[Problems to be Solved by the Invention] However, this Co
In order to obtain a magneto-optical thin film with perpendicular magnetic anisotropy in Pt alloy, it was necessary to form the film at a substrate temperature of 200 ° C by the electron beam evaporation method (C.-J. Linet al., Appl. Phys. Lett., 6
1,1600 (1992)). This is inconvenient in view of productivity, and it has been impossible to form a film on a plastic substrate such as polycarbonate currently used in a magneto-optical recording medium. Further, the Co / Pt multilayer film that can be formed at room temperature has a drawback that it requires complicated film formation because it has a multilayer film structure. This is also inconvenient when considering productivity and the like.

【0006】本発明の目的は、例えば人工格子構造のよ
うな複雑な製膜方法を必要とせず、室温で製膜が可能で
現在よりも短波長領域で利用に適した磁気光学特性を備
え、さらに実用上十分な角形比と垂直磁気異方性を持つ
光磁気薄膜を得ることにある。さらに、記録層を構成す
る光磁気記録膜がそうした特徴を有する光磁気記録媒体
を得ることにある。
An object of the present invention is to provide a magneto-optical characteristic which does not require a complicated film forming method such as an artificial lattice structure, can be formed at room temperature, and is suitable for use in a shorter wavelength region than at present. Furthermore, it is to obtain a magneto-optical thin film having a practically sufficient squareness ratio and perpendicular magnetic anisotropy. Further, it is to obtain a magneto-optical recording medium having such characteristics in the magneto-optical recording film constituting the recording layer.

【0007】[0007]

【課題を解決するための手段】本発明における光磁気薄
膜は、コバルト(Co)、白金(Pt)、ルテニウム(Ru)
よりなる3元系合金であって、その組成がCoa Ptb R
uc 、35≦a≦55、25≦b≦40、10≦c、a+b+c=10
0 (ただしa、b、cは原子%による組成比)であり、
かつ膜面に垂直な方向に磁化容易軸を有し、さらに膜厚
が50nm以下であることを特徴としている。
The magneto-optical thin film according to the present invention is made of cobalt (Co), platinum (Pt), ruthenium (Ru).
Is a ternary alloy consisting of Co a Pt b R
u c , 35 ≦ a ≦ 55, 25 ≦ b ≦ 40, 10 ≦ c, a + b + c = 10
0 (however, a, b and c are composition ratios by atomic%),
Further, it is characterized in that it has an axis of easy magnetization in a direction perpendicular to the film surface and that the film thickness is 50 nm or less.

【0008】本発明において、光磁気記録膜として高密
度記録をも可能にするためには、磁化容易軸が記録層形
成面に対して垂直である垂直磁化膜、すなわち有効垂直
磁気異方性エネルギーが正になる(垂直方向を正符号と
する)ことが必要である。そのためには、膜厚が50nm
以下の場合において、その組成がCoa Ptb Ruc 、35≦a
≦55、25≦b ≦40、10≦c、a+b+c=100 であるこ
とが必要である。
In the present invention, in order to enable high density recording as a magneto-optical recording film, a perpendicularly magnetized film having an easy axis of magnetization perpendicular to the recording layer forming surface, that is, effective perpendicular magnetic anisotropy energy. Must be positive (the vertical direction must be a positive sign). For that, the film thickness is 50 nm
In the following cases, the composition is Co a Pt b Ru c , 35 ≦ a
It is necessary that ≦ 55, 25 ≦ b ≦ 40, 10 ≦ c, and a + b + c = 100.

【0009】特に本発明の光磁気薄膜を、光磁気記録媒
体の記録層として用いる場合には、多層構成による光学
的な干渉効果を利用して再生時の信号を増大させるため
に、記録層は光が十分透過する膜厚が望ましい。また記
録時にレーザー光によって加熱する際も、記録層全体の
熱容量が小さいほうが望ましく、すなわち膜厚は薄いほ
うが望ましい。これらの理由より光磁気記薄膜の膜厚は
50nm以下が望ましい。
In particular, when the magneto-optical thin film of the present invention is used as a recording layer of a magneto-optical recording medium, the recording layer is formed in order to increase the signal at the time of reproduction by utilizing the optical interference effect of the multilayer structure. A film thickness that allows sufficient light transmission is desirable. Also, when heating with a laser beam during recording, it is desirable that the heat capacity of the entire recording layer be small, that is, that the film thickness be thin. For these reasons, the thickness of the magneto-optical recording thin film is
50 nm or less is desirable.

【0010】ここで、上述のCoPtRu合金組成において垂
直磁化膜を得るには、スパッタリング、真空蒸着あるい
は分子線エピタキシー(MBE) 法等を用いることができ
る。この時使用する蒸発源は、CoPtRu合金蒸発源であっ
てもよいし、各元素の独立した蒸発源であってもよい。
但し、これらの方法に限定されるものではない。例え
ば、スパッタリングにより合金薄膜を作成する際には、
CoPtRu合金ターゲットを使用してもよいし、Coターゲッ
トの上にPt、Ruのチップを載置した、いわゆる複合ター
ゲットを使用してもよい。なお、製膜時の加熱もしくは
製膜後の熱処理によって特性の改善を図ることも可能で
ある。
Here, in order to obtain a perpendicularly magnetized film in the above CoPtRu alloy composition, sputtering, vacuum deposition, molecular beam epitaxy (MBE) method or the like can be used. The evaporation source used at this time may be a CoPtRu alloy evaporation source or an independent evaporation source for each element.
However, the method is not limited to these. For example, when creating an alloy thin film by sputtering,
A CoPtRu alloy target may be used, or a so-called composite target in which Pt and Ru chips are mounted on a Co target may be used. It is also possible to improve the characteristics by heating during film formation or heat treatment after film formation.

【0011】また本発明による光磁気薄膜は、上述の特
徴を生かして光磁気記録媒体の記録層として用いるばか
りでなく、光アイソレーター等の磁気光学素子の材料と
しても用いることができる。
Further, the magneto-optical thin film according to the present invention can be used not only as a recording layer of a magneto-optical recording medium by utilizing the above characteristics but also as a material of a magneto-optical element such as an optical isolator.

【0012】光磁気記録媒体の記録層として用いる場
合、ガラスもしくはポリカーボネイト等のプラスチック
基板上に積層する。また誘電体膜、金属膜との多層構造
を形成し、性能の向上を図ることも可能である。この多
層構造での構成、各層の膜厚、物性等は記録再生特性の
向上のため光学的もしくは熱的な最適設計により決定さ
れる。なおこれらの誘電体膜、金属膜は記録膜の耐蝕性
保護膜としての機能も有する。さらに記録層もしくは記
録層を含んだ多層構造の上に耐蝕性のため有機物保護膜
を積層してもよい。
When it is used as a recording layer of a magneto-optical recording medium, it is laminated on a glass or plastic substrate such as polycarbonate. It is also possible to improve performance by forming a multilayer structure including a dielectric film and a metal film. The structure of this multi-layer structure, the film thickness of each layer, the physical properties, etc. are determined by optical or thermal optimum design in order to improve the recording / reproducing characteristics. The dielectric film and the metal film also have a function as a corrosion-resistant protective film for the recording film. Further, an organic protective film may be laminated on the recording layer or a multilayer structure including the recording layer for corrosion resistance.

【0013】なお本発明の光磁気薄膜は用いられる基板
や下地層および誘電体膜は特に限定されない。
The substrate, the underlayer and the dielectric film used in the magneto-optical thin film of the present invention are not particularly limited.

【0014】さらに本発明による光磁気薄膜は、添加元
素効果や下地層効果等により一層の特性改善を図るよう
にしてもよい。但し、添加元素量は5原子%以下である
ことが望ましい。このとき添加元素としては、Al、Si、
Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Ga、Ge、Zr、Rh、A
g、In、Sn、Sb、Hf、Ir、Au、Pb、Pd、Bi等が例示され
る。
Further, the magneto-optical thin film according to the present invention may be further improved in characteristics by the effect of additive elements, the effect of the underlying layer and the like. However, it is desirable that the amount of the additional element is 5 atomic% or less. At this time, as additive elements, Al, Si,
Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Zr, Rh, A
Examples thereof include g, In, Sn, Sb, Hf, Ir, Au, Pb, Pd, Bi and the like.

【0015】あるいは、他の金属薄膜、誘電体薄膜と前
記CoPtRu合金薄膜とを交互に積層し、いわゆる人工格子
構造光磁気記録媒体として効率の改善を図ることも可能
である。
Alternatively, it is possible to improve the efficiency as a so-called artificial lattice structure magneto-optical recording medium by alternately laminating another metal thin film or dielectric thin film and the CoPtRu alloy thin film.

【0016】[0016]

【実施例および比較例】DCスパッタリング装置のチャ
ンバー内に、複合ターゲットとしてCoターゲット(直径
100 mm)とその上にPtとRuのチップを、作製する膜組
成に応じて適宜載置した。さらにその複合ターゲットと
対向する水冷した基台に、Si基板を設置した。
Examples and Comparative Examples Co target (diameter:
100 mm) and a Pt and Ru chip thereon were appropriately placed according to the film composition to be produced. Furthermore, a Si substrate was placed on a water-cooled base facing the composite target.

【0017】そしてガス圧1.3Pa (=10mTorr)のArガ
ス雰囲気中で、投入電力100 WのDCスパッタリングを
行い、Si基板上に積層した膜厚20nmのAlSiN非晶質誘
電体膜上に膜厚20〜26nmのCoPtRu合金薄膜を製膜し
た。なお得られたCoPtRu合金薄膜はX 線回折分析より多
結晶薄膜である。
Then, in an Ar gas atmosphere with a gas pressure of 1.3 Pa (= 10 mTorr), DC sputtering with an input power of 100 W was performed, and the film thickness was formed on the AlSiN amorphous dielectric film with a film thickness of 20 nm laminated on the Si substrate. A CoPtRu alloy thin film of 20 to 26 nm was formed. The obtained CoPtRu alloy thin film is a polycrystalline thin film by X-ray diffraction analysis.

【0018】図1は、本発明の実施例および比較例とし
て作成したCoPtRu合金薄膜試料の組成を示す。図中、底
辺はPtの組成比(原子%、左端が100 原子%、右端が0
原子%)、左斜辺はCoの組成比(原子%、上端が100 原
子%、下端が0 原子%)、右斜辺はRuの組成比(原子
%、下端が100 原子%、上端が0 原子%)の目盛り軸を
示す。そして、図中の○印は実施例1〜2、×印は比較
例1〜8、および□印は比較例9〜12の組成を示す。
FIG. 1 shows the composition of CoPtRu alloy thin film samples prepared as examples of the present invention and comparative examples. In the figure, the bottom is the composition ratio of Pt (atomic%, the left end is 100 atomic%, the right end is 0%).
%), The left hypotenuse is the composition ratio of Co (atomic%, the upper end is 100 atomic%, the lower end is 0 atomic%), and the right hypotenuse is the composition ratio of Ru (atomic%, the lower end is 100 atomic%, the upper end is 0 atomic%). ) Indicates the scale axis. Further, in the figure, the mark ◯ indicates the compositions of Examples 1 and 2, the mark X indicates the compositions of Comparative Examples 1 to 8, and the mark □ indicates the compositions of Comparative Examples 9 to 12.

【0019】なお、得られたCoPtRu合金薄膜の組成は、
オージェ電子分析法により確定した。また種々の磁気特
性は、円偏光変調法カースペクトル測定装置、振動試料
型磁力計(VSM)及び磁気トルク計により測定し評価
した。
The composition of the obtained CoPtRu alloy thin film is
It was confirmed by Auger electronic analysis. Further, various magnetic properties were measured and evaluated by a circular polarization modulation method Kerr spectrum measuring device, a vibrating sample magnetometer (VSM) and a magnetic torque meter.

【0020】各試料の組成比と測定結果を表1に示す。
ただし、表1において組成比は原子%である。また表
中、Keff(×106 erg/cc)は有効磁気異方性エネルギー
(正符号が磁性薄膜の膜面に対して垂直方向を表す。但
しここでは、磁気トルク計での測定値を試料中の磁性膜
の体積で割った値であり、反磁界エネルギー補正は行っ
ていない)、Hc(kOe)は垂直保磁力、そしてθk
(deg )は測定波長400 nmでの飽和カー回転角の絶対
値を示す。
Table 1 shows the composition ratio of each sample and the measurement results.
However, in Table 1, the composition ratio is atomic%. Also, in the table, Keff (× 10 6 erg / cc) is the effective magnetic anisotropy energy (the positive sign indicates the direction perpendicular to the film surface of the magnetic thin film. However, here, the value measured by the magnetic torque meter is the sample. (The value is divided by the volume of the magnetic film inside, demagnetizing field energy is not corrected), Hc (kOe) is the perpendicular coercive force, and θk
(Deg) indicates the absolute value of the saturated Kerr rotation angle at the measurement wavelength of 400 nm.

【0021】比較例1〜8においては、有効磁気異方性
エネルギーが負であるが、表1に示した実施例1〜2に
おいては、有効磁気異方性エネルギーが正になった。ま
た膜厚が50nm以上の比較例9〜12においては、有効
磁気異方性エネルギーが負であった。
In Comparative Examples 1 to 8, the effective magnetic anisotropy energy was negative, but in Examples 1 and 2 shown in Table 1, the effective magnetic anisotropy energy was positive. In Comparative Examples 9 to 12 having a film thickness of 50 nm or more, the effective magnetic anisotropy energy was negative.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明では以上説明したように、製膜時
の基板加熱や人工格子構造のような複雑な製膜方法を必
要とせず、室温で製膜した状態で現在よりも短波長領域
で利用に適した磁気光学特性を備え、さらに実用上十分
な垂直磁気異方性を持つ光磁気薄膜を得ることができ
る。さらに、記録層を構成する光磁気記録膜がそうした
特徴を有する光磁気記録媒体を得ることができる。
As described above, the present invention does not require a complicated film forming method such as substrate heating or an artificial lattice structure at the time of film forming, and has a shorter wavelength region than that at present in a state where the film is formed at room temperature. It is possible to obtain a magneto-optical thin film having a magneto-optical characteristic suitable for use and having practically sufficient perpendicular magnetic anisotropy. Further, it is possible to obtain a magneto-optical recording medium having the characteristics of the magneto-optical recording film constituting the recording layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例と比較例の組成および本発明の組成範囲FIG. 1 is a composition of Examples and Comparative Examples and a composition range of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コバルト(Co)、白金(Pt)、ルテニウ
ム(Ru)よりなる3元系合金であって、その組成がCoa
Ptb Ruc 、35≦a≦55、25≦b ≦40、10≦c、a+b+
c=100 (ただしa、b、cは原子%による組成比)で
あり、かつ膜面に垂直な方向に磁化容易軸を有し、さら
に膜厚が50nm以下であることを特徴とする光磁気薄
膜。
1. A ternary alloy of cobalt (Co), platinum (Pt) and ruthenium (Ru), the composition of which is Co a
Pt b Ru c , 35 ≤ a ≤ 55, 25 ≤ b ≤ 40, 10 ≤ c, a + b +
c = 100 (where a, b, and c are the composition ratios in atomic%), the easy axis of magnetization is in the direction perpendicular to the film surface, and the film thickness is 50 nm or less. Thin film.
【請求項2】 請求項1に記載の光磁気薄膜を記録層に
用いたことを特徴とする光磁気記録媒体。
2. A magneto-optical recording medium comprising the magneto-optical thin film according to claim 1 in a recording layer.
JP28928393A 1993-11-18 1993-11-18 Magneto-optical thin film and magneto-optical recording medium Pending JPH07141708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28928393A JPH07141708A (en) 1993-11-18 1993-11-18 Magneto-optical thin film and magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28928393A JPH07141708A (en) 1993-11-18 1993-11-18 Magneto-optical thin film and magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH07141708A true JPH07141708A (en) 1995-06-02

Family

ID=17741175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28928393A Pending JPH07141708A (en) 1993-11-18 1993-11-18 Magneto-optical thin film and magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH07141708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163509A (en) * 1996-07-11 2000-12-19 Toyota Jidosha Kabushiki Kaisha Magneto-optical recording medium and magneto-optical recorder using the medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163509A (en) * 1996-07-11 2000-12-19 Toyota Jidosha Kabushiki Kaisha Magneto-optical recording medium and magneto-optical recorder using the medium

Similar Documents

Publication Publication Date Title
US6830824B2 (en) Magnetic recording medium with multiple magnetic layers capable of being exchange coupled at elevated temperatures and magnetic recording apparatus
US6893746B1 (en) Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
EP1037198A2 (en) Magnetic recording apparatus and method of magnetic recording
CA1315612C (en) Perpendicular magnetic storage medium
EP0586142B1 (en) Perpendicular magnetic films, multi-layered films suitable for conversion to perpendicular magnetic films and process for producing perpendicular magnetic films from said multi-layered films.
US5851582A (en) Magnetic recording medium and process for producing the same
US5626973A (en) Magneto-optical layer and magneto-optical recording medium
JPH0757312A (en) Magneto-optical thin film and magneto-optical recording medium
JP2844604B2 (en) Magneto-optical recording medium
JP2701337B2 (en) Magneto-optical recording medium
JPH07141708A (en) Magneto-optical thin film and magneto-optical recording medium
JP2526615B2 (en) Magneto-optical recording medium
JP3183965B2 (en) Magnetic recording film, magnetic recording medium, and magneto-optical recording medium
JPH0757311A (en) Magneto-optical thin film and magneto-optical recording medium
JP3113069B2 (en) Magnetic recording film, magnetic recording medium, and magneto-optical recording medium
JPH0757309A (en) Magneto-optical thin film and magneto-optical recording medium
JPH0757310A (en) Magneto-optical thin film and magneto-optical recording medium
KR100194132B1 (en) Magneto-optical Layers and Magneto-optical Recording Media
JPS63282944A (en) Thermomagneto-optical recording medium
JPH0513323B2 (en)
JPH05242537A (en) Magneto-optical recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JP2777594B2 (en) Magnetic film
US6096446A (en) Magnetooptical recording medium and method of producing the same
JP3636478B2 (en) Magneto-optical thin film, magneto-optical recording medium, and manufacturing method thereof