JP2809049B2 - Magnetic recording media - Google Patents

Magnetic recording media

Info

Publication number
JP2809049B2
JP2809049B2 JP5163499A JP16349993A JP2809049B2 JP 2809049 B2 JP2809049 B2 JP 2809049B2 JP 5163499 A JP5163499 A JP 5163499A JP 16349993 A JP16349993 A JP 16349993A JP 2809049 B2 JP2809049 B2 JP 2809049B2
Authority
JP
Japan
Prior art keywords
magnetic
film
alloy
metal
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5163499A
Other languages
Japanese (ja)
Other versions
JPH0721543A (en
Inventor
山田みすず
敏博 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP5163499A priority Critical patent/JP2809049B2/en
Publication of JPH0721543A publication Critical patent/JPH0721543A/en
Application granted granted Critical
Publication of JP2809049B2 publication Critical patent/JP2809049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気ディスク装置などの
磁気記録装置に用いられる磁気記録体に関し、さらに詳
述すれば、非磁性下地膜が改善されたことにより、磁気
特性及び記録再生特性が向上した磁気記録媒体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used in a magnetic recording device such as a magnetic disk device. More specifically, the magnetic characteristics and recording / reproducing characteristics are improved by improving a non-magnetic underlayer. The present invention relates to an improved magnetic recording medium.

【0002】[0002]

【従来の技術】磁気記録における記録媒体として、従来
より非磁性支持体の上に、酸化鉄粉末と有機バインダー
とからなる磁性膜を形成した、いわゆる塗布型磁気記録
媒体が使用されているが、近年磁気記録の高密度化の要
請から、強磁性金属膜を記録担体とする金属薄膜型磁気
記録媒体が広く用いられてきている。その磁性膜の成
分、組成は、磁気特性、記録再生特性、耐環境性、経済
性等を考慮して決定されるが、現在Coを主成分とした
CoNiCr合金、CoCrTa合金、CoNiCrT
a合金等が検討され、用いられている。またこれらのC
o合金はCoが主成分であるため、Co単体金属と同じ
六方晶の結晶構造をとり、磁気的には一軸磁気異方性を
もつことが知られている。そして、その磁気異方性の方
向は、その結晶のc軸方向と一致することが知られてい
る。記録される磁化が膜面と平行な方向を向く、いわゆ
る長手方向記録において、保磁力、角形比等の磁気特性
を向上させるためには、この結晶のc軸を膜面方向に向
けることが重要であり、このために従来からこの分野で
は、Co合金磁性膜を成膜する前に、CrまたはCrを
主成分とする下地膜を形成し、この下地膜の表面の原子
配列に整合するようにCo合金磁性膜を成長させ、Co
合金磁性膜のc軸の方向を膜面方向に向けるようにす
る、いわゆる結晶方位の制御を行い、磁気特性を向上さ
せている。また最近になって、Cr等の下地膜の組成を
その上の磁気膜組成に合わせて合金化することが提案さ
れている(例えば特開平2−113419号)。また、
磁性膜については、Co合金にPt,Pd等の貴金属を
添加することにより、その保磁力が著しく向上すること
が報告されている。PtあるいはPdを混入し保磁力を
向上させた磁気記録媒体は、それらの貴金属が高価であ
るためその経済性に難点があるが、将来の磁気記録の高
密度化のために重要と考えられる。しかしながら貴金属
のPt、Pdの原子半径は、Coの原子半径が1.67
オングストロームであるのに対してそれぞれ、1.83
オングストローム、1.79オングストロームと大き
く、保磁力を向上させるために数%以上のPtを添加す
ると、Co合金磁性膜の結晶格子定数は増加し、このこ
とが上述したCrの単一成分からなる非磁性下地膜表面
との原子配列の整合性を悪くするために、磁化容易軸で
あるc軸が面内配向を起こさなくなり、たとえば保磁力
角形比等が悪化してしまうという問題が起きる。これを
解決する手段として例えば、Cr金属からなる非磁性下
地膜にその膜の結晶格子定数を大きくする第2の金属、
例えばCr金属と同じ6a族の元素であるMoやWを膜
中に均一に含有させた非磁性下地膜を用いることが提案
されている(例えば特願平4−124416)。
2. Description of the Related Art As a recording medium in magnetic recording, a so-called coating type magnetic recording medium in which a magnetic film composed of iron oxide powder and an organic binder is formed on a non-magnetic support has been used. In recent years, a metal thin film type magnetic recording medium using a ferromagnetic metal film as a record carrier has been widely used due to a demand for higher density of magnetic recording. The components and compositions of the magnetic film are determined in consideration of magnetic characteristics, recording / reproducing characteristics, environmental resistance, economy, and the like. Currently, CoNiCr alloy, CoCrTa alloy, CoNiCrT
Alloys a and the like have been studied and used. In addition, these C
Since the o-alloy is mainly composed of Co, it is known that the o-alloy has the same hexagonal crystal structure as the Co elemental metal and has magnetically uniaxial magnetic anisotropy. It is known that the direction of the magnetic anisotropy coincides with the c-axis direction of the crystal. In so-called longitudinal recording, in which the recorded magnetization is oriented in a direction parallel to the film surface, in order to improve magnetic properties such as coercive force and squareness, it is important to orient the c-axis of the crystal in the film surface direction. Therefore, conventionally, in this field, before forming a Co alloy magnetic film, a base film containing Cr or Cr as a main component is formed so as to match the atomic arrangement on the surface of the base film. A Co alloy magnetic film is grown, and Co
The crystal orientation is controlled so that the direction of the c-axis of the alloy magnetic film is oriented in the direction of the film surface, thereby improving the magnetic characteristics. Also, recently, it has been proposed to alloy a base film such as Cr in accordance with the composition of a magnetic film thereon (for example, Japanese Patent Application Laid-Open No. Hei 2-113419). Also,
It has been reported that the coercive force of a magnetic film is significantly improved by adding a noble metal such as Pt or Pd to a Co alloy. A magnetic recording medium in which Pt or Pd is mixed to improve the coercive force has a disadvantage in economical efficiency due to the high cost of such a noble metal, but is considered important for increasing the density of magnetic recording in the future. However, the atomic radii of the noble metals Pt and Pd are such that the atomic radius of Co is 1.67.
1.83 Angstroms
Angstroms, as large as 1.79 angstroms, the addition of several percent or more of Pt to improve the coercive force increases the crystal lattice constant of the Co alloy magnetic film. In order to deteriorate the alignment of the atomic arrangement with the surface of the magnetic underlayer, there is a problem that the c-axis, which is the axis of easy magnetization, does not cause in-plane orientation and the coercive force squareness and the like are deteriorated. As means for solving this, for example, a second metal for increasing the crystal lattice constant of the non-magnetic underlayer made of a Cr metal,
For example, it has been proposed to use a non-magnetic base film in which Mo or W, which is a Group 6a element same as Cr metal, is uniformly contained in the film (for example, Japanese Patent Application No. 4-124416).

【0003】[0003]

【発明が解決しようとする課題】Cr金属にCr金属よ
りも原子半径の大きい金属元素を含有させたものを非磁
性下地膜とすることにより、非磁性下地膜の上にPt等
の貴金属が添加されたCo合金磁性膜を被覆するとき
に、両膜の結晶格子のマッチングが良くなり、保磁力角
形比の磁気特性が大きく改善される。
By using a non-magnetic underlayer made of a Cr metal containing a metal element having a larger atomic radius than that of the Cr metal, a noble metal such as Pt is added on the non-magnetic underlayer. When the coated Co alloy magnetic film is coated, the matching of the crystal lattices of both films is improved, and the magnetic properties of the coercive force squareness ratio are greatly improved.

【0004】しかし、磁気特性のもうひとつの重要な特
性である媒体ノイズは、Crに異種金属を添加すること
により急激に大きくなっていくことが実験より明らかに
なった。このような媒体ノイズの増加は、高密度磁気記
録には明らかに好ましくないものである。そして透過電
子顕微鏡でこのようなCr下地膜を観察したところ、原
子半径の大きな金属、例えばMo等をある程度以上添加
すると、Crの結晶粒は著しく小さくなり、またその結
晶粒内には多くの格子欠陥と考えられるコントラストが
確認され、結晶性の低下が甚だしいことが分かった。
[0004] However, experiments have shown that medium noise, which is another important characteristic of magnetic characteristics, increases rapidly by adding a dissimilar metal to Cr. This increase in media noise is clearly undesirable for high density magnetic recording. Observation of such a Cr underlayer with a transmission electron microscope revealed that when a metal having a large atomic radius, such as Mo, was added to a certain degree or more, the crystal grains of Cr became extremely small, and many lattices were contained in the crystal grains. Contrast considered to be a defect was confirmed, and it was found that crystallinity was significantly reduced.

【0005】すなわち、このような結晶性の悪いCr合
金下地膜上にCo合金磁性膜を被覆すると、Co合金磁
性膜は下地膜の上にエピタキシー成長あるいは、下地膜
の結晶性に強く影響を受けて成長するため、合金磁性膜
の結晶性が下地膜と同様に大きく劣化することが分かっ
た。そして、それが媒体ノイズを増加させる原因である
ことが判明した。特に磁性膜が、Pt等の原子半径が大
きい貴金属を含有するCo合金磁性膜である場合には、
結晶格子の大きさのマッチングがとれ、かつ結晶性がよ
い下地膜を磁性膜に接して設けることが必要であること
が分かった。
That is, when a Co alloy magnetic film is coated on such a Cr alloy underlayer having poor crystallinity, the Co alloy magnetic film is epitaxially grown on the underlayer or strongly affected by the crystallinity of the underlayer. Therefore, it was found that the crystallinity of the alloy magnetic film was greatly deteriorated as in the base film. And it turned out that it was a cause of increasing the medium noise. In particular, when the magnetic film is a Co alloy magnetic film containing a noble metal having a large atomic radius such as Pt,
It has been found that it is necessary to provide a base film that matches the size of the crystal lattice and has good crystallinity in contact with the magnetic film.

【0006】本発明の目的は、上記の本発明者により得
られた知見に基づいてなされたものであって、貴金属を
含有するCo主成分の合金磁性膜に適した非磁性下地膜
を有する磁気記録媒体を提供することにある。
The object of the present invention is based on the above-mentioned knowledge obtained by the present inventor, and it is an object of the present invention to provide a magnetic recording medium having a non-magnetic base film suitable for a Co-based alloy magnetic film containing a noble metal. It is to provide a recording medium.

【0007】[0007]

【課題を解決するための手段】本発明の第1は、非磁性
支持体上に、Cr金属からなる非磁性下地膜、貴金属を
含有しCoを主成分とする合金磁性膜および保護膜を、
順次被覆した磁気記録媒体において、前記非磁性下地膜
と前記合金磁性膜との間に、前記非磁性下地膜と前記合
金磁性膜とに接して第2の非磁性下地膜を介在させ、
記第2の非磁性下地膜とそれに接する前記合金磁性膜と
の結晶格子面間隔の差を0.14オングストローム以下
とし、前記第2の非磁性下地膜を、前記金属の結晶格子
定数よりも大きい結晶格子定数を有する、Mo,W,N
b,Ta,Ti,Zr,Hfの群より選ばれた少なくと
も1種の第2の金属と前記Cr金属との合金の膜とする
ことにより、前記非磁性下地膜と前記合金磁性膜との結
晶格子定数の差よりも前記第2の非磁性下地膜と前記合
金磁性膜との結晶格子定数の差を小さくしたことを特徴
とする磁気記録媒体である。
According to a first aspect of the present invention, a non-magnetic base film made of Cr metal, an alloy magnetic film containing a noble metal and containing Co as a main component, and a protective film are provided on a non-magnetic support.
Sequentially in coated magnetic recording medium, wherein between the non-magnetic undercoat layer and the alloy magnetic film is interposed a second non-magnetic undercoat layer in contact said to the non-magnetic undercoat layer and the alloy magnetic film, before
A second non-magnetic base film and the alloy magnetic film in contact therewith;
0.14 Å or less in crystal lattice spacing
And, the second non-magnetic undercoat layer has a larger lattice constant than the lattice constant of the metal, Mo, W, N
b, Ta, Ti, Zr, Hf
Also, by using a film of an alloy of one kind of second metal and the Cr metal , the second non-magnetic underlayer and the alloy non-magnetic underlayer can be compared with each other in a crystal lattice constant difference between the non-magnetic underlayer and the alloy magnetic film. A magnetic recording medium characterized in that the difference in crystal lattice constant from the alloy magnetic film is reduced.

【0008】本発明にかかる、合金磁性膜に先立ち設け
られる下地膜は、体心立方格子結晶構造を有する金属か
らなる非磁性下地膜と第2の非磁性下地膜の2層積層体
で構成される。そして、非磁性支持体側に設けられる非
磁性下地膜は、結晶性がよい金属膜であればとくに限定
されないが、単一組成の金属が好ましく、とりわけCr
単独膜が好ましい。このCr膜のごとき、単一組成で結
晶性が極めて良好で良い磁気特性を与える金属膜は、ス
パッタリング法により得ることができる。Crからなる
下地膜の結晶格子面間隔と、その上に設ける貴金属を含
有するCo主成分の合金磁性膜の結晶格子面間隔には
0.154オングストロームという大きな差がある。
[0008] according to the present invention, the base film provided prior to the alloy magnetic film is composed of 2-layer laminate of the non-magnetic undercoat layer and the second non-magnetic undercoat layer comprising a metal having a body-centered cubic lattice crystal structure You. The nonmagnetic base film provided on the nonmagnetic support side is not particularly limited as long as it is a metal film having good crystallinity.
A single membrane is preferred. A metal film such as this Cr film having a single composition and extremely good crystallinity and giving good magnetic properties can be obtained by a sputtering method. There is a large difference of 0.154 angstroms between the crystal lattice plane spacing of the Cr underlayer and the crystal lattice plane spacing of the Co-based alloy magnetic film containing a noble metal provided thereon.

【0009】本発明の第1においては、合金磁性膜と接
する第2の非磁性下地膜は、体心立方格子構造を有する
金属からなる非磁性下地膜よりも大きな結晶格子面間隔
をもつ金属からなる膜である。そして、この金属膜は、
前記非磁性下地膜を構成する金属とその金属より大きい
原子半径を有する第2の金属との合金または混合物で構
成される。本発明の第1においては、合金磁性膜は、そ
の膜の結晶格子面間隔に近い値を有する第2の非磁性下
地膜表面上に被覆されるので、合金磁性膜がエピタキシ
ー成長するに際しては結晶格子のミスマッチが小さく制
御され、結晶配向と結晶性の両者を、良好な磁気特性が
得られるように制御することができる。
In the first aspect of the present invention, the second nonmagnetic underlayer in contact with the alloy magnetic film is made of a metal having a larger crystal lattice plane spacing than a nonmagnetic underlayer made of a metal having a body-centered cubic lattice structure. Film. And this metal film
It is composed of an alloy or a mixture of a metal constituting the nonmagnetic underlayer and a second metal having an atomic radius larger than that of the metal. In the first aspect of the present invention, the alloy magnetic film is coated on the surface of the second non-magnetic underlayer having a value close to the crystal lattice spacing of the film. Lattice mismatch is controlled to be small, and both crystal orientation and crystallinity can be controlled so as to obtain good magnetic properties.

【0010】合金磁性膜のCo(100)面とそれに接
する第2の非磁性下地膜のCr(110)面との結晶格
子面間隔の差は、本発明の目的からは、0.14オング
ストローム以下とするのが好ましく、さらに0.12オ
ングストローム以下とするのが好ましい。
For the purpose of the present invention, the difference in crystal lattice spacing between the Co (100) plane of the alloy magnetic film and the Cr (110) plane of the second non-magnetic underlayer in contact with it is 0.14 Å or less. And more preferably 0.12 angstroms or less.

【0011】非磁性下地膜をCr金属からなる膜とした
とき、第2の非磁性下地膜の主成分であるCr金属に添
加する第2の金属としては、Mo,W,Nb,Ta,T
i,Zr,Hfの群より選ばれたいずれか1種とするの
が好ましい。これらの金属はいずれもCrよりもその原
子半径が大きく、Crとの合金薄膜としたとき、その膜
の結晶格子定数を大きくする。また、六方最密充填結晶
構造のTi,Zrを適当量添加することができる。
When the nonmagnetic underlayer is a film made of Cr metal, Mo, W, Nb, Ta, and T are used as the second metal to be added to Cr metal, which is a main component of the second nonmagnetic underlayer.
It is preferable to use any one selected from the group consisting of i, Zr, and Hf. Each of these metals has a larger atomic radius than Cr, and when formed into an alloy thin film with Cr, increases the crystal lattice constant of the film. In addition, an appropriate amount of Ti, Zr having a hexagonal close-packed crystal structure can be added.

【0012】本発明の非磁性下地膜の金属としてCrを
用い、第2の金属としてCrと同じ6a族のMoを用い
た場合、Mo金属は25原子%の範囲まで膜中に含有さ
せても、Cr原子と相分離を起こすことなく結晶格子中
に固溶し、その格子定数はCrの格子定数をaCrとし、
Moの含有量をxMo(原子%)とすると、CrMo合金
の格子定数aalloyは、aalloy=aCr・(1+0.00092
Mo)で表される。
When Cr is used as the metal of the non-magnetic underlayer film of the present invention, and Mo of the same group 6a as Cr is used as the second metal, the Mo metal can be contained in the film up to the range of 25 atomic%. , Form a solid solution in the crystal lattice without causing phase separation with Cr atoms, and the lattice constant of the crystal lattice
Assuming that the content of Mo is x Mo (atomic%), the lattice constant a alloy of the CrMo alloy is a alloy = a Cr · (1 + 0.00092 ·
x Mo ).

【0013】上記の他の第2の金属についても、含有す
る第2の金属量と得られる第2の非磁性下地膜の結晶格
子定数には直線関係がある。合金磁性膜に接する第2の
非磁性下地膜の第2の金属の含有量は、その上に被覆さ
れる合金磁性膜との格子マッチングが最適となるように
決定される。一方、非磁性下地膜には、非磁性下地膜を
構成する主成分の金属の結晶性を損なわない程度に第2
の金属の量の含ませることができる。
[0013] As for the other second metal, there is a linear relationship between the amount of the second metal contained and the crystal lattice constant of the obtained second non-magnetic underlayer. The content of the second metal in the second non-magnetic underlayer in contact with the alloy magnetic film is determined so that lattice matching with the alloy magnetic film coated thereon is optimal. On the other hand, the non-magnetic underlayer is formed so that the crystallinity of the main component metal constituting the non-magnetic underlayer is not impaired.
The amount of metal can be included.

【0014】第2の非磁性下地膜に含有させる第2の金
属の含有量は、合金磁性膜中に含まれる貴金属含有量に
より適当に調整される。貴金属を4〜8重量%含有しC
oを主成分とする合金磁気膜に対しては、第2の金属を
4〜9重量%含有させることが、第2の非磁性下地膜
を、その下に設けられる非磁性下地膜の優れた結晶性と
同様の結晶性を保持しながら、その結晶格子定数を合金
磁性膜の結晶格子定数の値に近づけるので好ましい。
[0014] The content of the second metal contained in the second non-magnetic underlayer is appropriately adjusted by the content of the noble metal contained in the alloy magnetic film. Noble metal containing 4 to 8% by weight and C
For the alloy magnetic film containing o as a main component, the content of the second metal of 4 to 9% by weight makes it possible to provide the second non-magnetic base film with an excellent non-magnetic base film provided thereunder. This is preferable because the crystal lattice constant is kept close to the crystal lattice constant of the alloy magnetic film while maintaining the same crystallinity as the crystallinity.

【0015】また、貴金属を8〜12重量%含有するC
o合金磁性膜に対しては、第2の金属を9〜12重量%
含有させることが、第2の非磁性下地膜を、その下に設
けられる非磁性下地膜の優れた結晶性と同様の結晶性を
保持しながら、その結晶格子定数を合金磁性膜の結晶格
子定数の値に近づけるので好ましい。
C containing 8 to 12% by weight of a noble metal
For the o-alloy magnetic film, the second metal is 9 to 12% by weight.
Incorporation of the second non-magnetic underlayer can reduce the crystal lattice constant of the alloy magnetic film while maintaining the same crystallinity as that of the non-magnetic underlayer provided thereunder. Is preferable because it is close to the value of

【0016】結晶性の優れた非磁性下地膜と、非磁性下
地膜の結晶性に影響を受けて良好な結晶性を有しながら
結晶格子定数が非磁性下地膜よりも拡大された第2の非
磁性下地膜の厚みについては、非磁性下地膜の厚みを8
0〜140nm、第2の非磁性下地膜を20〜50nm
とするのが好ましい。非磁性下地膜の上限と下限の厚み
は、その結晶構造が優れた結晶性を有する範囲として定
められ、第2の非磁性下地膜の上限と下限の厚みは、前
記下地膜の優れた結晶性を有すると共に、磁性膜に適し
た格子定数となる範囲として定められる。そして、非磁
性下地膜を80〜100nmとし、第2の非磁性下地膜
を20〜40nmとする膜厚みの組み合わせが最も好ま
しい。
A non-magnetic underlayer having excellent crystallinity and a second non-magnetic underlayer having a crystal lattice constant larger than that of the non-magnetic underlayer having good crystallinity affected by the crystallinity of the non-magnetic underlayer. Regarding the thickness of the nonmagnetic underlayer, the thickness of the nonmagnetic underlayer is set to 8
0 to 140 nm, the second non-magnetic underlayer is 20 to 50 nm
It is preferred that The upper and lower limits of the thickness of the non-magnetic underlayer are determined as ranges in which the crystal structure thereof has excellent crystallinity, and the upper and lower limits of the thickness of the second non-magnetic underlayer are determined by the excellent crystallinity of the underlayer. And is defined as a range that provides a lattice constant suitable for the magnetic film. The most preferable combination is a film thickness of 80 to 100 nm for the non-magnetic underlayer and 20 to 40 nm for the second non-magnetic underlayer.

【0017】本発明にかかるCoを主成分とする合金磁
性膜中に含有される貴金属は、PtおよびPdの群から
選ばれた少なくとも1種で、その合計量が2〜12重量
%とするのが好ましい。
The noble metal contained in the alloy magnetic film containing Co as a main component according to the present invention is at least one selected from the group consisting of Pt and Pd, and the total amount thereof is 2 to 12% by weight. Is preferred.

【0018】また本発明の目的を達成できる範囲内で、
下地膜を結晶格子定数の異なった3以上の積層体で構成
することもできる。本発明の第1に用いられる保護膜
は、公知の、たとえばカーボン膜、炭化珪素膜、二酸化
珪素膜などを用いることができる。本発明の非磁性下地
膜、第2の非磁性下地膜、合金磁性膜および保護膜は、
いずれもスパッタリング法で被覆するのが好ましい。
In addition, as long as the object of the present invention can be achieved,
The underlayer may be composed of three or more laminates having different crystal lattice constants. As the protective film used in the first embodiment of the present invention, a known material such as a carbon film, a silicon carbide film, and a silicon dioxide film can be used. The non-magnetic base film, the second non-magnetic base film, the alloy magnetic film, and the protective film of the present invention include:
Both are preferably coated by a sputtering method.

【0019】本発明の第2は、非磁性支持体上に、体心
立方格子結晶構造を有する金属からなる非磁性下地膜、
貴金属を含有しCoを主成分とする合金磁性膜および保
護膜を、順次被覆した磁気記録媒体において、前記非磁
性下地膜を、Crを主成分とする金属膜とし、かつ、前
記非磁性支持体側から前記合金磁性膜側にいくに従い連
続的にCrよりも原子半径の大きい第2の金属をより多
く含ませた膜とすることにより、前記非磁性下地膜の前
記合金磁性膜に接する面の結晶格子定数を、前記磁性合
金膜の結晶格子定数に近づけたことを特徴とする磁気記
録媒体である。
A second aspect of the present invention is that a non-magnetic base film made of a metal having a body-centered cubic lattice crystal structure is provided on a non-magnetic support.
In a magnetic recording medium in which a noble metal-containing alloy magnetic film containing Co as a main component and a protective film are sequentially coated, the nonmagnetic underlayer is a metal film containing Cr as a main component, and the nonmagnetic support side From the surface of the non-magnetic underlayer to the alloy magnetic film by continuously increasing the amount of the second metal having an atomic radius larger than that of Cr. A magnetic recording medium wherein the lattice constant is close to the crystal lattice constant of the magnetic alloy film.

【0020】本発明の第2において、非磁性下地膜中の
非磁性支持体側から合金磁性膜に向かって濃度勾配を有
する第2の金属は、本発明の第1と同様、Mo,W,
V,Nb,Ta,Ti,Zr,Hfの群より選ばれたい
ずれか1種とすることができる。たとえば、第2の金属
は、非磁性支持体との界面で含まれないか、小量しか含
まれないようにし、合金磁性体との界面において、合金
磁性膜中に含有される貴金属量に応じて含ませる。第2
の金属の膜中の含有は、非磁性支持体から合金磁性膜に
向かうにつれて単調増加するように制御される。
In the second embodiment of the present invention, the second metal having a concentration gradient from the non-magnetic support side in the non-magnetic underlayer film toward the alloy magnetic film is Mo, W, W, as in the first embodiment of the present invention.
Any one selected from the group consisting of V, Nb, Ta, Ti, Zr, and Hf can be used. For example, the second metal is not contained at the interface with the nonmagnetic support or is contained only in a small amount, and at the interface with the alloy magnetic material, the second metal depends on the amount of the noble metal contained in the alloy magnetic film. Include. Second
Of the metal in the film is controlled so as to increase monotonously from the nonmagnetic support toward the alloy magnetic film.

【0021】合金磁性膜の貴金属含有量が4〜8重量%
としたときは、非磁性下地膜の合金磁性膜との界面にお
いて、第2の金属を4〜9重量%とするのが好ましい。
また、合金磁性膜の貴金属含有量が8〜12重量%とし
たときは、非磁性下地膜の合金磁性膜との界面におい
て、第2の金属を9〜12重量%とするのが好ましい。
そして、非磁性下地膜の厚みは70〜120nmとする
のが好ましい。70nmより薄いと非磁性下地膜が有す
る結晶性が悪くなるので好ましくなく、120nmより
厚いと結晶粒径が大きくなりすぎるので好ましくない。
The noble metal content of the alloy magnetic film is 4 to 8% by weight.
In this case, it is preferable that the amount of the second metal is 4 to 9% by weight at the interface between the non-magnetic base film and the alloy magnetic film.
When the noble metal content of the alloy magnetic film is 8 to 12% by weight, it is preferable that the second metal is 9 to 12% by weight at the interface between the nonmagnetic base film and the alloy magnetic film.
The thickness of the non-magnetic underlayer is preferably 70 to 120 nm. When the thickness is smaller than 70 nm, the crystallinity of the nonmagnetic underlayer is deteriorated, which is not preferable. When the thickness is larger than 120 nm, the crystal grain size becomes too large.

【0022】[0022]

【作用】非磁性支持体側に設けられる本発明の第1にか
かる非磁性下地膜は、結晶性の良い金属膜からなる。そ
して、前記非磁性下地膜と合金磁性膜の両者に接してそ
の間に設けられる第2の非磁性下地膜は、前記非磁性下
地膜の結晶格子定数よりも大きい結晶格子定数を有する
合金膜からなり、前記非磁性下地膜上にエピタキシー成
長により被覆されている。そして、合金磁性膜は、その
膜の結晶格子定数に近づけられ、かつ、結晶性が改善さ
れた第2の非磁性下地膜の上にエピタキシー成長により
被覆されるので、膜面方向にc軸が良く成長し、保
角形比と媒体ノイズの両特性を良好にする結晶性の良い
膜となる。
The non-magnetic underlayer according to the first aspect of the present invention, which is provided on the non-magnetic support side, is made of a metal film having good crystallinity. The second non-magnetic base film provided in contact with and between both the non-magnetic base film and the alloy magnetic film is made of an alloy film having a crystal lattice constant larger than that of the non-magnetic base film. The non-magnetic underlayer is coated by epitaxy. Then, the alloy magnetic film is coated by epitaxy on the second non-magnetic base film having a crystal lattice constant close to that of the film and having improved crystallinity, so that the c-axis extends in the film surface direction. good growth, a good crystallinity film to improve both characteristics of the coercive magnetic force squareness ratio and medium noise.

【0023】本発明の第2にかかる非磁性下地膜は、非
磁性下地膜側から合金磁性膜側に向かって、膜の結晶格
子定数が連続的に増加し、合金磁性膜の結晶格子定数に
近づくようになっている。そして、非磁性下地膜の被覆
の初期過程すなわち非磁性下地膜側では、結晶性の良い
単一組成または単一組成に近い金属膜で構成されてい
る。そして、合金磁性膜の方向にいくに従い、膜中の第
2の金属成分が増加しつつエピタキシー成長しているの
で、その表面近傍では合金磁性膜の結晶格子定数に近づ
けられた結晶格子定数を有しかつ、結晶性がよい膜とな
っている。合金磁性膜は、かかる結晶性がよい非磁性下
地膜の上にエピタキシー成長により被覆されるので、膜
面方向にc軸が良く成長し、磁気特性を良好にする結晶
性の良い膜となる。
In the nonmagnetic underlayer according to the second aspect of the present invention, the crystal lattice constant of the film continuously increases from the nonmagnetic underlayer to the alloy magnetic film, and the crystal lattice constant of the alloy magnetic film is reduced. It is getting closer. The initial step of coating the nonmagnetic underlayer film, that is, the nonmagnetic underlayer side, is composed of a metal film having a single composition with good crystallinity or a metal composition close to the single composition. Since the second metal component in the film grows in an epitaxy direction in the direction of the alloy magnetic film, a crystal lattice constant close to the crystal lattice constant of the alloy magnetic film is present near the surface thereof. In addition, the film has good crystallinity. Since the alloy magnetic film is coated by epitaxy on the non-magnetic underlayer having good crystallinity, the c-axis grows well in the film surface direction, resulting in a film having good crystallinity for improving magnetic properties.

【0024】本発明においては、貴金属を含有するCo
主成分の合金磁性膜の結晶格子定数と結晶方位をその非
磁性下地膜により制御することができ、それにより保磁
力角形比を大きく、媒体ノイズレベルを低くすることが
できるので、高密度記録と高記録再生特性を併せもつ磁
気記録媒体を得ることができる。
In the present invention, noble metal-containing Co
The crystal lattice constant and crystal orientation of the main alloy magnetic film can be controlled by the non-magnetic underlayer, thereby increasing the coercive force squareness and lowering the medium noise level. A magnetic recording medium having both high recording and reproducing characteristics can be obtained.

【0025】[0025]

【実施例】以下に、実施例と比較例により本発明をより
詳細に説明する。 実施例1 良く洗浄されたソーダライムシリカガラス組成のガラス
基板(円盤状に加工され化学強化されたもの)1をスパ
ッタリング装置内の真空中で200℃に加熱し、アルゴ
ン(Ar)ガスを用いたDCマグネトロンスパッタ法に
よりTi膜(ガラス基板からの放出ガストラップ膜)2
及び島状構造を有するアルミニウム(凹凸形物)3を1
0mTorrにて連続してスパッタ蒸着した。Ti成膜
前のアルゴンガスを流す前の真空度を1×10-6Tor
r以下とし、Ti膜の膜厚は約30nmとした。Alの
スパッタ条件は約15nm厚のAlが成膜されると考え
られる条件で行い、またAlのスパッタ時の温度を20
0℃とした。更に連続して、同じくArガスを用いたD
Cマグネトロンスパッタ法によりチタニウムシリサイド
(TiSi)膜4を30nm厚被覆し、基板を300℃
まで加熱した後、Cr膜(非磁性下地膜)5、Cr90
10膜(第2の非磁性下地膜)6、Co81Cr13Pt6
組成の合金磁性膜7及びカーボン保護膜8を順次それぞ
れ120nm、30nm、56nm、20nmの厚さで
被覆した(組成表示はすべて原子%)。得られた磁気記
録媒体(サンプル1)の膜断面構造の模式図を図1に示
す。このときTi膜2の被覆からカーボン膜7の被覆
は、インライン型スパッタリング装置により、真空状態
を破ることなく連続的に行った。
The present invention will be described below in more detail with reference to Examples and Comparative Examples. Example 1 A well-cleaned glass substrate 1 of soda-lime-silica glass composition (processed into a disk shape and chemically strengthened) 1 was heated to 200 ° C. in a vacuum in a sputtering apparatus, and argon (Ar) gas was used. Ti film (gas release film from glass substrate) 2 by DC magnetron sputtering
And aluminum 3 having an island-like structure
Sputter deposition was continuously performed at 0 mTorr. The degree of vacuum before flowing argon gas before Ti film formation was 1 × 10 −6 Torr.
r or less, and the thickness of the Ti film was about 30 nm. The Al sputtering was performed under the condition that an Al film having a thickness of about 15 nm was considered to be formed.
0 ° C. Further continuously, D using the same Ar gas
A titanium silicide (TiSi) film 4 is coated to a thickness of 30 nm by C magnetron sputtering, and the substrate is heated to 300 ° C.
After heating up to Cr film (non-magnetic underlayer) 5, Cr 90 M
o 10 film (second nonmagnetic under film) 6, Co 81 Cr 13 Pt 6
The alloy magnetic film 7 and the carbon protective film 8 having the compositions were sequentially coated with a thickness of 120 nm, 30 nm, 56 nm, and 20 nm, respectively (the composition is indicated in atomic%). FIG. 1 shows a schematic diagram of a film cross-sectional structure of the obtained magnetic recording medium (sample 1). At this time, the coating of the Ti film 2 to the coating of the carbon film 7 was continuously performed without breaking the vacuum state by the in-line type sputtering apparatus.

【0026】[0026]

【表1】 (単位:nm) =================================== 積層構造 実施例1 比較例1 比較例2 実施例2 比較例3 層番号 物質 =================================== 1 基板 ガラス ガラス ガラス ガラス ガラス 2 Ti 30 30 30 − − 3 Al 15 15 15 − − 4 TiSi 30 30 30 30 30 5 Cr 120 150 − − 100 6 Cr90Mo10 30 − 150 − − 11 Cr+Mo − − − 100 − 7 Co81Cr13Pt6 56 56 56 − − 12 Co63.7Ni22Pt4 − − − 51 51 Cr9.5Nb0.8 8 C 20 20 20 15 15 =================================== 保磁力(Hc) 1620 1600 1650 1600 1520 単位:Oe 保磁力角形比(S*) 0.85 0.75 0.85 0.90 0.85 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 信号強度の比(S/N比) 30.2 31 28 31 30 単位:dB =================================== 積層構造の層番号は図1〜3に対応(Unit: nm) =================================== Laminated Structure Example 1 Comparison Example 1 Comparative Example 2 Example 2 Comparative Example 3 Layer Number Material ================================== 1 Substrate Glass Glass Glass Glass Glass 2 Ti 30 30 30 − − 3 Al 15 15 15 − − 4 TiSi 30 30 30 30 30 5 Cr 120 150 − − 100 6 Cr 90 Mo 10 30 − 150 − − 11 Cr + Mo − − − 100 − 7 Co 81 Cr 13 Pt 6 56 56 56 − − 12 Co 63.7 Ni 22 Pt 4 − − − 51 51 Cr 9.5 Nb 0.8 8 C 20 20 20 15 15 ============ ======================= Coercive Force (Hc) 1620 1600 1650 1600 1520 Unit: Oe Coercive Force Shape ratio (S *) 0.85 0.75 0.85 0.90 0.85 ----------------------------- −−−−−− Signal strength ratio (S / N ratio) 30.2 31 28 31 30 Unit: dB ======================== =========== The layer numbers of the laminated structure correspond to FIGS.

【0027】比較例1 実施例1のCr膜5とCr90Mo10膜6の2層構成の下
地膜の代わりに、下地膜として150nmの厚みのCr
単一組成の膜5のみを被覆した以外は、実施例1と同じ
ようにして磁気記録媒体の比較サンプル1を作成した。
[0027] Instead of two-layer structure of a base film of Cr film 5 and Cr 90 Mo 10 film 6 of Comparative Example 1 Example 1, Cr of 150nm thick as a base film
Comparative sample 1 of a magnetic recording medium was prepared in the same manner as in Example 1 except that only the film 5 having a single composition was coated.

【0028】比較例2 実施例1のCr膜5とCr90Mo10膜6の2層構成の下
地膜の代わりに、下地膜として、150nmの厚みのC
90Mo10膜6のみを被覆した以外は、実施例1と同じ
ようにして磁気記録媒体の比較サンプル2を作製した。
図3は、比較サンプル2の膜断面構造の模式図である。
[0028] Instead of two-layer structure of a base film of Cr film 5 and Cr 90 Mo 10 film 6 of Comparative Example 2 Example 1, as a base film, a 150nm thick C
except that cover only r 90 Mo 10 film 6, was prepared comparative sample 2 of the magnetic recording medium in the same manner as in Example 1.
FIG. 3 is a schematic diagram of a film cross-sectional structure of Comparative Sample 2.

【0029】作製したサンプル1、比較サンプル1〜2
の磁気特性を、次に述べるサンプル2および比較サンプ
ル3とともにまとめて表1に示す。下地膜としてCr膜
のみを用いた比較サンプル1は、保磁力HCが1600
[Oe]程度を示したが、保磁力角形比S* は0.75
とやや小さい値となった。また、比較サンプル1をヘッ
ドと磁気記録媒体の表面の間の距離(フライングハイ
ト)を3マイクロインチとして記録再生特性を測定した
ところ、高周波信号の書き込み、読み取り時の媒体ノイ
ズと、その読み取り時の信号強度の比(S/N比)は3
1dBであった.また、CrMo合金膜のみを用いた比
較サンプル2は、Hcが1650[Oe]で比較サンプ
ル1より若干増大し、S* は0.85と大きく向上し
た。しかしながら、S/N比は28dBと大きく低下し
た。これらに対して下地膜を2層膜構成としたサンプル
1は、Hcは1620[Oe]程度で、かつ、S*も0.
85と大きく、さらにS/N比も30.2dBという値
を示した。
Sample 1 prepared, Comparative samples 1-2
Table 1 summarizes the magnetic properties of Sample No. 2 and Comparative Sample 3 described below. Comparative sample 1 using only the Cr film as the underlayer had a coercive force H C of 1600.
[Oe] , but the coercive force squareness ratio S * was 0.75.
The value was slightly smaller. When the recording / reproducing characteristics of the comparative sample 1 were measured by setting the distance (flying height) between the head and the surface of the magnetic recording medium to 3 micro inches, the medium noise during writing and reading of a high-frequency signal and the noise during reading were measured. The signal strength ratio (S / N ratio) is 3
It was 1 dB. In Comparative Sample 2 using only the CrMo alloy film, Hc was 1650 [Oe], which was slightly higher than Comparative Sample 1, and S * was significantly improved to 0.85. However, the S / N ratio was greatly reduced to 28 dB. On the other hand, in Sample 1 in which the base film is composed of two layers, Hc is about 1620 [Oe] , and S * is also about 0.
85, and the S / N ratio also showed a value of 30.2 dB.

【0030】次にこれらのサンプルを透過電子顕微鏡に
より分析したところ、上記の純粋なCr膜の上に積層さ
れたCr90Mo10膜は、Cr単一組成の膜とほとんど変
わらないような結晶粒径と欠陥密度をもっており、それ
はCr90Mo10膜のみを形成したのとは大きく異なって
おり、確実に結晶性が向上していることが確認できた。
Next, when these samples were analyzed by a transmission electron microscope, it was found that the Cr 90 Mo 10 film laminated on the pure Cr film had crystal grains almost the same as those of the Cr single composition. It has a diameter and a defect density, which are significantly different from those in which only the Cr 90 Mo 10 film was formed, and it was confirmed that the crystallinity was surely improved.

【0031】またX線回折によりCo合金磁性膜の結晶
配向を調べたところ、Co合金磁性膜の002反射の積
分強度は、Cr90Mo10膜とCr膜を積層したサンプル
1では、Cr単一組成の膜の上に合金磁性膜を被覆した
比較サンプル1に比べて1/3程度に減少しており、磁
化容易軸の面内配向がCr90Mo10膜をCo合金磁性膜
の直下に形成することにより促進されていることが確認
された。また、得られた膜の結晶格子面間隔は、Co合
金磁性膜が2.194オングストローム、Cr90Mo10
膜が2.058オングストローム、Cr膜が2.040
オングストロームであった。
When the crystal orientation of the Co alloy magnetic film was examined by X-ray diffraction, the integrated intensity of the 002 reflection of the Co alloy magnetic film was found to be lower than that of Sample 1 in which the Cr 90 Mo 10 film and the Cr film were laminated. Compared to the comparative sample 1 in which the alloy magnetic film is coated on the film of the composition, the in-plane orientation of the easy axis of magnetization is reduced to about 1/3 as compared with the comparative sample 1 and the Cr 90 Mo 10 film is formed immediately below the Co alloy magnetic film. It was confirmed that this was promoted. The crystal lattice spacing of the obtained film was 2.194 angstroms for the Co alloy magnetic film and Cr 90 Mo 10
2.058 angstroms film, 2.040 Cr film
Angstrom.

【0032】実施例2 良く洗浄されたソーダライムシリカ組成のガラス基板
(円盤状に加工され化学強化されたもの)1をスパッタ
リング装置の真空中で200℃に加熱し、その上にアル
ゴンガスを用いたDCマグネトロンスパッタ法によりT
iSi膜4を30nm厚被覆した。次にガラス基板を3
60℃まで加熱した後で、図4に示すようなタングステ
ン(W)チップ10を設置したCr金属の平板型スパッ
タターゲット9を用い、このターゲット面上をガラス基
板1を移動させながら膜厚方向に組成勾配を有する非磁
性下地膜11を形成し、さらにこの非磁性下地膜11の
上にCo63.7Ni22Pt4Cr9.5Nb0.8 の組成のPt
含有Co合金磁性膜12及びカーボン保護膜8を順次そ
れぞれ100nm、51nm、15nmの厚みに被覆
し、磁気記録媒体のサンプル2を作製した。TiSi膜
4の被覆からカーボンからなる保護膜8の被覆は、イン
ライン型スパッタリング゛装置により、真空状態を破る
ことなく連続的に行った。得られたサンプル2の膜断面
構造の模式図を図2に示す。
Example 2 A glass substrate 1 of a soda-lime-silica composition (having been processed into a disk shape and chemically strengthened), which had been well washed, was heated to 200 ° C. in a vacuum of a sputtering apparatus, and argon gas was applied thereon. DC magnetron sputtering method
The iSi film 4 was coated with a thickness of 30 nm. Next, glass substrate 3
After heating to 60 ° C., a flat sputtering target 9 made of Cr metal having a tungsten (W) chip 10 as shown in FIG. 4 is used, and the glass substrate 1 is moved over the target surface in the film thickness direction. A nonmagnetic underlayer 11 having a composition gradient is formed, and a Pt having a composition of Co 63.7 Ni 22 Pt 4 Cr 9.5 Nb 0.8 is formed on the nonmagnetic underlayer 11.
The Co-containing magnetic film 12 and the carbon protective film 8 were sequentially coated to a thickness of 100 nm, 51 nm, and 15 nm, respectively, to prepare a magnetic recording medium sample 2. The coating of the protective film 8 made of carbon from the coating of the TiSi film 4 was continuously performed without breaking the vacuum state by an in-line type sputtering apparatus. FIG. 2 shows a schematic diagram of the film cross-sectional structure of Sample 2 obtained.

【0033】比較例3 実施例2とは、Crのスパッタターゲット(ターゲット
表面上に設置したタングステンチップを取り除いたも
の)を用いたことを除いては、全く同じようにして磁気
記録媒体を作成し、比較サンプル3を得た。
Comparative Example 3 A magnetic recording medium was prepared in exactly the same manner as in Example 2 except that a Cr sputter target (the one obtained by removing the tungsten chip placed on the target surface) was used. And Comparative Sample 3 were obtained.

【0034】得られた磁気記録媒体の磁気特性を測定し
たところ、Cr単一組成からなる下地膜を用いた比較サ
ンプル3は、保磁力Hcが1520[Oe]程度の値を
示し保磁力角形比S* は0.85であった。これに対し
て組成勾配を有するサンプル2はHcが1600[O
e]と増大し、またS*は0.90と向上した。また、
サンプルを磁気ヘッドと磁気記録媒体表面の間の距離を
75nm程度として記録再生特性を測定したところ、比
較サンプル3は、S/N比が30.0dB、Pw50(孤
立波出力の半値幅)が580nmであったが、サンプル
2は、S/N比が31.0dB、Pw50が552nmと
高密度記録に適した特性を有していた。 次にサンプル
2の非磁性下地膜をオージェ電子分光分析により、その
膜厚方向の組成変化を調べたところ、CrW膜のガラス
基板側ではその組成はCr 98 2 程度で、また合金磁性
膜の界面近傍ではCr 91 9 程度となっており、その間
で組成は連続的に単調に変化していた。またX線回折よ
り、このCrW膜の110回折ピークは非常に幅広いも
のとなっていることが判明し、これはCrW膜内でその
結晶格子定数に分布が存在することを示唆するものと考
えられた。
When the magnetic characteristics of the obtained magnetic recording medium were measured, Comparative Sample 3 using a base film composed of a single Cr had a coercive force Hc of about 1520 [Oe] and showed a coercive force squareness ratio. S * was 0.85. On the other hand, Sample 2 having a composition gradient has Hc of 1600 [O
e], and S * increased to 0.90. Also,
When the recording / reproducing characteristics of the sample were measured with the distance between the magnetic head and the surface of the magnetic recording medium being about 75 nm, Comparative Sample 3 had an S / N ratio of 30.0 dB and a Pw50 (half-width of a solitary wave output) of 580 nm. However, the sample 2 had an S / N ratio of 31.0 dB and a Pw50 of 552 nm, which were characteristics suitable for high-density recording. Next, when the composition change in the film thickness direction of the non-magnetic underlayer of Sample 2 was examined by Auger electron spectroscopy, the composition was about Cr 98 W 2 on the glass substrate side of the CrW film, and the alloy magnetic film was In the vicinity of the interface, it was about Cr 91 W 9 , during which the composition was continuously and monotonously changed. X-ray diffraction revealed that the 110 diffraction peak of this CrW film was very broad, which is considered to suggest that the crystal lattice constant has a distribution in the CrW film. Was.

【0035】[0035]

【発明の効果】本発明の磁気記録媒体は、従来のCr単
一組成からなる下地膜上にPt等の貴金属を含有するC
o合金磁性膜を形成したものに比較して、優れた磁気特
性及び記録再生特性を有しており、より高周波域での記
録再生においても大きな出力と小さな媒体ノイズを有す
るので、より高密度の記録再生が可能となる。
According to the magnetic recording medium of the present invention, a C-containing noble metal such as Pt is formed on a conventional underlayer consisting of a single Cr.
o Compared to those formed with an alloy magnetic film, it has excellent magnetic characteristics and recording / reproducing characteristics, and has a large output and a small medium noise even in recording / reproducing in a higher frequency range. Recording and reproduction become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られる磁気記録媒体の膜断面構造
を示す図である。
FIG. 1 is a diagram showing a film cross-sectional structure of a magnetic recording medium obtained in Example 1.

【図2】実施例2で得られる磁気記録媒体の膜断面構造
を示す図である。
FIG. 2 is a diagram showing a film cross-sectional structure of a magnetic recording medium obtained in Example 2.

【図3】比較例2で得られる磁気記録媒体の膜断面構造
を示す図である。
FIG. 3 is a diagram showing a film cross-sectional structure of a magnetic recording medium obtained in Comparative Example 2.

【図4】実施例2の組成勾配を有する非磁性下地膜を被
覆する方法を説明する図である。
FIG. 4 is a view for explaining a method of coating a non-magnetic base film having a composition gradient in Example 2.

【符号の説明】[Explanation of symbols]

1・・・ガラス基板、5・・・Crからなる非磁性下地
膜、6・・・CrMo合金からなる第2の非磁性下地
膜、7、12・・・Ptを含有しCoを主成分とする合
金磁性膜、8・・・カーボン保護膜、11・・・膜厚方
向に組成勾配を有するCrWからなる非磁性下地膜
DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 5 ... Non-magnetic underlayer made of Cr, 6 ... Second non-magnetic underlayer made of CrMo alloy, 7, 12 ... Contains Pt and contains Co as a main component Alloy magnetic film, 8: carbon protective film, 11: non-magnetic underlayer made of CrW having a composition gradient in the film thickness direction

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性支持体上に、Cr金属からなる非磁
性下地膜、貴金属を含有しCoを主成分とする合金磁性
膜および保護膜を、順次被覆した磁気記録媒体におい
て、 前記非磁性下地膜と前記合金磁性膜との間に、前記非磁
性下地膜と前記合金磁性膜とに接して第2の非磁性下地
膜を介在させ、前記第2の非磁性下地膜とそれに接する
前記合金磁性膜との結晶格子面間隔の差を0.14オン
グストローム以下とし、前記第2の非磁性下地膜を、前
記金属の結晶格子定数よりも大きい結晶格子定数を有す
、Mo,W,Nb,Ta,Ti,Zr,Hfの群より
選ばれた少なくとも1種の第2の金属と前記Cr金属と
の合金の膜とすることにより、前記非磁性下地膜と前記
合金磁性膜との結晶格子定数の差よりも前記第2の非磁
性下地膜と前記合金磁性膜との結晶格子定数の差を小さ
くしたことを特徴とする磁気記録媒体。
1. A magnetic recording medium comprising a non-magnetic support, a non-magnetic underlayer made of Cr metal, an alloy magnetic film containing a noble metal and containing Co as a main component, and a protective film, which are sequentially coated. A second non-magnetic base film is interposed between the base film and the alloy magnetic film in contact with the non-magnetic base film and the alloy magnetic film, and is in contact with the second non-magnetic base film.
The difference in crystal lattice spacing between the alloy magnetic film and the alloy magnetic film is 0.14 on.
Gstrom or less, and the second nonmagnetic underlayer is made of a group consisting of Mo, W, Nb, Ta, Ti, Zr, and Hf having a crystal lattice constant larger than that of the metal.
By forming the film of an alloy of at least one selected second metal and the Cr metal , the second nonmagnetic layer can be made smaller than the difference in crystal lattice constant between the nonmagnetic base film and the alloy magnetic film. A magnetic recording medium characterized in that a difference in crystal lattice constant between an underlayer film and the alloy magnetic film is reduced.
【請求項2】前記第2の非磁性下地膜は、前記第2の金
属を4〜9重量%含有し、前記合金磁性膜はPtおよび
Pdからなる貴金属群より選ばれた少なくとも1種を合
計量で4〜8重量%含有することを特徴とする請求項1
に記載の磁気記録媒体。
2. The second non-magnetic underlayer contains 4 to 9% by weight of the second metal, and the alloy magnetic film contains at least one kind selected from a noble metal group consisting of Pt and Pd. 2. The composition according to claim 1, wherein the content is 4 to 8% by weight.
3. The magnetic recording medium according to claim 1.
【請求項3】前記第2の非磁性下地膜は、前記第2の金
属を9〜12重量%含有し、前記合金磁性膜はPtおよ
びPdからなる貴金属群より選ばれた少なくとも1種を
合計量で8〜12重量%含有することを特徴とする請求
項1に記載の磁気記録媒体。
3. The second non-magnetic underlayer contains 9 to 12% by weight of the second metal, and the alloy magnetic film comprises a total of at least one selected from a noble metal group consisting of Pt and Pd. 2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is contained in an amount of 8 to 12% by weight.
【請求項4】前記非磁性下地膜の厚みを80〜140n
mとし、前記第2の非磁性下地膜を20〜50nmとし
たことを特徴とする請求項1〜のいずれかの項に記載
の磁気記録媒体。
4. The method according to claim 1, wherein the thickness of the nonmagnetic underlayer is 80 to 140 n.
and m, the magnetic recording medium according to any one of claims 1-3, characterized in that the 20~50nm the second non-magnetic undercoat layer.
【請求項5】非磁性支持体上に、体心立方格子結晶構造
を有する金属からなる非磁性下地膜、貴金属を含有しC
oを主成分とする合金磁性膜および保護膜を、順次被覆
した磁気記録媒体において、前記非磁性下地膜を、Cr
を主成分とする金属膜とし、かつ、前記非磁性支持体側
から前記合金磁性膜側にいくに従い連続的にCrよりも
原子半径の大きい第2の金属をより多く含ませた膜とす
ることにより、前記非磁性下地膜の前記合金磁性膜に接
する面の結晶格子定数を、前記合金磁性膜の結晶格子定
数に近づけたことを特徴とする磁気記録媒体。
5. A non-magnetic base film made of a metal having a body-centered cubic lattice crystal structure on a non-magnetic support,
In a magnetic recording medium sequentially coated with an alloy magnetic film containing o as a main component and a protective film, the non-magnetic underlayer is made of Cr
And a film containing a larger amount of a second metal having an atomic radius larger than that of Cr continuously from the nonmagnetic support side to the alloy magnetic film side. A magnetic recording medium, wherein a crystal lattice constant of a surface of the non-magnetic underlayer in contact with the alloy magnetic film is close to a crystal lattice constant of the alloy magnetic film.
【請求項6】前記第2の金属がMo,W,V,Nb,T
a,Ti,Zr,Hfの群より選ばれたいずれか1種で
あることを特徴とする請求項に記載の磁気記録媒体。
6. The method according to claim 1, wherein said second metal is Mo, W, V, Nb, T
6. The magnetic recording medium according to claim 5 , wherein the magnetic recording medium is any one selected from the group consisting of a, Ti, Zr, and Hf.
【請求項7】前記非磁性下地膜の前記合金磁性膜との界
面において、前記第2の金属が4〜9重量%含有し、前
記合金磁性膜はPtおよびPdからなる貴金属群より選
ばれた少なくとも1種を合計量で4〜8重量%含有する
ことを特徴とする請求項またはに記載の磁気記録媒
体。
7. The alloy according to claim 1, wherein the second metal is contained in an amount of 4 to 9% by weight at an interface between the nonmagnetic underlayer and the alloy magnetic film, and the alloy magnetic film is selected from a noble metal group consisting of Pt and Pd. the magnetic recording medium according to claim 5 or 6, characterized in that it contains 4-8 wt% of at least one in a total amount.
【請求項8】前記非磁性下地膜の前記合金磁性膜との界
面において、前記第2の金属が9〜12重量%含有し、
前記合金磁性膜はPtおよびPdからなる貴金属群より
選ばれた少なくとも1種を合計量で8〜12重量%含有
することを特徴とする請求項またはに記載の磁気記
録媒体。
8. An interface between the nonmagnetic underlayer film and the alloy magnetic film, wherein the second metal is contained in an amount of 9 to 12% by weight,
The alloy magnetic film magnetic recording medium according to claim 5 or 6, characterized in that it contains 8 to 12 wt% in total amount of at least one selected from noble metal group consisting of Pt and Pd.
【請求項9】前記非磁性下地膜の厚みを70〜120n
mとしたことを特徴とする請求項のいずれかの項
に記載の磁気記録媒体。
9. A non-magnetic underlayer having a thickness of 70 to 120 n.
The magnetic recording medium according to any one of claims 5 to 8 , wherein m is set to m.
JP5163499A 1993-07-01 1993-07-01 Magnetic recording media Expired - Lifetime JP2809049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5163499A JP2809049B2 (en) 1993-07-01 1993-07-01 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5163499A JP2809049B2 (en) 1993-07-01 1993-07-01 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH0721543A JPH0721543A (en) 1995-01-24
JP2809049B2 true JP2809049B2 (en) 1998-10-08

Family

ID=15775030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5163499A Expired - Lifetime JP2809049B2 (en) 1993-07-01 1993-07-01 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2809049B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339240A (en) 1998-05-27 1999-12-10 Fujitsu Ltd Magnetic recording medium and magnetic disk device
JP2002170224A (en) 2000-11-29 2002-06-14 Fuji Electric Co Ltd Magnetic recording medium and method of manufacture
JP4712412B2 (en) * 2005-03-11 2011-06-29 古河電気工業株式会社 Nanostructure and magnetic storage material, wiring board and antenna base material using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541770B2 (en) * 1992-12-22 1996-10-09 インターナショナル・ビジネス・マシーンズ・コーポレイション Magnetic recording media

Also Published As

Publication number Publication date
JPH0721543A (en) 1995-01-24

Similar Documents

Publication Publication Date Title
US7368185B2 (en) Perpendicular magnetic recording media and magnetic storage apparatus using the same
US5846648A (en) Magnetic alloy having a structured nucleation layer and method for manufacturing same
US6562489B2 (en) Magnetic recording medium and magnetic storage apparatus
US6500567B1 (en) Ultra-thin nucleation layer for magnetic thin film media and the method for manufacturing the same
USRE41282E1 (en) Perpendicular magnetic recording medium and a method of manufacturing the same
US6794028B2 (en) Perpendicular magnetic recording medium and a method of manufacturing the same
US5658659A (en) Magnetic alloy and method for manufacturing same
US20040191578A1 (en) Method of fabricating L10 ordered fePt or FePtX thin film with (001) orientation
US9899050B2 (en) Multiple layer FePt structure
JP3755449B2 (en) Perpendicular magnetic recording medium
US7833640B2 (en) Intermediate tri-layer structure for perpendicular recording media
US7354665B2 (en) Magnetic recording medium and magnetic storage apparatus
US20040247942A1 (en) Perpendicular media with improved corrosion performance
JP2809049B2 (en) Magnetic recording media
US6936353B1 (en) Tilted recording medium design with (101-2) orientation
JPH10302242A (en) Magnetic alloy having textural nucleus creation layer and production thereof
JPH10334444A (en) Magnetic recording medium
US7314675B1 (en) Magnetic media with high Ms magnetic layer
JP3075712B2 (en) Magnetic recording media
KR100456166B1 (en) Magnetic recording medium comprising a nickel aluminum or iron aluminum underlayer
JP2005190506A (en) Perpendicular magnetic recording medium and its manufacturing method
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP2000030236A (en) Perpendicular magnetic recording medium and magnetic recording, and reproducing device using them
JPH05325163A (en) Magnetic recording medium
JPH05314453A (en) Magnetic recording medium

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 15

EXPY Cancellation because of completion of term