JPH1092640A - Ultra high-density magnetic recording medium and its manufacture - Google Patents

Ultra high-density magnetic recording medium and its manufacture

Info

Publication number
JPH1092640A
JPH1092640A JP26655696A JP26655696A JPH1092640A JP H1092640 A JPH1092640 A JP H1092640A JP 26655696 A JP26655696 A JP 26655696A JP 26655696 A JP26655696 A JP 26655696A JP H1092640 A JPH1092640 A JP H1092640A
Authority
JP
Japan
Prior art keywords
ferrite
magnetic recording
magnetic
film
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26655696A
Other languages
Japanese (ja)
Inventor
Akita Inomata
明大 猪又
Yoshitake Kaizu
功剛 貝津
Iwao Okamoto
巌 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26655696A priority Critical patent/JPH1092640A/en
Publication of JPH1092640A publication Critical patent/JPH1092640A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To completely cut off the magnetic interaction between ferromagnetic crystal grains and, at the same time, to improve the coercive force of a magnetic recording medium by forming a magnetic recording layer having a ferrite granular structure containing fine ferromagnetic ferrite particles in a nonmagnetic base material on a nonmagnetic substrate. SOLUTION: After an SiO2 film 2 is formed on an Si substrate 1 and a granular film composed of an SiO2 base material. containing FeCo metallic particles is formed by sputtering on the heat-resistant nonmagnetic substrate 1, the granular film 3 is changed to a ferromagnetic ferrite/SiO2 granular film 3 by heat-treating the granular film in a vacuum. Then a carbon film is formed on the surface of the granular film 3 as a protective film 4. Most of the crystals grown in the film 3 after heat treatment are composed of Fe4 O4 ferrite crystals, CoFe2 O4 ferrite crystals, a small quantity of γ-Fe2 O3 ferrite crystals, etc. In addition, the FeCo/SiO2 volumetric ratio in the film 3 is adjusted to 30:70 to 70:30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体とその
製造方法及び磁気ディスク装置に関する。
The present invention relates to a magnetic recording medium, a method for manufacturing the same, and a magnetic disk drive.

【0002】[0002]

【従来の技術】磁気記録装置は情報処理装置の外部記憶
装置として使用される。情報処理装置が取り扱う情報量
が増加しているのに伴い、磁気記録装置も記録密度の向
上が必須となっている。しかし、従来の磁気記録装置で
用いられている磁気記録媒体の記録密度を高くすると、
再生出力が低下し、ノイズが増加するという問題がある
ため、高密度記録が可能で、なおかつ高再生出力、低ノ
イズの磁気記録媒体が要求されている。
2. Description of the Related Art A magnetic recording device is used as an external storage device of an information processing device. With an increase in the amount of information handled by information processing apparatuses, it has become essential to improve the recording density of magnetic recording apparatuses. However, when the recording density of the magnetic recording medium used in the conventional magnetic recording device is increased,
Since there is a problem that the reproduction output decreases and the noise increases, there is a demand for a magnetic recording medium capable of high-density recording, high reproduction output and low noise.

【0003】媒体から発生するノイズは主に磁化遷移部
分の磁化のばらつきに起因しており、磁化のばらつきは
記録層を構成する強磁性結晶粒子間の磁気的な相互作用
に起因している。したがって媒体ノイズ低減のために
は、この強磁性結晶粒子間の磁気的な相互作用を弱くし
てやることが有効である。従来の磁気記録媒体はスパッ
タリングで作成した、Coを基調とした3元もしくは4
元の合金の薄膜を用いるのが一般的であり、組成および
作成条件によって強磁性結晶粒子間に非磁性の添加元素
を偏析させて磁気的な相互作用を弱めることでノイズの
低減を図っていた。しかしCo系、Fe系の合金は基本
的に固溶系であるため、組成および作成条件によって偏
析を促進させても強磁性結晶粒子を完全に孤立化させる
ことはできなかった。したがって強磁性結晶粒子間の磁
気的な相互作用を完全に断ち切ることはできなかった。
[0003] Noise generated from a medium is mainly caused by variation in magnetization in a magnetization transition portion, and variation in magnetization is caused by magnetic interaction between ferromagnetic crystal grains constituting a recording layer. Therefore, in order to reduce the medium noise, it is effective to weaken the magnetic interaction between the ferromagnetic crystal grains. A conventional magnetic recording medium is a ternary or quaternary based on Co made by sputtering.
Generally, a thin film of the original alloy was used, and noise was reduced by segregating non-magnetic addition elements between ferromagnetic crystal grains depending on the composition and preparation conditions to weaken magnetic interaction. . However, since Co-based and Fe-based alloys are basically solid-solution alloys, ferromagnetic crystal particles cannot be completely isolated even if segregation is promoted depending on the composition and preparation conditions. Therefore, the magnetic interaction between the ferromagnetic crystal grains could not be completely cut off.

【0004】また、強磁性金属結晶粒子グラニュラ媒体
では、磁気記録層を互いに非固溶な強磁性金属結晶粒子
と非磁性母材により形成しているため、強磁性結晶粒子
間の磁気的な相互作用を完全に断ち切ることが可能であ
るが、保磁力が小さいという欠点があった。
Further, in the ferromagnetic metal crystal grain granular medium, the magnetic recording layer is formed of a ferromagnetic metal crystal particle and a non-magnetic base material which are insoluble in each other, so that the magnetic mutual layer between the ferromagnetic crystal particles is magnetic. Although the function can be completely cut off, there is a disadvantage that the coercive force is small.

【0005】[0005]

【発明が解決しようとする課題】以上の理由から強磁性
結晶粒子を完全に孤立化させて強磁性結晶粒子間の磁気
的な相互作用を完全に断ち切り、なおかつ保磁力の大き
い磁気記録媒体が必要とされている。本発明はこの需要
に答えることを目的とする。
For the above reasons, a magnetic recording medium having a large coercive force while completely isolating the ferromagnetic crystal grains to completely cut off the magnetic interaction between the ferromagnetic crystal grains is required. It has been. The present invention aims to answer this need.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、非磁性母材中に強磁性フェライト微粒子
を含むフェライトグラニュラ構造を持つ磁気記録層を提
供する。従来の金属グラニュラ構造と比べてフェライト
のグラニュラ構造としたことで保磁力が向上し、かつ非
磁性母材中のグラニュラ構造であるので強磁性粒子間の
磁気的な相互作用が断ち切られ低ノイズ化される。
In order to solve the above-mentioned problems, the present invention provides a magnetic recording layer having a ferrite granular structure containing ferromagnetic ferrite fine particles in a non-magnetic base material. Compared to the conventional metallic granular structure, the ferrite granular structure improves the coercive force, and the granular structure in the non-magnetic base material cuts off the magnetic interaction between ferromagnetic particles to reduce noise. Is done.

【0007】フェライトは一般式MO・Fe2 3 (M
は2価の金属)で表わされる金属酸化物であり、特に強
磁性を示すものはFe3 4 ,CoFe2 4 ,NiF
24 ,MnFe2 4 、バリウムフェライトなどを
含むが、CoFe2 4 ,Fe3 4 が好適である。フ
ェライト微粒子には副生成物あるいは他の強磁性材料、
例えば、γ−Fe2 3 などが含まれることがあっても
よい。
Ferrite has the general formula MO.Fe 2 O 3 (M
Is a divalent metal), and particularly those exhibiting ferromagnetism are Fe 3 O 4 , CoFe 2 O 4 , and NiF.
e 2 O 4, MnFe 2 O 4, including barium ferrite, CoFe 2 O 4, Fe 3 O 4 is preferred. Ferrite particles include by-products or other ferromagnetic materials,
For example, γ-Fe 2 O 3 may be included.

【0008】非磁性母材はフェライトと非固溶の非磁性
材料であればよく、SiO2 ,Al2 3 ,MgO,Z
rO2 などが例示される。フェライトグラニュラ構造に
する理由は、強磁性フェライト微粒子相互間の磁気的相
互作用を抑制するためであるから、強磁性フェライト微
粒子は非磁性母材中に孤立して存在することが好まし
い。一方、保磁力を高めるためには強磁性フェライトは
多い方がよい。そのため、強磁性フェライトと非磁性母
材との体積比は30:70〜70:30の範囲内が好ま
しく、40:60〜60:40の範囲内がより好まし
い。
The non-magnetic base material may be any non-magnetic material which is insoluble in ferrite, such as SiO 2 , Al 2 O 3 , MgO, Z
rO 2 and the like are exemplified. The ferrite granular structure is used to suppress the magnetic interaction between the ferromagnetic ferrite fine particles. Therefore, it is preferable that the ferromagnetic ferrite fine particles exist independently in the nonmagnetic base material. On the other hand, in order to increase the coercive force, the ferromagnetic ferrite should be more. Therefore, the volume ratio between the ferromagnetic ferrite and the nonmagnetic base material is preferably in the range of 30:70 to 70:30, and more preferably in the range of 40:60 to 60:40.

【0009】フェライトグラニュラ構造の磁気記録層の
膜厚は強磁性フェライト微粒子の寸法と関係があり、一
般的には100nm以下、好ましくは10〜50nmであ
る。フェライトグラニュラ構造中の強磁性フェライト微
粒子の粒径は一般的に5〜50nm、好ましくは10〜3
0nmである。この粒径が小さいと保磁力が低下し、一方
大きくなるとノイズが発生し易くなる。
The thickness of the magnetic recording layer having the ferrite granular structure is related to the size of the ferromagnetic ferrite fine particles, and is generally 100 nm or less, preferably 10 to 50 nm. The particle size of the ferromagnetic ferrite fine particles in the ferrite granular structure is generally 5 to 50 nm, preferably 10 to 3 nm.
0 nm. If the particle size is small, the coercive force decreases, while if the particle size is large, noise tends to occur.

【0010】フェライトグラニュラ構造を持つ磁気記録
層は非磁性基板上に成膜される。非磁性基材は特に限定
されないが、400℃以上の高温で熱処理可能な非磁性
耐熱基板(Si,SiO2 ,C、サファイヤ、結晶化ガ
ラスなど)が好ましい。非磁性基板上にフェライトグラ
ニュラ構造の磁気記録層を形成して磁気記録媒体が得ら
れる。この磁気記録媒体と磁気ヘッドを具備する磁気デ
ィスク装置を構成することができる。
A magnetic recording layer having a ferrite granular structure is formed on a non-magnetic substrate. The non-magnetic substrate is not particularly limited, but is preferably a non-magnetic heat-resistant substrate (Si, SiO 2 , C, sapphire, crystallized glass, etc.) that can be heat-treated at a high temperature of 400 ° C. or higher. A magnetic recording layer having a ferrite granular structure is formed on a non-magnetic substrate to obtain a magnetic recording medium. A magnetic disk drive including the magnetic recording medium and the magnetic head can be configured.

【0011】フェライトグラニュラ構造の磁気記録層を
成膜するには、強磁性フェライトの構成金属元素を非磁
性母材材料と同時スパッタして上記金属元素の金属グラ
ニュラ構造の薄膜を成膜した後、熱処理して上記金属元
素を強磁性フェライトに転換させる方法によることがで
きる。同時スパッタは複合ターゲットを用いることが好
ましい。
In order to form a magnetic recording layer having a ferrite granular structure, a metal element constituting a ferromagnetic ferrite is sputtered simultaneously with a nonmagnetic base material to form a thin film having the above-mentioned metal element and a metal granular structure. A method of converting the metal element into ferromagnetic ferrite by heat treatment can be used. It is preferable to use a composite target for simultaneous sputtering.

【0012】熱処理は400℃以上がよく、好ましくは
500〜800℃の範囲内である。熱処理温度が高いほ
ど保磁力が大きくなる。熱処理温度が高すぎると粒子が
成長して大きくなりすぎる。さらに熱処理は高真空下、
例えば1×10-6Torr程度で行なうことが好ましい。微
量の酸素の存在による酸化が適当であり、酸素が多すぎ
ると酸化が進みフェライト以外の酸化物になる。
The heat treatment is performed at a temperature of 400 ° C. or more, preferably in the range of 500 to 800 ° C. The higher the heat treatment temperature, the greater the coercive force. If the heat treatment temperature is too high, the particles grow and become too large. Further heat treatment under high vacuum,
For example, it is preferable to perform the process at about 1 × 10 −6 Torr. Oxidation due to the presence of a small amount of oxygen is appropriate. If the amount of oxygen is too large, the oxidation proceeds to form oxides other than ferrite.

【0013】こうして成膜したフェライトグラニュラ構
造の磁気記録層は一般的に1000Oe以上、さらには2
000Oe以上、特に3000Oeの保磁力を有することが
できる。
The magnetic recording layer having a ferrite granular structure formed as described above generally has a thickness of 1000 Oe or more.
It can have a coercive force of 000 Oe or more, especially 3000 Oe.

【0014】[0014]

【実施例】図1は本発明の実施例の磁気記録媒体の断面
図である。この媒体はSi基板1と、磁気記録層3、磁
気記録層上に形成された保護被膜4を含む。保護被膜上
には通常液体潤滑剤の層が添加されている。また、Si
基板の表面にはSiと磁性材料の拡散結合を防ぐため、
あらかじめ熱酸化膜(SiO2 )2が付けてある。
FIG. 1 is a sectional view of a magnetic recording medium according to an embodiment of the present invention. This medium includes a Si substrate 1, a magnetic recording layer 3, and a protective coating 4 formed on the magnetic recording layer. A layer of liquid lubricant is usually added on the protective coating. In addition, Si
To prevent diffusion bonding between Si and the magnetic material on the surface of the substrate,
A thermal oxide film (SiO 2 ) 2 is provided in advance.

【0015】図2に本発明の実施例の磁気記録媒体の作
成手順を示す。耐熱性非磁性基板(1,2)上に、Fe
Co金属粒子/SiO2 母材のグラニュラ膜3′をスパ
ッタ成膜し(図2(ア)),これを真空下で熱処理して
強磁性フェライト/SiO2のグラニュラ膜3に転換さ
せた後(図2(イ))、表面に保護被膜4としてカーボ
ンを成膜する(図2(ウ))。
FIG. 2 shows a procedure for producing a magnetic recording medium according to an embodiment of the present invention. Fe on the heat-resistant non-magnetic substrate (1, 2)
After forming a granular film 3 'of Co metal particles / SiO 2 base material by sputtering (FIG. 2A), this is heat-treated under vacuum to be converted into a ferromagnetic ferrite / SiO 2 granular film 3 ( 2B, carbon is formed as a protective film 4 on the surface (FIG. 2C).

【0016】ここで耐熱性非磁性基板は400℃以上の
高温で熱処理が可能なSi基板、C基板などである。図
3に実施例で用いた複合ターゲットの概略図を示す。S
iO2 ターゲット11上に正方形のCo板12とFe板
13を同心円状に配置してある。これにより、Co板お
よびFe板の枚数を変えることによって成膜した媒体上
で径方向の組成に傾斜を生じることなく、磁気記録層の
強磁性金属結晶粒子と非磁性母材の組成比を変化させる
ことができる。
Here, the heat-resistant non-magnetic substrate is a Si substrate, a C substrate or the like which can be heat-treated at a high temperature of 400 ° C. or more. FIG. 3 shows a schematic diagram of the composite target used in the example. S
A square Co plate 12 and a Fe plate 13 are concentrically arranged on an iO 2 target 11. By changing the number of Co plates and Fe plates, the composition ratio of the ferromagnetic metal crystal grains of the magnetic recording layer and the nonmagnetic base material can be changed without causing a gradient in the radial composition on the film-formed medium. Can be done.

【0017】この複合ターゲットを用い、成膜前5×1
-7Torrの真空下、Arガス圧5mTorr 、基板温度は室
温(50℃程度)、スパッタパワー200Wでマグネト
ロンスパッタリングを行ない、膜厚10〜300nmのF
eCo/SiO2 グラニュラ膜3′を成膜した。スパッ
タ後、1×10-6Torrの高真空中で500〜800℃で
1時間熱処理した後、カーボンを厚さ20nmに成膜し
た。
Using this composite target, 5 × 1
Magnetron sputtering is performed under a vacuum of 0 -7 Torr, an Ar gas pressure of 5 mTorr, a substrate temperature of room temperature (about 50 ° C.), a sputtering power of 200 W, and an F film having a film thickness of 10 to 300 nm.
An eCo / SiO 2 granular film 3 ′ was formed. After the sputtering, heat treatment was performed at 500 to 800 ° C. for 1 hour in a high vacuum of 1 × 10 −6 Torr, and then carbon was deposited to a thickness of 20 nm.

【0018】図4にグラニュラ膜3′,3のX線回折の
結果を示す。熱処理前の膜ではSi基板と比較して回折
ピークは得られていない。熱処理をした膜では結晶性を
示す回折ピークが得られた。熱処理によって回折ピーク
が大きくなることから熱処理によって結晶粒が成長して
いることがわかる。熱処理後の膜で成長している結晶は
FeおよびCoの酸化物であり、酸化物は主にFe3
4 ,CoFe2 4 、そして少量のγ−Fe2 3 など
のフェライトであることがわかる。
FIG. 4 shows the results of X-ray diffraction of the granular films 3 'and 3'. No diffraction peak was obtained in the film before the heat treatment as compared with the Si substrate. In the heat-treated film, a diffraction peak indicating crystallinity was obtained. Since the diffraction peak is increased by the heat treatment, it is understood that the crystal grains are grown by the heat treatment. The crystal growing in the film after the heat treatment is an oxide of Fe and Co, and the oxide is mainly Fe 3 O.
4 , ferrite such as CoFe 2 O 4 and a small amount of γ-Fe 2 O 3 .

【0019】図5にはHcがほぼ最大となるFeCo体
積比率56%のFeCo酸化物/SiO2 (膜厚20n
m)の熱処理前と700℃で熱処理後のTEM像を示し
た。熱処理前の膜では粒径は約50Åで、粒が膜全体で
良く揃っており、粒間がSiO 2 によって切れている様
子が良くわかる。熱処理後の膜では粒子が20〜50nm
程度まで成長している。保磁力は粒径の成長によって増
大していると考えられる。
FIG. 5 shows an FeCo body in which Hc is almost maximum.
FeCo oxide / SiO with a product ratio of 56%Two(Film thickness 20n
m) shows TEM images before heat treatment and after heat treatment at 700 ° C.
Was. The particle size of the film before heat treatment is about 50 °, and the particles
Well aligned, with SiO between grains TwoLike cut by
I understand the child better. Particles in the film after heat treatment are 20-50 nm
Growing to a degree. Coercivity increases with grain size growth
It is considered great.

【0020】図6に保磁力とFeCo体積比率の関係を
熱処理温度別に示す。保磁力は熱処理前にはFeCo体
積比率に依存せず、数十Oeであるが500℃以上の熱処
理を加えると保磁力は1000Oe以上の大きな値を示す
ようになる。保磁力はFeCoの体積比が増えるに従っ
て大きくなり、約30%〜70%で1000Oe以上にな
る。体積比60%を超えると保磁力は急激に減少して、
70%以上では軟磁性を示す。熱処理温度は高いほど保
磁力が大きくなる。
FIG. 6 shows the relationship between the coercive force and the FeCo volume ratio at different heat treatment temperatures. The coercive force does not depend on the FeCo volume ratio before the heat treatment and is several tens of Oe. However, when a heat treatment at 500 ° C. or more is applied, the coercive force shows a large value of 1000 Oe or more. The coercive force increases as the volume ratio of FeCo increases, and becomes about 1000 Oe or more at about 30% to 70%. When the volume ratio exceeds 60%, the coercive force decreases rapidly,
If it is 70% or more, it shows soft magnetism. The higher the heat treatment temperature, the greater the coercive force.

【0021】図7に保磁力とFeCo体積比率の関係を
膜厚別に示す。保磁力は膜厚に大きく依存して、膜厚が
20nm付近で最も保磁力が出やすく、膜厚が100nmよ
り大きくなると保磁力は1000Oe以下になる。図8に
FeCo酸化物/SiO2 (51vol.% of FeCoの
媒体)のヘンケルプロットを示す。FeCo酸化物/S
iO2 媒体はS−W粒子(ストーナー・ウォールファー
ス粒子)の理論曲線にかなり近い曲線となっており、交
換相互作用が十分に切れていると考えられる。
FIG. 7 shows the relationship between the coercive force and the FeCo volume ratio for each film thickness. The coercive force greatly depends on the film thickness. The coercive force is most likely to be obtained when the film thickness is around 20 nm, and when the film thickness is larger than 100 nm, the coercive force becomes 1000 Oe or less. FIG. 8 shows a Henkel plot of FeCo oxide / SiO 2 (51 vol.% Of FeCo medium). FeCo oxide / S
The iO 2 medium has a curve that is quite close to the theoretical curve of SW particles (Stoner-Wall-Firth particles), and it is considered that the exchange interaction has been sufficiently cut off.

【0022】本発明による媒体のノイズを評価した結
果、実施例の全ての媒体で高密度記録領域において媒体
ノイズが増加しなかった。従って、本発明により高密度
記録用として好適な薄膜媒体を提供することができるこ
とが示された。図9に、上記の如く作製した磁気ディス
ク21を装着した磁気ディスクドライブの例を示す。磁
気ディスク21に対向して磁気抵抗効果型の磁気ヘッド
22が配置される。同図中、23はディスク押え、24
は磁気ヘッド駆動用ボイスコイルモーター、25はハウ
ジング、26は半導体集積回路デバイス、27はコネク
タであり、28は磁気ヘッド22を支持する弾性体より
なるアームである。
As a result of evaluating the noise of the medium according to the present invention, the medium noise did not increase in the high-density recording area in all the media of the examples. Therefore, it was shown that the present invention can provide a thin film medium suitable for high-density recording. FIG. 9 shows an example of a magnetic disk drive on which the magnetic disk 21 manufactured as described above is mounted. A magnetic head 22 of a magnetoresistive effect type is arranged to face the magnetic disk 21. In the figure, reference numeral 23 denotes a disc holder,
Is a voice coil motor for driving a magnetic head, 25 is a housing, 26 is a semiconductor integrated circuit device, 27 is a connector, and 28 is an arm made of an elastic body that supports the magnetic head 22.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は基板上のフェライトグラニュラ薄膜を示
す断面図である。
FIG. 1 is a sectional view showing a ferrite granular thin film on a substrate.

【図2】図2は本発明の薄膜を作成するための過程を示
す図である。
FIG. 2 is a diagram showing a process for producing a thin film of the present invention.

【図3】図3は本発明の薄膜をスパッタするための複合
ターゲットを示す概略図である。
FIG. 3 is a schematic diagram showing a composite target for sputtering a thin film of the present invention.

【図4】図4はフェライトグラニュラ薄膜のX線回折パ
ターンである。
FIG. 4 is an X-ray diffraction pattern of a ferrite granular thin film.

【図5】図5は本発明のフェライトグラニュラ薄膜の7
00℃で熱処理した及び熱処理前のTEM像を示す。
FIG. 5 is a diagram showing a ferrite granular thin film 7 of the present invention.
3 shows TEM images that were heat-treated at 00 ° C. and before heat treatment.

【図6】図6は種々の温度で熱処理した及び熱処理前の
フェライトグラニュラ薄膜の保磁力とFeCo体積比の
関係を示す図である。
FIG. 6 is a diagram showing the relationship between the coercive force and the FeCo volume ratio of a ferrite granular thin film heat-treated at various temperatures and before heat treatment.

【図7】図7は種々の薄膜で成膜したフェライトグラニ
ュラ薄膜の保磁力とFeCo体積比の関係を示す図であ
る。
FIG. 7 is a diagram showing a relationship between a coercive force and a FeCo volume ratio of a ferrite granular thin film formed of various thin films.

【図8】図8はフェライトグラニュラ薄膜の磁気的相互
作用を示すヘンケルプロットである。
FIG. 8 is a Henkel plot showing the magnetic interaction of a ferrite granular thin film.

【図9】磁気ディスクを装置したカード型の磁気ディス
クドライブを示す。
FIG. 9 shows a card-type magnetic disk drive equipped with a magnetic disk.

【符号の説明】[Explanation of symbols]

1…Si基板 2…SiO2 膜 3…強磁性フェライト/SiO2 グラニュラ膜 3′…FeCo/SiO2 グラニュラ膜 4…カーボン保護被膜 11…SiO2 12…Feチップ 13…Coチップ1 ... Si substrate 2 ... SiO 2 film 3 ... ferromagnetic ferrite / SiO 2 granular film 3 '... FeCo / SiO 2 granular film 4 ... carbon protective film 11 ... SiO 2 12 ... Fe chips 13 ... Co chips

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に、非磁性母材中に強磁性
フェライト微粒子を含むフェライトグラニュラ構造の磁
気記録層を有することを特徴とする磁気記録媒体。
1. A magnetic recording medium having a ferrite granular structure magnetic recording layer containing ferromagnetic ferrite fine particles in a nonmagnetic base material on a nonmagnetic substrate.
【請求項2】 前記強磁性フェライトがCoFe2 4
及び/又はFe3 4 からなり、任意にγ−Fe2 3
をさらに含む請求項1記載の磁気記録媒体。
2. The ferromagnetic ferrite according to claim 1, wherein said ferromagnetic ferrite is CoFe 2 O 4.
And / or Fe 3 O 4 , optionally γ-Fe 2 O 3
The magnetic recording medium according to claim 1, further comprising:
【請求項3】 前記非磁性母材がSiO2 である請求項
1又は2記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein said non-magnetic base material is SiO 2 .
【請求項4】 前記強磁性フェライトと前記非磁性母材
の体積比が30:70〜70:30である請求項1〜3
のいずれか1項に記載の磁気記録媒体。
4. The volume ratio of the ferromagnetic ferrite to the non-magnetic base material is from 30:70 to 70:30.
The magnetic recording medium according to any one of the above items.
【請求項5】 請求項1〜4のいずれか1項に記載の磁
気記録媒体と、該磁気記録媒体に対向して配置される磁
気ヘッドとを具備することを特徴とする磁気ディスク装
置。
5. A magnetic disk drive comprising: the magnetic recording medium according to claim 1; and a magnetic head arranged to face the magnetic recording medium.
【請求項6】 非磁性母材材料ターゲットと強磁性フェ
ライトを構成する金属元素のターゲットとから同時スパ
ッタリングにより、非磁性母材中に強磁性フェライト構
成金属元素の金属微粒子を含む金属グラニュラ構造の薄
膜を非磁性基板上に成膜し、前記薄膜を500℃以上の
温度で熱処理して結晶性の強磁性フェライト微粒子を含
む非磁性母材からなるフェライトグラニュラ構造の磁気
記録層に成すことを特徴とする磁気記録媒体の製造方
法。
6. A thin film having a metal granular structure including a ferromagnetic ferrite constituent metal element metal fine particle in a nonmagnetic base material by simultaneous sputtering from a nonmagnetic base material target and a target of a metal element constituting ferromagnetic ferrite. Is formed on a non-magnetic substrate, and the thin film is heat-treated at a temperature of 500 ° C. or more to form a ferrite granular structure magnetic recording layer made of a non-magnetic base material containing crystalline ferromagnetic ferrite fine particles. Of manufacturing a magnetic recording medium.
JP26655696A 1996-09-18 1996-09-18 Ultra high-density magnetic recording medium and its manufacture Pending JPH1092640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26655696A JPH1092640A (en) 1996-09-18 1996-09-18 Ultra high-density magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26655696A JPH1092640A (en) 1996-09-18 1996-09-18 Ultra high-density magnetic recording medium and its manufacture

Publications (1)

Publication Number Publication Date
JPH1092640A true JPH1092640A (en) 1998-04-10

Family

ID=17432489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26655696A Pending JPH1092640A (en) 1996-09-18 1996-09-18 Ultra high-density magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPH1092640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010019494A (en) * 1999-08-27 2001-03-15 윤덕용 Granulated Thinlayer of Microstructure of ferromagnertic metal/insulating ceramic multylayer
US7270898B2 (en) 2002-04-04 2007-09-18 Fujitsu Limited Polycrystalline structure of ordered alloy and method of making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010019494A (en) * 1999-08-27 2001-03-15 윤덕용 Granulated Thinlayer of Microstructure of ferromagnertic metal/insulating ceramic multylayer
US7270898B2 (en) 2002-04-04 2007-09-18 Fujitsu Limited Polycrystalline structure of ordered alloy and method of making the same

Similar Documents

Publication Publication Date Title
US5843569A (en) Magnetic recording medium and device
JP2003178412A (en) Perpendicular magnetic recording medium and manufacturing method therefor
JP2002190108A (en) Magnetic recording medium and its production method
JP2586367B2 (en) Soft magnetic material, method of manufacturing the same, and magnetic head
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
JP2007164941A (en) Perpendicular magnetic recording medium
JPH07116563B2 (en) Fe-based soft magnetic alloy
JPH1092640A (en) Ultra high-density magnetic recording medium and its manufacture
JPS58100412A (en) Manufacture of soft magnetic material
JP2006049706A (en) Switched connection type soft-magnetic material
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2508479B2 (en) Soft magnetic ferrite thin film
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder
JP3432652B2 (en) Magnetic recording device, magnetic recording medium and method of manufacturing the same
JP2003099920A (en) MANUFACTURING METHOD OF THIN FePt MAGNETIC THIN FILM
JPH05325163A (en) Magnetic recording medium
JP2707213B2 (en) Iron-based soft magnetic thin film alloy for magnetic head and method of manufacturing the same
JPH0315245B2 (en)
JPH0337724B2 (en)
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JPH0311531B2 (en)
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JP2991478B2 (en) Soft magnetic thin film material
JPH03203308A (en) Thin magnetic film laminate
JPH03208311A (en) Magnetic substance film laminate body and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Effective date: 20050830

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20051025

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418