JPH03162735A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH03162735A
JPH03162735A JP30176589A JP30176589A JPH03162735A JP H03162735 A JPH03162735 A JP H03162735A JP 30176589 A JP30176589 A JP 30176589A JP 30176589 A JP30176589 A JP 30176589A JP H03162735 A JPH03162735 A JP H03162735A
Authority
JP
Japan
Prior art keywords
magneto
thin film
ptmnsb
medium
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30176589A
Other languages
Japanese (ja)
Inventor
Akira Kunimoto
晃 国元
Yukio Nakanouchi
中野内 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP30176589A priority Critical patent/JPH03162735A/en
Publication of JPH03162735A publication Critical patent/JPH03162735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve magnetic characteristics and magneto-optical characteristics of a medium having a PtMnSb thin film of C1b crystalline structure by forming a mixture phase crystalline structure containing finely crystallized oxides of Mn and/or Sb. CONSTITUTION:The PtMnSb thin film of the magneto-optical medium has a mixture phase crystalline structure containing finely crystallized state of Mn or Sb oxides phase or mixed phase of Mn-Sb oxide. The medium has large coercive force, perpendicular magnetic anisotropy and higher squareness ratio. This is caused by selective intergranular oxidation in the fine grains, and there by, each grain is magnetically isolated to increase coercive force and perpendicu lar anisotropy. With improvement in magnetic characteristics, the squareness ratio of kerr hysterisys can be also improved following to the magnetic characteristics. Thus, the obtd. medium shows improvement in magnetic characteristics and magneto-optical characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光磁気記録媒体に関するものである.さら
に詳しくは、この発明は、垂直磁化記録され、レーザー
光により記録ビットからの読取り再生可能な高性能光磁
気記録媒体に関するものである. (従来の技術とその課題〉 従来より、磁気あるいは光磁気による記録媒体の開発が
精力的に進められてきており、記録密度の向上、記録・
再生精度の向上等について様々な角度からの検討が加え
られてきている.このうち、レーザー光を利用しての光
磁気記録が近年注目されており、このための記録媒体に
ついての検討が進んでもいる. 一般的に、光磁気記録のための媒体としては、(1)垂
直磁気異方性を有すること、《2)保磁力が大きいこと
、(3)力一回転角が大きいことが最も重要な特性要件
となっている.もちろん、その他の反射率、粒界サイズ
、耐久性等も大切な要件である. これらの特性要件を満たすために、これれまでは、Tb
FeCo,DyFeCoなどの遷移金属と希土類金属と
の合金薄膜が使用されてきており、この合金薄膜は、ア
モルファス状態で非常に保磁力が大きく(数KOe)、
さらに磁化曲線およびカーヒステリシスにおいて角型比
がほぼ1.0であることを特徴としている. しかしながら、これらの合金WI膜の場合、一方では、
力一回転角が最大でも0.45゜と非常に小さく、通常
SIOやAJNなどのエンハンス層を設けて見かけ上の
カー回転角を大きくしている.また、耐久性の点でも希
土類系を含んでぃるめに非常に酸化されやすく、保護膜
なしでは使,できないという欠点を有している. 一方、このような欠点のない記録媒体としてelm結晶
梢遣を有するPtMnSb薄膜が注目れている. この薄膜は、力一回転角が1〜2゛と大きく、しかも合
金状態ではptが数10wt%含有されコいるために、
上記T b F e C oなどに比べて耐画化性が非
常に良好で、保護膜なしでもある程度内用され得るとい
う特徴を有している. シカシナカラ、.:ノP t M n S b*’fl
Aニハ.:tらの利点がある反面で、その磁気特性にお
いて番二面内磁化優位性を持ち、また、保磁カがせいぜ
髪2000eと小さく、光磁気記録媒体としては実片に
供することはできながった.その上、この薄形は、力一
回転角が非常に大きいとはいえ、それ4J5KOe以上
も磁場をかけた場合であり、外部硼場ゼロでのPtMn
Sb薄膜の残留カー回転角はその角型性が悪いためにT
bFeCo薄膜に比べてさらに小さくなってしまう.ま
た、カーヒステレシスはその磁化曲線に相似することか
ら、その磁気特性を改善しない限り、いくら飽和カー回
転角が大きくても意味がないことになる.第5図および
第6図は、TbFeCo系合金薄膜の磁化曲線とカール
ープ、およびこれまでのPtMnSb系合金NWAの磁
化曲線とカーループとを対比して示したものである. ここに見られるように、第5図のTbFeCo系などの
磁化曲線とカーループは非常に角型性がよいが、力一回
転角度自体の大きさは、前述のごとく、最大でも0.4
5’程度である.一方の第6図の従来のPtMnSb系
では、角型性は悪いが、力一回転角度は印加磁場1 0
KOeが必要といえども最大1〜2゜にも達する.すな
わち、磁化曲線の角型性をあげることができればそれに
対応してカーループの角型性もあがり、磁場ゼロでの力
一回転角も著しく増大することになる.この発明は、以
上の通りの事情に鑑みてなされたものであり、その特性
が注目される PtMnSb薄膜の欠点を改善し、磁気特性を向上させ
、かつ、カーヒステレシスの角型性向上を可能としたP
 t M n S b薄展がらなる光磁気記録媒体を提
供することを目的としている.(課題を解決するための
手段) この発明は、上記の課題を解決するものとしてC Ib
結晶構造を有するPtMnSb薄膜においてMnおよび
/またはSbの酸化物を微細析出させた混相結晶組織を
有することを特徴とする光磁気記録媒体を提供する. PtMnSb薄展に、MnあるいはSbの酸化物相、も
しくはMn−Sbの複合酸化物相を微細析出させて混相
結晶状態としたこの発明の光磁気記録媒体においては、
従来のPtMnSb*lIに比べて保磁力が大きく、垂
直異方性も大きい.また、保磁力が大きくなるに従って
、角型比も増大する. このような優れた磁気特性を有するこの発明の光磁気記
録媒体は、PtMnSb薄膜を真空槽中で、適度な酸素
分圧を与えて熱処理するか、あるいは酸素プラズマ中で
処理することにより製造することができる.あるいはま
た、分解しやすい下地層として酸化物層をあらかじめ形
成しておいて製造してもよいし、さらには、酸素と不活
性ガスとの混合ガス中でのスパッタリングによって製造
してもよい. この発明の記録媒体の磁気特性および磁気光学特性の著
しい向上は、微細結晶粒界の選択的な酸化により個々の
結晶粒が磁気的に孤立されて保磁力と垂直異方性が大き
くなることに由来するものとm察される.m気特性が改
善されれば、カーヒステレシスの角型比もこれに相似す
ることから改善される. PtMnSb薄膜の膜厚の範囲については、膜厚が薄す
ぎると酸化物相の割合が大きくなり、磁化が小さくなり
すぎる.逆に膜厚が厚すぎると、酸化物相の割合が小さ
くなり、保磁力の増加が小さく、角型性も悪くなる.こ
のため、一般的には50A〜5.00O Aが良いが、
さらに好ましくは以下、実施例を示し、さらに詳しくこ
の発明の光磁気記録媒体についてさらに詳しく説明する
.実施例1 通常のRFスパッタリング法により石英基板上に#膜が
150OAになるようにPtMnSb薄膜を成膜した.
この時使用したターゲットは、Mn−Sb合金ターゲッ
ト(6インチ径)上に5一角のptチップを均一に分布
させた複合ターゲットである. また、基板温度を100’Cとし、到達真空度1.5X
 1 0−’Torrで純アルゴンガスを導入し、チャ
ンバー内圧力を4 X 1 0−2Torrとする.こ
の状態でスパッタリング出カ200 Wで1o分間成膜
する.作成された膜組成比は原子パーセントでP t 
s<. tM n sx. ss b si. *であ
った.成膜後に、その基板を取り出し、続いて熱処理を
行う.これは別の真空槽において、まず2×1 0−’
Torrにまで排気し、続いてArと酸素の混合ガス(
0.:20%冫を導入する.真空槽内の圧力を4 X 
1 0−’Torrに保ちながら、ヒーターにて450
℃まで加熱し、その温度で1時間保持する.この処理に
よって得られる薄膜のX篠回折パターンを示したものが
第1図である.従来のPtMnSb単相の回折パターン
はc..m*をとるので明瞭なピーク(111 冫、(
220)、(311 )(400)・・・等が現われる
が、この第1図から明らかなように、低角度側でPtM
nSb相とは別のピークが現れる.これらは、Mnある
いはSbの酸化物相、もしくは、Mn−Sbの複合酸化
物相を示している.実際に、この第1図にはP t M
 n S b相の他にSb酸化物相Mn−Sb複合酸化
物相が確認される. また、第2図は、このyl膜の磁気特性(M−Hループ
)を示したものである.この磁気特性の評価結果を従来
のPtMnSb薄膜の場合と比較したものが次の表1で
ある. この表1から明らかなように保磁力(Hcf)が900
0eと従来のそれに比べ約4.5倍にも大きくなってい
る.また角型比(Rs)も著しく増大している. 表 1 実施例2 実施例1と同様にしてPtMnSb薄膜の熱処理を行っ
た.この場合の膜組成比は原子バーセントでP t 3
2.4M n ss.<S b S4.2であった.4
50℃、1時間の処理において、保磁力(Hc上)、磁
化(Ms)の酸素分圧依存性について評価した.その結
果を示したものが第3図である.#素分圧の上昇によっ
て酸化物相が多くなり過ぎると飽和磁下が低下すること
がわかる. 酸化物相の適度な存在が優れた磁気特性を示す,実施例
3 実施例2と同様にして、450゜C、1時間の熱処理に
おいて、飽和カー回転角と残留カ一回転角との酸素分圧
依存性についてIF UIJ シた.その結果を示した
ものが第4図である. ここに見られるようにカー回転角も磁気特性と同様に酸
素分圧依存性をもち、適度な酸化物相の存在により増大
する.またカーヒステレシスにおいても角型性の向上が
同様に得られ、その結果、磁場ゼロにおけるカー回転角
も著しく増大する.すなわち、酸化物相の存在が磁気特
性および磁気光学特性を同時に改善することがよくわか
る.(発明の効果〉 この発明により、以上詳しく説明した通り、磁気特性お
よび磁気光学特性を著しく向上させた新規なPtMnS
b系光磁気記録媒体が実現される.
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a magneto-optical recording medium. More specifically, the present invention relates to a high-performance magneto-optical recording medium that is perpendicularly magnetized and capable of reading and reproducing recorded bits using laser light. (Conventional technology and its issues) Development of magnetic or magneto-optical recording media has been actively pursued for some time, and improvements in recording density, recording and
Studies have been conducted from various angles to improve playback accuracy. Among these, magneto-optical recording using laser light has attracted attention in recent years, and research into recording media for this purpose is progressing. In general, the most important characteristics for a medium for magneto-optical recording are (1) having perpendicular magnetic anisotropy, (2) having a large coercive force, and (3) having a large force/rotation angle. It is a requirement. Of course, other important requirements include reflectance, grain boundary size, and durability. To meet these property requirements, up until now Tb
Alloy thin films of transition metals such as FeCo and DyFeCo and rare earth metals have been used, and this alloy thin film has a very large coercive force (several KOe) in an amorphous state.
Furthermore, it is characterized by a squareness ratio of approximately 1.0 in the magnetization curve and Kerr hysteresis. However, for these alloy WI films, on the one hand,
The maximum rotation angle per force is 0.45°, which is extremely small, and an enhancement layer such as SIO or AJN is usually provided to increase the apparent Kerr rotation angle. In addition, in terms of durability, it has the disadvantage that it is extremely susceptible to oxidation because it contains rare earth elements, and cannot be used without a protective film. On the other hand, a PtMnSb thin film having an ELM crystalline structure is attracting attention as a recording medium free of such defects. This thin film has a large rotation angle per force of 1 to 2 degrees, and also contains several tens of wt% of PT in the alloy state.
It has very good image resistance compared to the above-mentioned T b Fe Co, etc., and has the characteristic that it can be used internally to some extent even without a protective film. Shikashinakara.. :ノP t M n S b*'fl
Aniha. Although it has the advantages of t, etc., its magnetic properties are superior in in-plane magnetization, and its coercive force is at most 2000e, so it cannot be used as an actual piece as a magneto-optical recording medium. It became long. Moreover, although this thin shape has a very large force-rotation angle, it is possible to achieve this when a magnetic field of more than 4J5KOe is applied, and PtMn with zero external field
The residual Kerr rotation angle of the Sb thin film is T due to its poor squareness.
It is even smaller than the bFeCo thin film. Furthermore, since the Kerr hysteresis is similar to the magnetization curve, it is meaningless no matter how large the saturation Kerr rotation angle is unless the magnetic properties are improved. Figures 5 and 6 show a comparison of the magnetization curve and Kerr loop of a TbFeCo alloy thin film and the magnetization curve and Kerr loop of a conventional PtMnSb alloy NWA. As seen here, the magnetization curve and Kerr loop of the TbFeCo system shown in Figure 5 have very good squareness, but the magnitude of the force-rotation angle itself is 0.4 at maximum, as mentioned above.
It is about 5'. On the other hand, in the conventional PtMnSb system shown in Fig. 6, the squareness is poor, but the rotation angle per force is 10 in the applied magnetic field.
Although KOe is required, it can reach a maximum of 1 to 2 degrees. In other words, if the squareness of the magnetization curve can be increased, the squareness of the Kerr loop will correspondingly increase, and the force-per-rotation angle at zero magnetic field will also increase significantly. This invention was made in view of the above circumstances, and it is possible to improve the defects of the PtMnSb thin film, which is attracting attention for its properties, improve the magnetic properties, and improve the squareness of Kerr hysteresis. P did
The purpose of this invention is to provide a magneto-optical recording medium consisting of a tMnSb thin film. (Means for Solving the Problems) This invention solves the above problems by providing C Ib
Provided is a magneto-optical recording medium characterized by having a mixed phase crystal structure in which Mn and/or Sb oxides are finely precipitated in a PtMnSb thin film having a crystal structure. In the magneto-optical recording medium of the present invention, an oxide phase of Mn or Sb, or a composite oxide phase of Mn-Sb is finely precipitated on a PtMnSb thin sheet to form a mixed phase crystal state.
It has a larger coercive force and larger perpendicular anisotropy than conventional PtMnSb*lI. Furthermore, as the coercive force increases, the squareness ratio also increases. The magneto-optical recording medium of the present invention having such excellent magnetic properties can be manufactured by heat-treating a PtMnSb thin film in a vacuum chamber while applying an appropriate oxygen partial pressure, or by treating it in oxygen plasma. Can be done. Alternatively, it may be manufactured by forming an oxide layer in advance as a base layer that is easy to decompose, or it may be manufactured by sputtering in a mixed gas of oxygen and inert gas. The significant improvement in the magnetic and magneto-optical properties of the recording medium of this invention is due to the selective oxidation of fine grain boundaries, which magnetically isolates individual grains and increases coercive force and perpendicular anisotropy. It is assumed that this is derived from If the mechanical properties are improved, the squareness ratio of the Kerr hysteresis will also be improved since it is similar to this. Regarding the thickness range of the PtMnSb thin film, if the film thickness is too thin, the proportion of the oxide phase becomes large and the magnetization becomes too small. On the other hand, if the film thickness is too thick, the proportion of the oxide phase will be small, the increase in coercive force will be small, and the squareness will be poor. For this reason, 50A to 5.00OA is generally good, but
More preferably, the magneto-optical recording medium of the present invention will be explained in more detail by showing examples below. Example 1 A PtMnSb thin film was formed on a quartz substrate using a normal RF sputtering method so that the # film had a thickness of 150 OA.
The target used at this time was a composite target in which 5 square PT chips were uniformly distributed on a Mn-Sb alloy target (6 inch diameter). In addition, the substrate temperature is 100'C, and the ultimate vacuum is 1.5X.
Pure argon gas is introduced at 10-' Torr, and the pressure inside the chamber is set to 4 x 10-2 Torr. In this state, a film was formed for 10 minutes at a sputtering output of 200 W. The composition ratio of the created film is P t in atomic percent.
s<. tM n sx. ss b si. *Met. After film formation, the substrate is taken out and then heat treated. In another vacuum chamber, first 2×1 0−'
After exhausting to Torr, a mixed gas of Ar and oxygen (
0. :Introduce 20% medicine. Increase the pressure inside the vacuum chamber by 4
1 While keeping the temperature at 0-' Torr, heat the temperature to 450 with a heater.
Heat to ℃ and hold at that temperature for 1 hour. Figure 1 shows the X-Shino diffraction pattern of the thin film obtained by this treatment. The diffraction pattern of conventional PtMnSb single phase is c. .. Since m* is taken, a clear peak (111 冫, (
220), (311), (400), etc. appear, but as is clear from this Figure 1, PtM
A peak different from the nSb phase appears. These indicate an oxide phase of Mn or Sb, or a composite oxide phase of Mn-Sb. In fact, in this Figure 1, P t M
In addition to the nSb phase, an Sb oxide phase and an Mn-Sb composite oxide phase are confirmed. Moreover, FIG. 2 shows the magnetic properties (M-H loop) of this yl film. Table 1 below compares the evaluation results of magnetic properties with those of conventional PtMnSb thin films. As is clear from Table 1, the coercive force (Hcf) is 900
0e, which is about 4.5 times larger than the conventional one. The squareness ratio (Rs) also increased significantly. Table 1 Example 2 A PtMnSb thin film was heat-treated in the same manner as in Example 1. In this case, the film composition ratio is P t 3 in atomic percent.
2.4M n ss. <S b S4.2. 4
After treatment at 50°C for 1 hour, the dependence of coercive force (on Hc) and magnetization (Ms) on oxygen partial pressure was evaluated. Figure 3 shows the results. #It can be seen that when the oxide phase increases too much due to an increase in the elementary partial pressure, the saturation magnetic field decreases. Example 3: Appropriate presence of oxide phase exhibits excellent magnetic properties. In the same manner as Example 2, in heat treatment at 450°C for 1 hour, the oxygen content between the saturated Kerr rotation angle and the residual Kerr rotation angle was Regarding pressure dependence, IF UIJ was discussed. Figure 4 shows the results. As seen here, the Kerr rotation angle, like the magnetic properties, also depends on the oxygen partial pressure, and increases with the presence of a suitable oxide phase. A similar improvement in squareness is also obtained in Kerr hysteresis, and as a result, the Kerr rotation angle at zero magnetic field increases significantly. In other words, it is clear that the presence of the oxide phase simultaneously improves the magnetic and magneto-optical properties. (Effects of the Invention) As explained in detail above, this invention provides novel PtMnS with significantly improved magnetic properties and magneto-optical properties.
A b-based magneto-optical recording medium is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、各々、この発明の一実施例につ
いてのX線回折パターン図と磁気特性CM−Hループ〉
図を示したものである.第3図および第4図は、各々、
この発明の記録媒体について、保磁力と磁化、およびカ
ー回転角の酸素分圧との関係を示した相関図である.第
5図は、従来のTbFeCo薄展の磁化曲線とカールー
プを示した特性図であり、また第6図は従来のPtMn
Sb*!IIの磁化曲線とカーループとを示した特性図
である.
FIGS. 1 and 2 respectively show an X-ray diffraction pattern diagram and magnetic characteristics CM-H loop of an embodiment of the present invention.
The diagram is shown below. Figures 3 and 4 respectively show
FIG. 2 is a correlation diagram showing the relationship between coercive force, magnetization, and Kerr rotation angle with oxygen partial pressure for the recording medium of the present invention. Fig. 5 is a characteristic diagram showing the magnetization curve and Kerr loop of conventional TbFeCo thin film, and Fig. 6 is a characteristic diagram showing the magnetization curve and Kerr loop of conventional TbFeCo thin film.
Sb*! It is a characteristic diagram showing the magnetization curve and Kerr loop of II.

Claims (1)

【特許請求の範囲】[Claims] (1)C_1_b結晶構造を有するPtMnSb薄膜に
おいて、Mnおよび/またはSbの酸化物を微細析出さ
せた混相結晶組織を有することを特徴とする光磁気記録
媒体。
(1) A magneto-optical recording medium characterized by having a mixed phase crystal structure in which Mn and/or Sb oxides are finely precipitated in a PtMnSb thin film having a C_1_b crystal structure.
JP30176589A 1989-11-20 1989-11-20 Magneto-optical recording medium Pending JPH03162735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30176589A JPH03162735A (en) 1989-11-20 1989-11-20 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30176589A JPH03162735A (en) 1989-11-20 1989-11-20 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH03162735A true JPH03162735A (en) 1991-07-12

Family

ID=17900903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30176589A Pending JPH03162735A (en) 1989-11-20 1989-11-20 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH03162735A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281250A (en) * 1987-05-14 1988-11-17 Nippon Telegr & Teleph Corp <Ntt> Magnetooptics thin film material and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281250A (en) * 1987-05-14 1988-11-17 Nippon Telegr & Teleph Corp <Ntt> Magnetooptics thin film material and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3497573B2 (en) Exchange coupling film and magnetoresistive element
JPS5810727B2 (en) light modulator
JPH03162735A (en) Magneto-optical recording medium
JPH0230104A (en) Vertically magnetized film
JPH03162736A (en) Production of magneto-optical recording medium
JPS63269354A (en) Magneto-optical recording medium
JP2508479B2 (en) Soft magnetic ferrite thin film
JPS60191451A (en) Manufacture of photomagnetic recording medium
JPS6044813B2 (en) Manufacturing method of alloy thin film for magnetic recording
JPS63273236A (en) Magneto-optical recording medium
JPH0646617B2 (en) Method for manufacturing magneto-optical recording material
JPH04111302A (en) Artificial lattice film
JP2824998B2 (en) Magnetic film
JP2948589B2 (en) Magneto-optical recording medium
JPS60173745A (en) Photoelectromagnetic recording medium
JP2752199B2 (en) Magnetic head
JPS62234253A (en) Magneto-optical recording medium and its production
JPS59198707A (en) Perpendicularly magnetic recording material and manufacture thereof
JPS62267950A (en) Magneto-optical recording medium
JPH06267130A (en) Magneto-optical recording medium
JPH1092640A (en) Ultra high-density magnetic recording medium and its manufacture
JPS6353735A (en) Magneto-optical recording medium
JPS63266626A (en) Magnetic recording medium
JPH05101935A (en) Garnet polycrystalline film for optical magnetic recording medium, optical magnetic recording medium, and optical magnetic recording disk
JPH02215106A (en) Magnetic film