JPS63126208A - Texture-modulated magnetically-soft laminated film - Google Patents

Texture-modulated magnetically-soft laminated film

Info

Publication number
JPS63126208A
JPS63126208A JP27241886A JP27241886A JPS63126208A JP S63126208 A JPS63126208 A JP S63126208A JP 27241886 A JP27241886 A JP 27241886A JP 27241886 A JP27241886 A JP 27241886A JP S63126208 A JPS63126208 A JP S63126208A
Authority
JP
Japan
Prior art keywords
film
magnetically
soft
soft magnetic
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27241886A
Other languages
Japanese (ja)
Inventor
Masatoshi Hayakawa
正俊 早川
Kazuhiko Hayashi
和彦 林
Osamu Ishikawa
理 石川
Kenji Katori
健二 香取
Koichi Aso
阿蘇 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27241886A priority Critical patent/JPS63126208A/en
Publication of JPS63126208A publication Critical patent/JPS63126208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a texture-modulated magnetically-soft laminated film having both excellent-magnetically-soft property and excellent thermal stability by a method wherein magnetically-soft ferromagnetic thin films and magnetically hard ferromagnetic thin films are laminated, and both thin films is formed almost equal in composition. CONSTITUTION:A magnetically-soft ferromagnetic thin film 2 and a magnetically hard ferromagnetic thin film 3 are alternately laminated. The thin films 2 and 3 are formed almost equal in composition. The crystalline ferromagnetic material having Fe as a main component is used as material of the thin films 2 and 3. The film thickness (l) of the thin film 2 is set within the range of 10-1000Angstrom , and the film thickness (m) of the thin film 3 is set in the range 50-1000Angstrom . As a result, a texture-modulated magnetically-soft laminated film having excellent magnetically-soft characteristics and excellent thermal stability can be obtained.

Description

【発明の詳細な説明】 〔卒業上の利用分野〕 本発明は、磁気ヘッドのコア材等に用いられる軟俳1生
積層膜に関し、特に単層膜では軟磁気特性が得難い合金
組成領域の磁気特性を改善するものである。
[Detailed Description of the Invention] [Graduation Field of Application] The present invention relates to a soft magnetic laminated film used as a core material of a magnetic head, etc., and particularly for magnetic fields in alloy composition regions where it is difficult to obtain soft magnetic properties with a single layer film. It improves the characteristics.

〔発明の1既要〕 本発明は、軟磁性積層膜において、 組成が略等しい磁気的に軟らかい強磁性体FjI膜と磁
気的に硬い強磁性体薄膜とを交互に積層し、膜構造を周
期的に変調することにより、単層膜では軟磁気特性が得
難い組成領域においても、高い飽和磁束密度を有し、か
つ熱安定性に優れた軟磁性積層膜を得ようとしたもので
ある。
[1 Summary of the Invention] The present invention provides a soft magnetic laminated film in which magnetically soft ferromagnetic FjI films and magnetically hard ferromagnetic thin films having substantially the same composition are alternately laminated, and the film structure is periodically stacked. The aim is to obtain a soft magnetic laminated film with high saturation magnetic flux density and excellent thermal stability even in a composition range where it is difficult to obtain soft magnetic properties with a single layer film.

〔従来の技術〕[Conventional technology]

近年、例えばVTR(ビデオテープレコーダ)等の磁気
記録再生装置においては、情報信号の高密度化や高周波
数化等が盛んに研究されている。
In recent years, in magnetic recording and reproducing devices such as VTRs (video tape recorders), there has been active research into increasing the density and frequency of information signals.

そして、上述の高密度記録化に伴って、磁気記録媒体と
しては、磁性粉にFe、Co、 Ni等の強磁性金属材
料を用いた所謂メタルテープや、へ−スフィルム上に上
記強磁性金属材料を蒸着等の手法で直接?1Hした所a
m蒸着テープ等が実用化されつつある。
Along with the above-mentioned high-density recording, magnetic recording media include so-called metal tapes that use ferromagnetic metal materials such as Fe, Co, and Ni for magnetic powder, and metal tapes that use ferromagnetic metal materials such as Fe, Co, and Ni on a base film. Is the material directly applied using methods such as vapor deposition? After 1H a
m vapor deposition tapes and the like are being put into practical use.

この種の磁気記録媒体は高い抗磁力を有することより、
記録再生に用いる磁気ヘットのコア材料には高飽和磁束
密度を有することが要求される。
Since this type of magnetic recording medium has high coercive force,
The core material of the magnetic head used for recording and reproduction is required to have a high saturation magnetic flux density.

すなわち、従来よりコア材料として多用されているフェ
ライト材は飽和磁束密度が低いため、記録媒体が高抗磁
力化すると記録特性が劣化してしまう。
That is, since the ferrite material, which has conventionally been frequently used as a core material, has a low saturation magnetic flux density, when the coercive force of the recording medium is increased, the recording characteristics deteriorate.

そこで従来、上述の高抗磁力磁気記録媒体に対処するた
めに、ヘッドのコア材料として、チタン酸バリウム等の
非磁性基板やフェライト等の磁性基板上に高飽和磁束密
度を有する軟磁性合金1膜を被着してなる複合磁性材料
を用い、これら軟磁性合金薄膜同士を突き合わせて磁気
ギャップを構成するようにした複合型の磁気ヘッドが実
用に供されている。
Conventionally, in order to cope with the above-mentioned high coercive force magnetic recording media, a soft magnetic alloy film having a high saturation magnetic flux density was placed on a non-magnetic substrate such as barium titanate or a magnetic substrate such as ferrite as the core material of the head. A composite magnetic head has been put into practical use in which a magnetic gap is formed by abutting these soft magnetic alloy thin films against each other using a composite magnetic material.

上記軟磁性合金1膜には、従来よりFe−Aβ−3i系
合金(所謂センダスト)やアモルファス合金等の磁性合
金材料が用いられている。
For the soft magnetic alloy 1 film, magnetic alloy materials such as Fe-Aβ-3i alloys (so-called sendust) and amorphous alloys have conventionally been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、磁気記録において、より一層の高密度記録化
及び緒特性の向上を図るためには、上記コア材料により
高い飽和磁束密度を有する軟磁性合金薄膜を用いる必要
があり、この開発が強く望まれている。
By the way, in order to achieve higher recording density and improve magnetic properties in magnetic recording, it is necessary to use a soft magnetic alloy thin film having a higher saturation magnetic flux density as the core material, and this development is strongly desired. ing.

かかる状況より、上記アモルファス合金等の非結晶質系
軟磁性合金薄膜においては、Co等の遷移金属元素の含
有量を増し、高飽和磁束密度化を図る方法が考えられて
いる。しかしながら、遷移金属元素の含有量が増加する
と、精品化温度が低下するという避は凡い問題があり、
信頼性の高いヘッド加工技術(ガラス融着等)が通用で
きなくなってしまう。
Under such circumstances, a method of increasing the content of a transition metal element such as Co in a thin film of a non-crystalline soft magnetic alloy such as the above-mentioned amorphous alloy to increase the saturation magnetic flux density has been considered. However, as the content of transition metal elements increases, there is usually a problem in that the refining temperature decreases.
Highly reliable head processing techniques (glass fusion, etc.) will no longer be applicable.

一方、上記Fe−A/!−3i系合金等の結晶質系軟磁
性合金薄膜(単層膜)の場合は、限られた組成範囲内で
のみ軟磁気特性が得られ、しかもその飽和磁束密度は約
lOキロガウスが限界と考えられており、上述の要請を
満足するには至らない。
On the other hand, the above Fe-A/! In the case of crystalline soft magnetic alloy thin films (single-layer films) such as -3i alloys, soft magnetic properties can only be obtained within a limited composition range, and the saturation magnetic flux density is thought to be limited to approximately 10 kilogauss. However, the above requirements cannot be met.

あるいは、上述の軟磁性合金薄膜と異種の薄膜。Or a thin film of a different kind from the above-mentioned soft magnetic alloy thin film.

例えば非磁性薄膜または酸化物磁性薄膜等とを交互に積
層した積層膜が提案されている。しかしながら上記積層
膜は、作成時等に、軟磁性合金薄膜と異種の薄膜との境
界部で拡散現象が生し易く、この結果、軟磁気特性が劣
化し、ヘッドのコア材料としては不満を残している。
For example, a laminated film in which non-magnetic thin films, oxide magnetic thin films, etc. are alternately laminated has been proposed. However, during the production of the laminated film described above, diffusion phenomena tend to occur at the boundary between the soft magnetic alloy thin film and the thin film of a different type, resulting in deterioration of the soft magnetic properties and leaving unsatisfied results as a core material for a head. ing.

したがって、より一層の高密度記録化を実現するために
は、より高い飽和磁束密度を有し、同時に熱安定性に優
れた軟磁性合金薄膜の開発が望まれている。
Therefore, in order to realize even higher density recording, it is desired to develop a soft magnetic alloy thin film that has a higher saturation magnetic flux density and also has excellent thermal stability.

そこで本発明は、上述の諸要請を満たすべくなされたも
のであって、単層膜を凌く飽和磁束密度を有し、軟磁気
特性に優れると同時に熱安定性に優れ、高密度記録用磁
気ヘッドのコア千オ料に好適な組織変調軟磁性積層膜を
提供することを目的とする。
Therefore, the present invention has been made to meet the above-mentioned requirements, and has a saturation magnetic flux density that exceeds that of a single layer film, excellent soft magnetic properties, and excellent thermal stability, and is a magnetic material for high-density recording. The object of the present invention is to provide a texture-modulated soft magnetic laminated film suitable for the core material of a head.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述の目的を達成せんものと鋭意研究を
重ねた結果、強磁性体薄膜の作成条件を変えることによ
り、得られる強磁性体薄膜が磁気的に異なる性質を示し
、これらを交互に積層した積層膜が高い飽和磁束密度を
発揮するとの知見を得るに至った。
As a result of intensive research to achieve the above-mentioned purpose, the present inventors have found that by changing the conditions for producing ferromagnetic thin films, the resulting ferromagnetic thin films exhibit different magnetic properties. We have found that alternately laminated films exhibit high saturation magnetic flux density.

本発明の組織変調軟磁性積層膜(1)は、上述の知見に
基づいて提案されたものであって、第1図に示すように
、磁気的に軟らかい強磁性体薄膜(以下、ソフト薄膜と
言う)(2)と、磁気的に硬い強磁性体薄膜(以下、ハ
ード薄膜と言う)(3)とを交互に積層形成したもので
、かつこれらソフト薄膜(2)とハード薄119 (3
)  との組成が略等しいことを特徴とするものである
The texture-modulated soft magnetic laminated film (1) of the present invention was proposed based on the above-mentioned findings, and as shown in FIG. (2) and magnetically hard ferromagnetic thin films (hereinafter referred to as hard thin films) (3) are alternately laminated, and these soft thin films (2) and hard thin films (119 (3)
) is characterized by having approximately the same composition as

上記ソフト薄IJi(2)及びハード薄膜(3)は同一
成分よりなり、これら薄膜(2) 、 (3)の材料と
しては、Feを主成分とする結晶質系の強磁性体材料(
以下、Fe1合金と略す)が用いられる。具体的には、
Fe  Al2−3i系合金、Fe−A1!系合金、F
c−3i系合金、Fe−Ga−3i系合金、Fe−An
−Ge系合金、あるいはこれら合金のFeの一部をGo
で置換した合金2等が挙げられる。
The above-mentioned soft thin IJi (2) and hard thin film (3) are made of the same components, and the materials for these thin films (2) and (3) are crystalline ferromagnetic materials whose main component is Fe (
(hereinafter abbreviated as Fe1 alloy) is used. in particular,
Fe Al2-3i alloy, Fe-A1! series alloy, F
c-3i alloy, Fe-Ga-3i alloy, Fe-An
-Ge-based alloys, or some of the Fe in these alloys
Examples include Alloy 2, which is substituted with .

ここで、上記ソフト薄IIQ(2)のlI莫厚eは10
人〜toooo人の範囲内に設定され、ハード薄膜(3
)の膜厚mは50人〜1000人の範囲内に設定される
。同時に、上記ソフト7iv膜(2)の膜厚lとハード
薄膜(3)の膜yLmとの比(ρ:m)は、(20:1
)〜(1; 1)の範囲内に設定される。
Here, the lI thickness e of the above soft thin IIQ (2) is 10
Hard thin film (3
) is set within the range of 50 to 1000 people. At the same time, the ratio (ρ:m) between the film thickness l of the soft 7iv film (2) and the film yLm of the hard thin film (3) is (20:1
) to (1; 1).

さらに、上記組織変調軟財性積層膜(1)の膜1″7L
は、0.3μTn〜30μmの範囲内が好適である。
Furthermore, the film 1″7L of the tissue-modulated soft laminated film (1)
is preferably within the range of 0.3 μTn to 30 μm.

なお、上記ソフトgI膜(2)とハード薄膜(3)との
積層数は、上記諸要件を満足すれば何層重ねても良い。
Note that the number of layers of the soft gI film (2) and the hard thin film (3) may be any number as long as the above requirements are satisfied.

上述のような組成が略同−で性質が異なる膜を作成する
には、この成膜時において例えばスパッタ圧を変えたり
、あるいは窒素ガスや酸素ガス等の不純1hガスの導入
により容易に形成できる。
In order to create a film with approximately the same composition but different properties as described above, it can be easily formed by, for example, changing the sputtering pressure during film formation, or by introducing an impure 1h gas such as nitrogen gas or oxygen gas. .

〔作用〕[Effect]

例えばFe−Aff−3i系合金等のFe基合金をスパ
ッタリング法等の手法を用いて成膜すると、結晶の成長
方向に沿った柱状構造が現れる。この結晶構造は、成膜
時の条件によって変化する。特に、スパッタリング法に
おいては、スパッタ時の膜構造の決定要因1例えばA「
ガス圧PA、、あるいは窒素ガスや酸素ガス等の不純物
ガスの導入等によって大きく変化する。
For example, when a Fe-based alloy such as a Fe-Aff-3i alloy is formed into a film using a method such as a sputtering method, a columnar structure along the crystal growth direction appears. This crystal structure changes depending on the conditions during film formation. In particular, in the sputtering method, determining factors 1 of the film structure during sputtering, such as A
It changes greatly depending on the gas pressure PA, or the introduction of impurity gas such as nitrogen gas or oxygen gas.

すなわら、第2図に示すように、八「ガス圧PAPを低
圧に設定しFe−A7!−3i系合金薄膜をスパッタし
た場合には微細構造(A)が現れ、次第にArガス圧P
Arを高めていくと数mTorrで不明瞭ではあるが密
な柱状構造(B)となり、さらに数十mTorrO高ガ
ス圧PArの下では明確ではあるが疎な柱状構造(C)
が現れる。
In other words, as shown in Fig. 2, when a Fe-A7!-3i alloy thin film is sputtered with the Ar gas pressure PAP set to a low pressure, a fine structure (A) appears, and the Ar gas pressure PAP gradually decreases.
As the Ar is increased, a columnar structure becomes unclear but dense (B) at a few mTorr, and a clear but sparse columnar structure develops under a high gas pressure of several tens of mTorr (C).
appears.

一方、これら薄膜の磁気特性と結晶構造とは定接に関係
している。
On the other hand, the magnetic properties and crystal structure of these thin films are tangentially related.

例えば、数mTorrの低ガス圧PArでスパッタして
得られる密な柱状構造のFe−A6−3i合金薄膜(B
)は、適切な熱処理を施すごとにより、軟磁気特性が得
られる。
For example, an Fe-A6-3i alloy thin film (B
), soft magnetic properties can be obtained by applying appropriate heat treatment.

ところが、数+mTorrの高ガス圧P〜で成膜される
疎な柱状構造のFe−A6−3i合金薄■り(C)は、
軟磁気特性が失われる。
However, Fe-A6-3i alloy thin film (C) with a sparse columnar structure formed at a high gas pressure P~ of several + mTorr is
Soft magnetic properties are lost.

本発明は、この高ガス圧PAr下で生ずる磁気的に硬い
層(3)をスペーサとして軟磁気特性を示す層(2)を
分断することで軟磁気特性を改善するものである。
The present invention improves the soft magnetic properties by dividing the layer (2) exhibiting soft magnetic properties using the magnetically hard layer (3) generated under this high gas pressure PAr as a spacer.

このようにして形成された積層膜(1)は、膜の結晶構
造により軟磁気特性の向上を図っているので、異種の元
素を導入して形成される積層膜とは本質的に異なり、拡
11シによる磁気特性の劣化がなくなると同時に、熱安
定性に優れた軟磁性積層膜となる。
The laminated film (1) formed in this way has improved soft magnetic properties due to the crystal structure of the film, so it is essentially different from a laminated film formed by introducing different elements. At the same time, the deterioration of the magnetic properties due to No. 11 is eliminated, and at the same time, a soft magnetic laminated film with excellent thermal stability is obtained.

〔実施例〕〔Example〕

以下、本発明の具体的な実施例について説明するが、本
発明がこれら実施例に限定されるものではないことはい
うまでもない。
Hereinafter, specific examples of the present invention will be described, but it goes without saying that the present invention is not limited to these examples.

大旌■↓ 先ず、F eqbs ! lsA llq  (組成は
原子%)カらなる合金を高周波溶解した後、鋳造してス
パックリング用クーゲットを作成した。
Otsu ■↓ First, F eqbs! An alloy consisting of lsA llq (composition: atomic %) was high-frequency melted, and then cast to create a cugette for spackling.

次に、上記ターゲットを用い、高周波マグネトロンスパ
ッタリングR’lにより、結晶化ガラス基板上に薄膜試
料を成膜した。成膜条(!目よ、投入電力を300W一
定とし、予め求めである堆積速度をもとに、Arガス圧
21IITOrrで0.1μm、A、rガス圧20mT
orrで0.01μmの膜が付着するようにスパック時
間を調節し、各層を20層ずつ連続的に積層した。
Next, a thin film sample was formed on a crystallized glass substrate by high frequency magnetron sputtering R'l using the above target. Film formation conditions (! Look! With input power constant at 300W, and based on the predetermined deposition rate, Ar gas pressure of 21 II TOrr, 0.1 μm, A, r gas pressure of 20 mT
The spuck time was adjusted so that a film of 0.01 μm was deposited at 0.03 m, and 20 layers of each layer were successively laminated.

次いて、以上で得られた積層膜に対して真空中550℃
で1時間アニール処理を施したところ、この積層膜の抗
もイ主力は0.4エルステツドまで低下した。
Next, the laminated film obtained above was heated at 550°C in vacuum.
When annealing was performed for 1 hour, the main resistance of this laminated film was reduced to 0.4 oersted.

また、アニール処理前の積層膜のイ、■成をEPMAで
分析したところ、F e 7?、IIS i l+1.
OA n q、 +なる値を得た。
Furthermore, when the A and ■ formations of the laminated film before annealing treatment were analyzed by EPMA, F e 7? , IIS i l+1.
A value of OA n q, + was obtained.

さらに、アニール処理前の積層■りの室温における飽和
もと2束密度をVSM (振動試料型磁力計)により測
定したところ、12.1キロガウスであった。
Furthermore, the saturated two-flux density at room temperature of the laminated film before annealing was measured using a vibrating sample magnetometer (VSM) and found to be 12.1 kilogauss.

さらに、アニール処理後の積Ii3膜の破断面の構造を
SEM(走査顕微鏡)で観察したところ、周期性は明確
でないものの、明らかに分断された柱状構造が観察され
た。
Further, when the structure of the fractured surface of the Ii3 film after the annealing treatment was observed using a SEM (scanning microscope), a clearly divided columnar structure was observed, although the periodicity was not clear.

、比−悦倒」− 先の実施例Iと同一のターゲット及びスパッタリングV
ffを用い、Arガス圧2 mTorrの条゛件のもと
て連続的に2μmの薄膜試料(単層膜)を結晶化ガラス
基板上に形成した。
, comparison - the same target and sputtering V as in the previous example I
Using FF, a 2 μm thin film sample (single layer film) was continuously formed on a crystallized glass substrate under the condition of Ar gas pressure of 2 mTorr.

得られた単層膜に実施例1と同様にしてアニール処理を
施し、抗磁力を測定したところ1.2エルステツドであ
った。
The obtained single layer film was annealed in the same manner as in Example 1, and the coercive force was measured to be 1.2 oersted.

また、アニール処理前の単層膜の組成を実施例1と同(
旭にして測定したところF Ots、+S i 13.
In addition, the composition of the single layer film before annealing treatment was the same as in Example 1 (
When measured with Asahi, F Ots, +S i 13.
.

Al、、、なる測定値を得た。A measurement value of Al, . . . was obtained.

さらに、アニール処理後の)jj、7J膜をSEMにて
観察したところ、連続する柱状構造が観察された(第2
図中(B)で示す結晶構造)。
Furthermore, when the )jj and 7J films after annealing treatment were observed using SEM, a continuous columnar structure was observed (second
(crystal structure shown in (B) in the figure).

比較例2 先の実施例1と同一のターゲット及びスパッタリング装
置を用い、Arガス圧20mTorrの条件のもとて連
続的に2μmの薄膜試料(単層膜)を結晶化ガラス基板
上に形成した。
Comparative Example 2 Using the same target and sputtering apparatus as in Example 1, a 2 μm thick thin film sample (single layer film) was continuously formed on a crystallized glass substrate under an Ar gas pressure of 20 mTorr.

得られた111層膜に実施例1と同様にしてアニール処
理を施し、抗磁力を4,11定したが100エルステツ
ドの磁界を印加しても、殆ど磁化せず、磁気的に極めて
硬い層であることが判明した。
The obtained 111-layer film was annealed in the same manner as in Example 1, and the coercive force was determined to be 4.11, but even when a magnetic field of 100 oersted was applied, it was hardly magnetized and was a magnetically extremely hard layer. It turns out that there is something.

また、アニール処理前の単層膜の組成を実施例1と同(
袈にして氾り定したところF e76、、s i 14
.0八β7.3なる′IAII定(直を14だ。
In addition, the composition of the single layer film before annealing treatment was the same as in Example 1 (
F e76,,s i 14 when the floodwaters settled down.
.. 08 β7.3 'IAII constant (direct is 14).

さらに、アニール処理後の単層膜をSEMにて観察した
ところ、基板表面から貫通ずる明確な柱状(霜柱状)の
構造が観察された。〔第2図中(C)で示す結晶構造〕
Furthermore, when the single layer film after the annealing treatment was observed using a SEM, a clear columnar (frost columnar) structure penetrating from the substrate surface was observed. [Crystal structure shown as (C) in Figure 2]
.

上述の実施例1及び比較例1.比較例2から明らかなよ
うに、スパッタ時のArガス圧を変えることによりソフ
ト薄膜とハード薄[9とを交互に積層した構成の組織変
調軟磁性積層膜は、ソフト薄膜の柱状構造がハード薄膜
によって分断された構造となることが確認された。また
、該組織変調軟磁性積層膜は、この単層膜に較べて抗磁
力が極めて小さく、従って飽和磁束密度も単層膜での限
界値(10キロガウス)を大幅に上まるごとがわかった
Example 1 and Comparative Example 1 described above. As is clear from Comparative Example 2, the texture-modulated soft magnetic laminated film having a structure in which soft thin films and hard thin films [9] are alternately laminated by changing the Ar gas pressure during sputtering is such that the columnar structure of the soft thin film is different from that of the hard thin film. It was confirmed that the structure was divided by Furthermore, it was found that the coercive force of the texture-modulated soft magnetic laminated film is extremely smaller than that of this single-layer film, and therefore the saturation magnetic flux density is significantly higher than the limit value (10 kilogauss) for a single-layer film.

〃汁U 各種組成を有するFe−Ar−5i系合金のクーゲット
を作成し、先の比較例1と同様な方法で単層膜を作成し
たところ、軟磁気特性の得られる組成範囲は、Feの含
有量が74〜75原子%の範囲内に限定されることが確
認された。また、得られる皓層膜の飽和磁束密度は10
キロガウス以下となることが確認された。
〃Soup U Cougets of Fe-Ar-5i alloys having various compositions were prepared, and single-layer films were formed in the same manner as in Comparative Example 1. As a result, the composition range in which soft magnetic properties were obtained was found to be It was confirmed that the content is limited within the range of 74 to 75 at%. In addition, the saturation magnetic flux density of the obtained porcelain film is 10
It was confirmed that it was less than a kilogauss.

したがって、本発明によれば、ji’r fF5膜では
軟磁気特性が得難い合金組成領域においても、優れた軟
磁気特性が得られることがわかった。
Therefore, according to the present invention, it has been found that excellent soft magnetic properties can be obtained even in the alloy composition region where it is difficult to obtain soft magnetic properties with the ji'r fF5 film.

邦窮江l 単層■り構造では1エルステツド以下の抗磁力が得られ
ない軟磁性合金薄膜について、先の実施例1に示す手法
を適用したところ、第1表に示すような結果を得た。
When the method shown in Example 1 was applied to a soft magnetic alloy thin film in which a coercive force of less than 1 oersted could not be obtained with a single layer structure, the results shown in Table 1 were obtained. .

第1表 この第1表より明らかなように、本発明を適用すること
により、単層■りでは得られなかった低抗磁力が実現さ
れ、容易に高飽和磁束密度(10キロガウス以上)を有
する軟磁性合金′fi膜を得ることが可能となる。
Table 1 As is clear from Table 1, by applying the present invention, a low coercive force that could not be obtained with a single layer can be achieved, and a high saturation magnetic flux density (more than 10 kilogauss) can be easily achieved. It becomes possible to obtain a soft magnetic alloy 'fi film.

〔発明の効果〕〔Effect of the invention〕

以上の明からも明らかなように、本発明の組織変調軟磁
性積層膜においては、単層nりでは軟磁気特性の得難い
組成領域においても、低抗磁力化が実現され、高飽和磁
束7ぞ変化(I O=Fロガウス以上)が容易に達成で
きる。
As is clear from the above, in the structure-modulated soft magnetic laminated film of the present invention, low coercive force is achieved even in the composition range where it is difficult to obtain soft magnetic properties with a single layer, and high saturation magnetic flux 7. Changes (more than IO=F logauss) can be easily achieved.

また、本発明の(,11織変調軟磁性積石膜は、異種の
磁性元素あるいは非磁性元素を恵入するものとは本質的
に異なるため、成膜時の拡散に伴う磁気特性の劣化もな
い。
In addition, since the (11-weave modulated soft magnetic stacked stone film of the present invention) is essentially different from one in which different magnetic elements or non-magnetic elements are incorporated, the magnetic properties may deteriorate due to diffusion during film formation. do not have.

さるに、本発明の積層膜は結晶質構造であるので、熱安
定性に優れることより、ガラス融着等の信頼性の高いヘ
ッド加工技術を適用することが可能となる。
In addition, since the laminated film of the present invention has a crystalline structure, it has excellent thermal stability, making it possible to apply highly reliable head processing techniques such as glass fusion.

したがって、本発明のMi織変調軟磁性積TP!J膜を
磁気ヘッドのコア材料に用いた場合、高抗磁力も本気記
録媒体に対して良好な記録特性を示すことより、本発明
の実用価値は極めて高いと言える。
Therefore, the Mi texture modulated soft magnetic product TP! of the present invention! When the J film is used as the core material of a magnetic head, it can be said that the practical value of the present invention is extremely high, since the high coercive force also shows good recording characteristics for serious recording media.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したM!Liff変調軟磁性積層
膜の構成例を示す概略断面図である。 第2図はアルゴンガス圧の変化に伴う強磁性体薄膜の結
晶構造の変化の様子を示す模式図である。
FIG. 1 shows M! to which the present invention is applied! FIG. 2 is a schematic cross-sectional view showing a configuration example of a Liff modulated soft magnetic laminated film. FIG. 2 is a schematic diagram showing how the crystal structure of a ferromagnetic thin film changes with changes in argon gas pressure.

Claims (1)

【特許請求の範囲】  磁気的に軟らかい強磁性体薄膜と磁気的に硬い強磁性
体薄膜とが積層され、 前記両者の組成が略等しいことを特徴とする組織変調軟
磁性積層膜。
[Scope of Claim] A texture-modulated soft magnetic laminated film comprising a magnetically soft ferromagnetic thin film and a magnetically hard ferromagnetic thin film, the compositions of which are substantially equal.
JP27241886A 1986-11-15 1986-11-15 Texture-modulated magnetically-soft laminated film Pending JPS63126208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27241886A JPS63126208A (en) 1986-11-15 1986-11-15 Texture-modulated magnetically-soft laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27241886A JPS63126208A (en) 1986-11-15 1986-11-15 Texture-modulated magnetically-soft laminated film

Publications (1)

Publication Number Publication Date
JPS63126208A true JPS63126208A (en) 1988-05-30

Family

ID=17513632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27241886A Pending JPS63126208A (en) 1986-11-15 1986-11-15 Texture-modulated magnetically-soft laminated film

Country Status (1)

Country Link
JP (1) JPS63126208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244028A (en) * 1993-01-15 1994-09-02 Internatl Business Mach Corp <Ibm> Magnetic laminar structure and manufacture thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889398A (en) * 1972-02-29 1973-11-22
JPS61153813A (en) * 1984-12-26 1986-07-12 Nec Corp Magnetic pole for thin film magnetic head
JPS61199614A (en) * 1985-02-28 1986-09-04 Anelva Corp Soft-magnetic amorphous film body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889398A (en) * 1972-02-29 1973-11-22
JPS61153813A (en) * 1984-12-26 1986-07-12 Nec Corp Magnetic pole for thin film magnetic head
JPS61199614A (en) * 1985-02-28 1986-09-04 Anelva Corp Soft-magnetic amorphous film body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244028A (en) * 1993-01-15 1994-09-02 Internatl Business Mach Corp <Ibm> Magnetic laminar structure and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS63119209A (en) Soft magnetic thin-film
JPS63126208A (en) Texture-modulated magnetically-soft laminated film
JPH0484403A (en) Soft magnetic thin film
JPS58100412A (en) Manufacture of soft magnetic material
JPS6195503A (en) Amorphous soft magnetic thin film
JP2508479B2 (en) Soft magnetic ferrite thin film
JPH03263306A (en) Magnetic film and magnetic head
JPH03106003A (en) Soft magnetic amorphous alloy thin film
JPS6313256B2 (en)
JP2698813B2 (en) Soft magnetic thin film
JPH0483313A (en) Soft magnetic thin film and magnetic head
JPH01175707A (en) Laminated soft thin magnetic film
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JP2979557B2 (en) Soft magnetic film
JPH04368104A (en) Soft magnetic film
JP2752199B2 (en) Magnetic head
JP2551008B2 (en) Soft magnetic thin film
JPS60231911A (en) Magnetic recording medium
JPH0645146A (en) Manufacture of soft magnetic film
JPH0485716A (en) Thin magnetic film for magnetic head
JPH01143312A (en) Amorphous soft magnetic laminated film
JPH02202005A (en) Soft magnetic thin film
JPH04214831A (en) Soft magnetic film
JPS633406A (en) Magnetically soft thin film