JPH03208311A - Magnetic substance film laminate body and manufacture thereof - Google Patents

Magnetic substance film laminate body and manufacture thereof

Info

Publication number
JPH03208311A
JPH03208311A JP435890A JP435890A JPH03208311A JP H03208311 A JPH03208311 A JP H03208311A JP 435890 A JP435890 A JP 435890A JP 435890 A JP435890 A JP 435890A JP H03208311 A JPH03208311 A JP H03208311A
Authority
JP
Japan
Prior art keywords
film
fen
plane
magnetic
film laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP435890A
Other languages
Japanese (ja)
Inventor
Chizuko Wakabayashi
若林 千鶴子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP435890A priority Critical patent/JPH03208311A/en
Publication of JPH03208311A publication Critical patent/JPH03208311A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide a magnetic substance film laminate body having excellent magnetic characteristics, high corrosion resistance, and high hardness by alternately laminating a FeN film and a SiN film and orienting a Fe (200) plane parallel to a film surface on the FeN film. CONSTITUTION:In a magnetic substance film laminate body in which a FeN film and a SiN film are alternately laminated, a Fe (200) plane is oriented parallel to a film surface in the FeN film. Namely, after the thin film laminate structure is formed by alternately laminating the FiN film and the SiN film, once the structure is subjected to a heating treatment is a reduced atmosphere at different temperatures, a peak of intensity appears at a (200) plane after the heat treatment and the (100) plane is parallel to the film surface but a peak appears at a (200) plane is oriented parallel to the film surface. Hereby, a coercive force is educed and magnetic characteristics are improved, and hence a high hardness magnetic film laminate body is yielded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビデオテープレコーダやフレキシブルディス
ク装置に使用する磁気ヘッドに好適な磁性体膜積層体お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic film laminate suitable for a magnetic head used in a video tape recorder or a flexible disk device, and a method for manufacturing the same.

〔従来の技術] ビデオテープレコーダやフレキシブルディスク装置に搭
載される磁気ヘッドは、磁気記録の高密度化に伴い、記
録媒体の保磁力が大きくなってきており、この記録媒体
に情報を記録するためには、飽和磁化が大きく、しかも
保磁力の小さな高透磁率の軟磁性体が要求される。また
、磁気ヘッドの信頼性の向上を図る上から、高耐食性、
高硬度の材料が要求されている。従来は、磁気ヘッド材
としてフェライト、パーマロイ、センダスト等の磁性材
が使用されている。
[Prior Art] Magnetic heads installed in video tape recorders and flexible disk drives are required to record information on the recording medium because the coercive force of the recording medium is increasing as the density of magnetic recording increases. This requires a soft magnetic material with high permeability and high saturation magnetization and low coercive force. In addition, in order to improve the reliability of the magnetic head, we also offer high corrosion resistance,
Materials with high hardness are required. Conventionally, magnetic materials such as ferrite, permalloy, and sendust have been used as magnetic head materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記したように磁気へ、ド材は、磁気記録の高密度化に
伴い、高飽和磁化を有する優れた磁気特性を備えるとと
もに、高耐食性、高硬度のものが要求されている。しか
し、上記した磁気ヘッド材であるフェライトは、飽和磁
化(4πMりが5〜6 kG[、、かなく、またセンダ
ストにしても、飽和磁化が10kG程度であり、高密度
記録に充分対応できるような15kG以上の飽和磁化を
得ることができない。
As described above, magnetic materials are required to have excellent magnetic properties such as high saturation magnetization, high corrosion resistance, and high hardness as the density of magnetic recording increases. However, ferrite, which is the magnetic head material mentioned above, has a saturation magnetization (4πM of 5 to 6 kG), and even Sendust has a saturation magnetization of about 10 kG, which is sufficient for high-density recording. It is not possible to obtain a saturation magnetization of 15 kG or more.

本発明は、前記従来技術の欠点を解消するためになされ
たもので、磁気特性に優れ、高耐食性、高硬度を有する
磁性体膜積層体を提供することを目的とし、またこの磁
性体膜積層体を得るための製造方法を提供することを目
的としている。
The present invention has been made in order to eliminate the drawbacks of the prior art, and aims to provide a magnetic film laminate having excellent magnetic properties, high corrosion resistance, and high hardness. The purpose is to provide a manufacturing method for obtaining the body.

CMl、Nを解決するための手段および作用〕上記の目
的を達成するために、本発明に係る磁性体膜積層体は、
FeN膜とSiN膜とを交互に積層した磁性体膜積層体
において、前記FeN膜中でFe(310)面または(
200)面が膜面と平行に配向していることを特徴とし
ている。
Means and action for solving CMl, N] In order to achieve the above object, the magnetic film laminate according to the present invention has the following features:
In a magnetic film stack in which FeN films and SiN films are alternately stacked, Fe(310) plane or (
200) plane is oriented parallel to the film surface.

このように構成した本発明の磁性体膜積層体は、保磁力
Hc < 10 e以下となる。FeN膜のNを5.0
〜15.0at%にすることにより、磁気特性を低下さ
せることなく耐食性、硬度の向上がはかれる。
The magnetic film laminate of the present invention configured in this manner has a coercive force Hc < 10 e or less. N of FeN film is 5.0
By setting the content to 15.0 at%, corrosion resistance and hardness can be improved without deteriorating magnetic properties.

FeN膜とSiN膜とを積層する場合、FeN膜の厚さ
は、充分な磁気特性が得られる0、1μm以上であって
、熱処理をしても微細な結晶粒の状態を保持できる1、
0μm以下がよい。そして、SiN膜の厚さは、磁性体
膜の耐食性、硬度の向上が図れ、かつ積層膜全体の4π
M、の低下がない0.01〜0,05μmが適当である
When a FeN film and a SiN film are laminated, the thickness of the FeN film is 0.1 μm or more to obtain sufficient magnetic properties, and the state of fine crystal grains can be maintained even after heat treatment.
It is preferably 0 μm or less. The thickness of the SiN film is determined to improve the corrosion resistance and hardness of the magnetic film, and to increase the thickness of the entire laminated film by 4π.
A suitable value is 0.01 to 0.05 μm, which causes no decrease in M.

また、本発明に係る磁性体膜積層体の製造方法は、Fe
N膜とSiN膜とを交互に成膜して薄膜積層体を形成し
た後、この薄膜積層体を真空中または還元雰囲気中にお
いて、300℃〜600゛Cまで温度を段階的に順次上
昇させ、複数の異なった温度で熱処理をし、前記FeN
膜中でFe(310)面または(200)面を膜面と平
行に配向させることを特徴としている。
Further, the method for manufacturing a magnetic film laminate according to the present invention includes Fe
After forming a thin film laminate by alternately depositing N films and SiN films, the temperature of this thin film laminate is raised stepwise from 300°C to 600°C in a vacuum or in a reducing atmosphere. The FeN
It is characterized in that the Fe (310) or (200) plane is oriented parallel to the film surface in the film.

FeN膜とSiN膜との積層は、通常のマグネトロンス
パンタリングや対向ターゲットスパンタリング等によっ
て、FeN膜とSiN膜とを交互に成膜して行うことが
でる。
The FeN film and the SiN film can be laminated by alternately forming the FeN film and the SiN film by ordinary magnetron sputtering, facing target sputtering, or the like.

また、熱処理は、300℃〜600℃の範囲で行うこと
が望ましく、例えば真空中または窒素ガス等の還元ガス
や希ガスの雰囲気中で、300℃,400’ C,50
0℃および600℃の各温度において、それぞれ0.5
〜3時間ずつ保持する。300℃よりも低い温度で熱処
理をしても、歪みの除去や磁気特性の向上への寄与が小
さい、また、600℃より高い温度において熱処理を行
うと、磁気特性が低下するおそれがある。
Further, the heat treatment is desirably carried out in the range of 300°C to 600°C, for example, at 300°C, 400°C, 50°C in vacuum or in an atmosphere of reducing gas such as nitrogen gas or rare gas
0.5 at each temperature of 0℃ and 600℃
Hold for ~3 hours each. Even if heat treatment is performed at a temperature lower than 300°C, there is a small contribution to removing distortion or improving magnetic properties, and if heat treatment is performed at a temperature higher than 600°C, there is a risk that magnetic properties will deteriorate.

ある。be.

なお、昇温時間は、室温から300”Cまでが30分以
上、また300℃から400℃,400℃から500a
C150oaCがら600℃へが15分以上であること
が望ましく、各温度において昇温時間よりも長い一定時
間保つことが望ましい。
The heating time is 30 minutes or more from room temperature to 300"C, and from 300℃ to 400℃, and from 400℃ to 500℃.
It is desirable that the temperature rise from C150oaC to 600°C takes 15 minutes or more, and it is desirable that the temperature be maintained at each temperature for a certain period of time that is longer than the heating time.

〔実施例] 以下、本発明に係る磁性体膜の製造方法の好ましい実施
例を詳説する。
[Example] Hereinafter, preferred examples of the method for manufacturing a magnetic film according to the present invention will be described in detail.

厚さ2.5mm、幅50mm、長さ150mmのFeタ
ーゲットとSiN膜用の厚さ5mm、l1100mm、
長さ100mmのSiNターゲットとを真空容器内に配
置し、真空容器内を排気してlXl0−’Torr以下
にした後、真空容器内に窒素ガスとアルゴンガスを導入
し、窒素ガス圧を0.06X10−3Torr、窒素ガ
ス+アルゴンガスのガス圧を2XIO−’Torrとし
た。その後、Feターゲットに250Wの電力を投入し
て、対向スパッタリングにより基板上にFeN膜を0゜
8μm成膜した0次に、SiNターゲットに500Wの
電力を投入し、対向スパッタリングによってFeN膜の
上にSiN膜を0.01μm形成した。さらに、このS
iN膜上に前記と同様にしてFeN膜とSiN膜とを交
互に成膜して積層し、厚さが約5μmの積層体を得た。
Fe target with thickness 2.5mm, width 50mm, length 150mm and thickness 5mm for SiN film, l1100mm,
A SiN target with a length of 100 mm was placed in a vacuum container, and the vacuum container was evacuated to a pressure of 1X10-'Torr or less. Nitrogen gas and argon gas were then introduced into the vacuum container to reduce the nitrogen gas pressure to 0. The gas pressure of nitrogen gas + argon gas was set to 2XIO-'Torr. After that, a power of 250 W was applied to the Fe target, and a FeN film was deposited to a thickness of 0°8 μm on the substrate by facing sputtering. A SiN film was formed to a thickness of 0.01 μm. Furthermore, this S
FeN films and SiN films were alternately formed and laminated on the iN film in the same manner as described above to obtain a laminate having a thickness of about 5 μm.

上記の如くして得たFeN膜とSiN膜との積層体を、
lX10−’TorrからlXl0−6T。
The laminate of the FeN film and SiN film obtained as described above is
lX10-'Torr to lX10-6T.

rrの真空中に配置し、約1時間かけて室温から300
℃に昇温しで300℃において3時間保持した。その後
、約30分かけて400℃に昇温し、400℃において
2時間保持、次に30分かけて500℃に昇温しで50
0″′Cにおいて2時間保持、さらに30分かけて60
0℃に昇温しで6006Cにおいて2時間保持するアニ
ール処理を施したのち、放冷した。
Place in a vacuum of 300 ml from room temperature for about 1 hour
The temperature was raised to 300°C and held at 300°C for 3 hours. After that, the temperature was raised to 400°C over about 30 minutes, held at 400°C for 2 hours, then raised to 500°C over 30 minutes, and then heated to 500°C.
Hold at 0'''C for 2 hours, then increase to 60℃ for another 30 minutes.
After performing an annealing treatment in which the temperature was raised to 0° C. and held at 6006° C. for 2 hours, it was allowed to cool.

このようにして温度を段階的に順次上げ、異なる温度で
連続的にアニール処理をしたFeN膜とSiN膜との積
層体の磁気特性を測定したところ、4πM、≧18kG
、保磁力He < 10 eの高磁気特性を有していた
。そして、上記の如くして熱処理をしたFeN膜X膜面
線回折パターンべたところ、第1図に示したように、熱
処理前にはFe(110)面のところに強度のピークが
現れ、(110)面が膜面と平行していたのが、熱処理
後は(200)面のところにピークが現れ、Fe(20
0)面が膜面と平行に配向していることを示した。また
、第1図に図示をしていないが、2θが約116度のと
ころにFe(310)面を示すピークが現れ、FeN膜
は、F e (200)面が膜面と平行に配向した結晶
粒と、(310)面が膜面と平行に配向した結晶粒とが
混在していることがわかった。
When we measured the magnetic properties of a stacked body of FeN film and SiN film that was successively annealed at different temperatures by raising the temperature step by step in this way, we found that it was 4πM, ≧18kG.
, it had high magnetic properties with a coercive force He < 10 e. As shown in Figure 1, an intensity peak appears at the Fe (110) plane before the heat treatment, and the (110 ) plane was parallel to the film surface, but after heat treatment, a peak appeared at the (200) plane, indicating that Fe(20
0) plane was oriented parallel to the film surface. Although not shown in Figure 1, a peak indicating the Fe(310) plane appears at a 2θ of approximately 116 degrees, indicating that the FeN film has the Fe(200) plane oriented parallel to the film surface. It was found that crystal grains and crystal grains in which the (310) plane was oriented parallel to the film surface coexisted.

第2図は、窒素ガスの濃度と成膜したFeN膜の硬度と
の関係を示したものである。すなわち、アルゴンガス+
窒素ガスの圧力ヲ2 X 10−3T。
FIG. 2 shows the relationship between the concentration of nitrogen gas and the hardness of the formed FeN film. In other words, argon gas +
The pressure of nitrogen gas is 2 x 10-3T.

rrに保ち、窒素ガスの分圧を変化させて対向スパッタ
リングによってFeN膜を成膜したところ、窒素ガス分
圧が0.lXl0”3Torrの付近で最も大きな硬度
が得られ、センダストにほぼ匹敵する硬さを有していた
When a FeN film was formed by facing sputtering while maintaining the nitrogen gas partial pressure at 0.rr, the partial pressure of the nitrogen gas was changed to 0. The highest hardness was obtained near 1X10''3 Torr, and the hardness was almost comparable to Sendust.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の磁性体膜積層体によれ
ば、FeN膜中のFe(310)面または(200)面
が膜面と平行に配向させたことにより、保磁力Hc<1
0e以下となり、磁気特性の向上が図れ、耐食性に優れ
た硬度の大きい磁性体膜積層体が得られる。
As explained above, according to the magnetic film laminate of the present invention, the FeN film has a coercive force Hc<1 because the Fe (310) plane or (200) plane is oriented parallel to the film surface.
0e or less, a magnetic film laminate with high hardness and improved magnetic properties and excellent corrosion resistance can be obtained.

また、0.1〜1.0μmのFeN膜と0.01〜0.
05μmのSiN膜とを積層すると、磁気特性の向上と
ともにFeN膜単独よりも耐食性、硬度の向上が図れる
In addition, a 0.1-1.0 μm FeN film and a 0.01-0.0 μm thick FeN film are also used.
By laminating a FeN film with a thickness of 0.05 μm, it is possible to improve not only the magnetic properties but also the corrosion resistance and hardness of the FeN film alone.

また、本発明に係る磁性体膜積層体の製造方法によれば
、FeN膜とSiN膜とを交互に成膜して薄膜積層体を
形成した後、この薄膜積層体を真空中または還元雰囲気
中において、300℃〜600℃まで温度を段階的に順
次上昇させ、複数の異なった温度で連続的に熱処理をす
ることにより、FeN膜中のFe(310)面または(
200)面を膜面と平行に配向させることができる。
Further, according to the method for manufacturing a magnetic film laminate according to the present invention, after forming a thin film laminate by alternately forming FeN films and SiN films, the thin film laminate is placed in a vacuum or a reducing atmosphere. By increasing the temperature stepwise from 300°C to 600°C and performing continuous heat treatment at multiple different temperatures, the Fe(310) plane or (
200) plane can be oriented parallel to the film surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る製造方法により成膜した
FeN膜の熱処理前と熱処理後のX線回折の結果を示す
図、第2図は窒素ガス圧と成膜したFeN膜の硬度との
関係を示す図である。
Fig. 1 is a diagram showing the results of X-ray diffraction before and after heat treatment of the FeN film formed by the manufacturing method according to the embodiment of the present invention, and Fig. 2 shows the nitrogen gas pressure and the hardness of the formed FeN film. FIG.

Claims (4)

【特許請求の範囲】[Claims] (1)FeN膜とSiN膜とを交互に積層した磁性体膜
積層体において、前記FeN膜中でFe(310)面ま
たは(200)面が膜面と平行に配向していることを特
徴とする磁性体膜積層体。
(1) A magnetic film laminate in which FeN films and SiN films are alternately laminated, characterized in that in the FeN film, the Fe (310) plane or (200) plane is oriented parallel to the film surface. magnetic film laminate.
(2)前記FeN膜は厚さが0.1〜1.0μmであり
、前記SiN膜は厚さが0.01〜0.05μmである
ことを特徴とする請求項1に記載の磁性体膜積層体。
(2) The magnetic film according to claim 1, wherein the FeN film has a thickness of 0.1 to 1.0 μm, and the SiN film has a thickness of 0.01 to 0.05 μm. laminate.
(3)FeN膜とSiN膜とを交互に積層した磁性体膜
積層体の製造方法において、FeN膜とSiN膜とをス
パッタリングにより交互に成膜して薄膜積層体を形成し
た後、この薄膜積層体を真空中または還元雰囲気中にお
いて、300℃〜600℃まで温度を段階的に順次上昇
させ、複数の異なった温度で熱処理をして、前記FeN
膜でFe(310)面または(200)面を膜面と平行
に配向させることを特徴とする磁性体膜積層体の製造方
法。
(3) In a method for manufacturing a magnetic film laminate in which FeN films and SiN films are alternately laminated, a thin film laminate is formed by alternately depositing FeN films and SiN films by sputtering, and then the thin film laminate is The temperature of the FeN body is raised stepwise from 300°C to 600°C in a vacuum or in a reducing atmosphere, and the FeN body is heat-treated at a plurality of different temperatures.
A method for manufacturing a magnetic film laminate, characterized in that the Fe (310) plane or (200) plane of the film is oriented parallel to the film surface.
(4)前記熱処理は、300℃、400℃、500℃お
よび600℃の各温度において、それぞれその温度に到
達するまでに要した時間よりも長時間保持することを特
徴とする請求項3に記載の磁性体膜積層体の製造方法。
(4) The heat treatment is performed at each temperature of 300°C, 400°C, 500°C, and 600°C for a longer time than the time required to reach each temperature. A method for manufacturing a magnetic film laminate.
JP435890A 1990-01-10 1990-01-10 Magnetic substance film laminate body and manufacture thereof Pending JPH03208311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP435890A JPH03208311A (en) 1990-01-10 1990-01-10 Magnetic substance film laminate body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP435890A JPH03208311A (en) 1990-01-10 1990-01-10 Magnetic substance film laminate body and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03208311A true JPH03208311A (en) 1991-09-11

Family

ID=11582167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP435890A Pending JPH03208311A (en) 1990-01-10 1990-01-10 Magnetic substance film laminate body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03208311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620836A (en) * 1991-10-18 1994-01-28 Limes:Kk Method of forming soft magnetic multilayer film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620836A (en) * 1991-10-18 1994-01-28 Limes:Kk Method of forming soft magnetic multilayer film

Similar Documents

Publication Publication Date Title
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2002190108A (en) Magnetic recording medium and its production method
JP2586367B2 (en) Soft magnetic material, method of manufacturing the same, and magnetic head
CN100578626C (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recording/reproducing apparatus
US4544591A (en) Perpendicular magnetic recording medium
JPH03208311A (en) Magnetic substance film laminate body and manufacture thereof
Morisako et al. Sputtered Mn-Al-Cu films for magnetic recording media
JPS58100412A (en) Manufacture of soft magnetic material
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2817870B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2508479B2 (en) Soft magnetic ferrite thin film
JPH03208321A (en) Manufacture of magnetic film
JPS62134817A (en) Magnetic recording medium
JP3344449B2 (en) Magnetic recording medium and manufacturing method thereof
JPS6313256B2 (en)
JP2935606B2 (en) Manufacturing method of magnetic disk
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JPH05325163A (en) Magnetic recording medium
JPH0757237A (en) Magnetic recording medium and its production
JPS63126208A (en) Texture-modulated magnetically-soft laminated film
JPS6022722A (en) Thin film magnetic head
JPH03162736A (en) Production of magneto-optical recording medium
JPH1012437A (en) Alloy magnetic film with substrate for magnetic head, its manufacture and magnetic head
Hasegawa et al. IMPROVEMENT OF COERCIVITY OF Co-Ni-Ta/Cr DOUBLE LAYERED FILM BY SUBSTRATE TEMPERATURE AND ANNEALING
JPH05205262A (en) Manufacture of magnetic disk