JPH05205262A - Manufacture of magnetic disk - Google Patents

Manufacture of magnetic disk

Info

Publication number
JPH05205262A
JPH05205262A JP1222592A JP1222592A JPH05205262A JP H05205262 A JPH05205262 A JP H05205262A JP 1222592 A JP1222592 A JP 1222592A JP 1222592 A JP1222592 A JP 1222592A JP H05205262 A JPH05205262 A JP H05205262A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic disk
layer
substrate
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1222592A
Other languages
Japanese (ja)
Inventor
Motoharu Sato
元治 佐藤
Yoshihiko Onishi
良彦 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1222592A priority Critical patent/JPH05205262A/en
Publication of JPH05205262A publication Critical patent/JPH05205262A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a magnetic disk with high coercive force. CONSTITUTION:Co-based allay magnetic layer or that having nonmagnetic layer consisting of Cr, etc., in between as an intermediate layer is formed on a base plate. A protective layer is formed an that Co-based alloy magnetic layer and then it is heated to 250 deg.C or higher while bias voltage is applied. Compared with a method including no heating process or that consisting only of heating process, segregation of nonmagnetic element such as Cr into grain boundary within Co group allay magnetic layer is mare promoted so that the magnetic disk with high coercive force is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高記録密度化に適し
た高い保磁力を有する磁気ディスクが得られるようにし
た、磁気ディスクの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic disk, which has a high coercive force suitable for increasing the recording density.

【0002】[0002]

【従来の技術】周知のように、情報量の増大に対応する
ため、磁気ディスクの高容量化及びその記録媒体(磁性
体層)の高密度化が図られている。記録密度向上のため
には、記録媒体の厚みを薄くすることが必要とされてい
る。この点から、媒体膜厚減少に限界がみられる塗布型
磁気ディスクに代わるものとして、基板(ディスク基
板)上に金属磁性体層をめっき法によって形成した構造
のめっき型磁気ディスクと、基板上に金属磁性体層をス
パッタ法によって形成した構造の金属スパッタ型磁気デ
ィスクが注目されており、その一部は実用に供されてい
る。
2. Description of the Related Art As is well known, in order to cope with an increase in the amount of information, the capacity of a magnetic disk and the density of a recording medium (magnetic material layer) thereof have been increased. In order to improve the recording density, it is necessary to reduce the thickness of the recording medium. From this point, as an alternative to the coating type magnetic disk in which the reduction of the film thickness of the medium is seen, a plating type magnetic disk having a structure in which a metal magnetic material layer is formed on the substrate (disk substrate) by a plating method, and Attention has been paid to a metal sputter type magnetic disk having a structure in which a metal magnetic layer is formed by a sputtering method, and a part thereof is put to practical use.

【0003】また、保磁力を高めることが記録密度向上
のための有力な手段となっている。そのため、従来、保
磁力を高めるための方法としては、金属スパッタ型磁気
ディスクにおいて、基板上に、基板温度を通常の150 〜
250 ℃程度よりも高くした状態で、Co−Ni−CrなどのCo
系合金よりなる磁性体層をスパッタ法によって形成する
ようにした方法が知られている(例えば、石川ほか,第
11回日本応用磁気学会学術講演概要集,1pA−10,p.1
8,1987)。この方法は、優れたものではあるが、高い
基板温度で磁性体層を形成するようにしたものであるか
ら、基板を保持するためのキャリアが加熱変形し易いこ
となどの装置上の問題があって量産にあたっての心配が
ある。
Further, increasing the coercive force is an effective means for improving the recording density. Therefore, conventionally, as a method for increasing the coercive force, a metal sputter type magnetic disk has a substrate temperature of 150 to 150
When the temperature is higher than 250 ℃, Co such as Co-Ni-Cr
A method is known in which a magnetic layer made of a system alloy is formed by a sputtering method (for example, Ishikawa et al.
Proceedings of the 11th Japan Institute of Applied Magnetics, 1pA-10, p.1
8, 1987). This method is an excellent method, but since the magnetic layer is formed at a high substrate temperature, there are problems in the apparatus such that the carrier for holding the substrate is easily heated and deformed. I am worried about mass production.

【0004】そのため、本発明者らは、ガラス状カーボ
ンでなるカーボン基板上にCrよりなる下地層、Co−Ni−
Cr,Co−Cr−TaなどのCo系合金よりなる磁性体層、保護
層を順に形成した後、これを 250℃以上の温度で加熱処
理することにより、保磁力が向上した磁気ディスクが得
られるようにした方法を先に提案している(特開平 3−
205616号、平成2年春季応用物理学会講演予稿集,29a
−Y−8,p.60)。この場合、Cr下地層を設けないもの
についても同様の方法を提案している。
Therefore, the inventors of the present invention have found that an underlayer made of Cr, Co--Ni--, is formed on a carbon substrate made of glassy carbon.
A magnetic disk with improved coercive force can be obtained by sequentially forming a magnetic layer and a protective layer made of a Co-based alloy such as Cr and Co-Cr-Ta, and then heat-treating them at a temperature of 250 ° C or higher. This method was previously proposed (JP-A-3-
No. 205616, Proceedings of the Spring Application Society of Japan, 1990, 29a
-Y-8, p.60). In this case, a similar method is proposed for the case where the Cr underlayer is not provided.

【0005】[0005]

【発明が解決しようとする課題】上記の先に提案した方
法によると、保磁力を向上させた磁気ディスクが得られ
ている。しかしながら、高記録密度化の課題に応えるた
め、保磁力をより高めた磁気ディスクの製造方法が要請
されている。
According to the method proposed above, a magnetic disk having improved coercive force is obtained. However, in order to meet the problem of higher recording density, there is a demand for a method of manufacturing a magnetic disk having a higher coercive force.

【0006】そこで、この発明の目的は、高い保磁力を
有する磁気ディスクが得られるようにした、磁気ディス
クの製造方法を提供することである。
Therefore, an object of the present invention is to provide a method of manufacturing a magnetic disk, which is capable of obtaining a magnetic disk having a high coercive force.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の発明による磁気ディスクの製造方法
は、基板上にCo系合金よりなる磁性体層と保護層とを順
に形成した後、このものをバイアス電圧を印加した状態
にて温度 250℃以上で加熱処理することを特徴とするも
のである。
In order to achieve the above object, in the method of manufacturing a magnetic disk according to the first aspect of the present invention, a magnetic layer made of a Co alloy and a protective layer are sequentially formed on a substrate. After that, this is heat-treated at a temperature of 250 ° C. or higher with a bias voltage applied.

【0008】請求項2の発明による磁気ディスクの製造
方法は、基板上にCo系合金よりなる磁性体層を形成し、
その上に非磁性体層とCo系合金よりなる磁性体層とを少
なくとも1回以上交互に形成し、最上に形成されたCo系
合金よりなる磁性体層上にさらに保護層を形成した後、
このものをバイアス電圧を印加した状態にて温度 250℃
以上で加熱処理することを特徴とするものである。
According to a second aspect of the present invention, there is provided a method of manufacturing a magnetic disk, wherein a magnetic layer made of a Co-based alloy is formed on a substrate,
A non-magnetic layer and a magnetic layer made of a Co-based alloy are alternately formed thereon at least once, and a protective layer is further formed on the magnetic layer made of a Co-based alloy formed at the top.
Temperature of this product is 250 ℃ with bias voltage applied.
The above is characterized by the heat treatment.

【0009】請求項3の発明による磁気ディスクの製造
方法は、基板上にCrよりなる下地層とCo系合金よりなる
磁性体層と保護層とを順に形成した後、このものをバイ
アス電圧を印加した状態にて温度 250℃以上で加熱処理
することを特徴とするものである。
According to a third aspect of the present invention, there is provided a magnetic disk manufacturing method, in which a base layer made of Cr, a magnetic layer made of a Co alloy and a protective layer are sequentially formed on a substrate, and a bias voltage is applied to these layers. The feature is that heat treatment is performed at a temperature of 250 ° C. or higher in this state.

【0010】請求項4の発明による磁気ディスクの製造
方法は、基板上にCrよりなる下地層を形成し、このCr下
地層上にCo系合金よりなる磁性体層を形成し、次いでそ
の上に非磁性体層とCo系合金よりなる磁性体層とを少な
くとも1回以上交互に形成し、最上に形成されたCo系合
金よりなる磁性体層上にさらに保護層を形成した後、こ
のものをバイアス電圧を印加した状態にて温度 250℃以
上で加熱処理することを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a magnetic disk, wherein an underlayer made of Cr is formed on a substrate, a magnetic layer made of a Co-based alloy is formed on the Cr underlayer, and then a Cr-based magnetic layer is formed thereon. The non-magnetic layer and the magnetic layer made of a Co-based alloy are alternately formed at least once, and a protective layer is further formed on the magnetic layer made of the Co-based alloy formed on the uppermost layer. The feature is that heat treatment is performed at a temperature of 250 ° C. or higher with a bias voltage applied.

【0011】[0011]

【作用】本願発明による方法においては、磁性体層(磁
性層)としては、Co−Ni−Cr,Co−Cr−Ta,Co−Cr,Co
−P ,Co−Ni−P ,Co−Cr−Pt,Co−Ni−PtなどのCo系
合金よりなるものが好適であり、保磁力向上メカニズム
は次のように考えられる。Co系合金よりなる磁性体層に
Cr,P などの非磁性元素を含む場合には、バイアス電圧
を印加した状態にて加熱処理を行うことにより、上記Co
系合金磁性体層の結晶粒界へのCr,P などの非磁性元素
の偏析が加熱処理のみを行う場合に比較してより促進さ
れる。これにより、磁性体層の各結晶粒の磁気的な分離
が進み、磁気的相互作用が弱められることから、保磁力
が向上するものと考えられる。
In the method according to the present invention, the magnetic layer (magnetic layer) is Co-Ni-Cr, Co-Cr-Ta, Co-Cr, Co.
Co alloys such as -P, Co-Ni-P, Co-Cr-Pt, and Co-Ni-Pt are preferable, and the mechanism for improving coercive force is considered as follows. For magnetic layer made of Co alloy
When non-magnetic elements such as Cr and P are included, the above Co
The segregation of non-magnetic elements such as Cr and P at the crystal grain boundaries of the system alloy magnetic layer is promoted more than when only heat treatment is performed. As a result, the magnetic separation of the crystal grains of the magnetic layer progresses, and the magnetic interaction is weakened, so that the coercive force is considered to be improved.

【0012】一方、基板上にCo系合金磁性体層の下地層
としてCr下地層が形成されている場合には、その厚みを
厚くすることによりCr下地層の(110) 面が成長し、Co系
合金磁性体層の磁化容易軸(C軸)が面内に配向され易
くなる。このことに加えて、バイアス電圧を印加した状
態にて加熱処理を行うことにより、Cr下地層からCo系合
金磁性体層の結晶粒界へのCrの拡散がより促進されて、
Cr下地層を有しないものに比べて保磁力がより向上する
ものと考えられる。
On the other hand, when the Cr underlayer is formed as the underlayer of the Co-based alloy magnetic layer on the substrate, the (110) plane of the Cr underlayer grows by increasing the thickness of the Cr underlayer. The easy axis of magnetization (C-axis) of the system-based alloy magnetic layer is easily oriented in the plane. In addition to this, by performing the heat treatment in the state where the bias voltage is applied, the diffusion of Cr from the Cr underlayer to the crystal grain boundaries of the Co-based alloy magnetic layer is further promoted,
It is considered that the coercive force is further improved as compared with the case without the Cr underlayer.

【0013】本願発明による方法においては、加熱処理
温度は 250℃以上が必要である。これより低い温度では
保磁力向上効果を得るためには加熱処理所要時間が大幅
に長くなり生産性の点から好ましくない。なお、上限温
度は、1450℃より高いとCo系合金磁性体層そのものが熱
により破壊されること、用いる磁気ディスク用基板の材
質に基づく制約があること、などから定められるもので
ある。例えばチタン基板を用いる場合には、加熱処理温
度が 885℃より高いと、チタン基板の結晶構造がそれま
でのH.C.P.(最密六方格子)構造からB.C.C.(体心六方
格子)構造に変化し、チタン基板表面上に形成されてい
るCo系合金磁性体層、あるいはCr下地層の表面に微細な
凹凸が生じ、磁気的特性が劣化するという悪影響があ
る。また、結晶化ガラス基板を用いる場合には、そのガ
ラス転移点が 750℃であることから、これより低い温度
がよい。
In the method according to the present invention, the heat treatment temperature must be 250 ° C. or higher. If the temperature is lower than this, the heat treatment time required for obtaining the effect of improving the coercive force is significantly lengthened, which is not preferable from the viewpoint of productivity. It should be noted that the upper limit temperature is determined because the Co-based alloy magnetic layer itself is destroyed by heat when it is higher than 1450 ° C., and there are restrictions based on the material of the magnetic disk substrate to be used. For example, when a titanium substrate is used and the heat treatment temperature is higher than 885 ° C, the crystal structure of the titanium substrate changes from the HCP (closest hexagonal lattice) structure up to then to the BCC (body centered hexagonal lattice) structure, There is an adverse effect that fine unevenness is generated on the surface of the Co-based alloy magnetic material layer or the Cr underlayer formed on the surface of the substrate, and the magnetic characteristics are deteriorated. When a crystallized glass substrate is used, its glass transition point is 750 ° C., so a temperature lower than this is preferable.

【0014】[0014]

【実施例】以下、実施例に基づいて本願発明を説明す
る。 〔実施例1〕まず、磁気ディスク用基板としてのカーボ
ン基板の作製について説明すると、炭化焼成後にガラス
質炭素となる熱硬化性樹脂であるフェノール・フォルム
アルデヒド樹脂を磁気ディスク形状に成形した後、N2
ス雰囲気中で1000〜1500℃の温度で予備焼成する。次い
で、これを熱間静水圧加圧装置(HIP装置)を使用し
て2500℃に加熱しつつ2000気圧の等方的圧力を加えてH
IP処理する。この得られた成形体に所定の周端面加
工、表面研磨を施して、厚さ1.27mmの3.5 インチ磁気デ
ィスク用のカーボン基板とした。
EXAMPLES The present invention will be described below based on examples. Example 1 First, the production of a carbon substrate as a magnetic disk substrate will be described. After molding a phenol-formaldehyde resin, which is a thermosetting resin that becomes vitreous carbon after carbonization and firing, into a magnetic disk shape, Pre-baking is performed at a temperature of 1000 to 1500 ° C in a two- gas atmosphere. Then, this is heated to 2500 ° C. by using a hot isostatic press (HIP device) and isotropic pressure of 2000 atm is applied to generate H.
IP processing. The molded body thus obtained was subjected to predetermined peripheral end surface processing and surface polishing to obtain a carbon substrate for a 3.5-inch magnetic disk having a thickness of 1.27 mm.

【0015】作製したカーボン基板上に、厚み3000Åの
下地層としてのCr下地層と、厚み 600Åの磁性体層とし
てのCo62.5Ni30Cr7.5 層と、厚み 300Åの保護層として
のZr保護層とを、D.C.マグネトロンスパッタ装置を用い
てスパッタ法によって順次形成した。各層形成時の基板
温度は 250℃とした。
On the prepared carbon substrate, a Cr underlayer as an underlayer having a thickness of 3000 Å, a Co 62.5 Ni 30 Cr 7.5 layer as a magnetic layer having a thickness of 600 Å, and a Zr protective layer as a protective layer having a thickness of 300 Å Were sequentially formed by a sputtering method using a DC magnetron sputtering device. The substrate temperature during formation of each layer was 250 ° C.

【0016】カーボン基板上に上記各層を形成した試料
について、真空雰囲気中(真空度30×10-3Torr)におい
て、300 ボルト(V)の逆バイアス電圧を印加した状態
にて加熱時間を各1分間とし加熱温度を 350〜 650℃の
範囲(図1参照)で変化させ、それぞれの条件で加熱処
理を行って磁気ディスクを作製した。この場合、正極出
力端子側が接地された直流電源の負極出力端子側を上記
試料に接続し、試料が接地電位に対して負電位となるよ
うにして試料に逆バイアス電圧を印加するようにした。
また、比較例として、逆バイアス電圧を印加しないもの
についても上記と同一条件にて加熱処理を行って磁気デ
ィスクを作製した。
With respect to the sample in which each of the above layers was formed on the carbon substrate, the heating time was 1 for each in a vacuum atmosphere (vacuum degree of 30 × 10 −3 Torr) and a reverse bias voltage of 300 V (V) applied. The heating temperature was changed in the range of 350 to 650 ° C. (see FIG. 1) for each minute, and the heating treatment was performed under each condition to produce a magnetic disk. In this case, the negative output terminal side of a DC power supply whose positive output terminal side was grounded was connected to the above sample, and a reverse bias voltage was applied to the sample so that the sample had a negative potential with respect to the ground potential.
In addition, as a comparative example, a magnetic disk was manufactured by performing heat treatment under the same conditions as above, even for those to which a reverse bias voltage was not applied.

【0017】作製したこれらの各磁気ディスクから8×
8mm角寸法の試料を切り出し、振動試料型磁力計(VS
M)を用いて磁気特性を測定した。保磁力Hcの測定結果
を図1に示す。なお、加熱処理を行う前の保磁力Hcをも
測定し、加熱処理なしのものでは、その保磁力Hcは約10
00(Oe)であった。
8 × from each of these magnetic disks produced
A sample of 8 mm square was cut out and used as a vibrating sample magnetometer (VS
Magnetic properties were measured using M). The measurement result of the coercive force Hc is shown in FIG. The coercive force Hc before the heat treatment was also measured.
It was 00 (Oe).

【0018】図1から理解されるように、この実施例の
方法によれば、逆バイアス電圧を印加せず加熱処理のみ
を行う比較例のものに比べて、保磁力が約200 〜400
(Oe)と大幅に高められた磁気ディスクが得られた。
As can be seen from FIG. 1, according to the method of this embodiment, the coercive force is about 200 to 400 as compared with the comparative example in which only the heat treatment is performed without applying the reverse bias voltage.
(Oe) and the magnetic disk which was raised greatly were obtained.

【0019】〔実施例2〕Cr下地層を省いた点以外は実
施例1と同様の手順にて磁気ディスクを作製し、その保
磁力Hcを測定した。その結果、加熱処理なしのもの、逆
バイアス電圧を印加せず加熱処理のみを行うものに比べ
て、高い保磁力を有する磁気ディスクが得られた。
Example 2 A magnetic disk was manufactured by the same procedure as in Example 1 except that the Cr underlayer was omitted, and its coercive force Hc was measured. As a result, a magnetic disk having a high coercive force was obtained as compared with the magnetic disk without heat treatment and the magnetic disk with no reverse bias voltage applied and only heat treatment.

【0020】〔実施例3〕カーボン基板上に、厚み3000
ÅのCr下地層と、厚み 300Åの第1Co62.5Ni30Cr 7.5
と、厚み 100Åの中間層としての中間Cr層と、厚み 300
Åの第2Co62.5Ni 30Cr7.5 層と、厚み 300ÅのZr保護層
とを、基板温度 250℃にてD.C.マグネトロンスパッタ装
置を用いてスパッタ法によって順次形成した。得られた
試料について、真空雰囲気中(真空度30×10-3Torr)に
おいて、300 ボルトの逆バイアス電圧を印加した状態に
て加熱時間を各1分間とし加熱温度を 350〜 650℃の範
囲で変化させ、実施例1と同様の条件でそれぞれ加熱処
理を行って磁気ディスクを作製した。これらの磁気ディ
スクの保磁力Hcを測定した結果、加熱処理なしのもの、
逆バイアス電圧を印加せず加熱処理のみを行うものに比
べて、高い保磁力を有する磁気ディスクが得られた。
Example 3 A carbon substrate with a thickness of 3000
ÅCr underlayer and 300Åthick 1st Co62.5Ni30Cr 7.5layer
And an intermediate Cr layer as an intermediate layer with a thickness of 100Å and a thickness of 300
Å second Co62.5Ni 30Cr7.5Layers and a Zr protective layer with a thickness of 300Å
And DC magnetron sputtering equipment at a substrate temperature of 250 ° C.
The substrate was sequentially formed by the sputtering method. Got
About the sample in a vacuum atmosphere (vacuum degree 30 × 10-3To Torr)
The reverse bias voltage of 300 V.
The heating time to 1 minute each and the heating temperature to the range of 350 to 650 ℃.
And heat treatment under the same conditions as in Example 1.
Then, a magnetic disk was manufactured. These magnetic disks
As a result of measuring the coercive force Hc of the disc, one without heat treatment,
Compared to those that only heat treatment without applying reverse bias voltage
In all, a magnetic disk having a high coercive force was obtained.

【0021】〔実施例4〕カーボン基板上に、厚み3000
ÅのCr下地層と、厚み 200Åの第1Co62.5Ni30Cr 7.5
と、厚み50Åの第1Cr中間層と、厚み 200Åの第2Co
62.5Ni30Cr7.5 層と、厚み50Åの第2Cr中間層と、厚み
200Åの第3Co62.5Ni30Cr7.5 層と、厚み 300ÅのZr保
護層とを、基板温度 250℃にてD.C.マグネトロンスパッ
タ装置を用いてスパッタ法によって順次形成した。得ら
れた試料について、真空雰囲気中(真空度30×10-3Tor
r)において、300 ボルトの逆バイアス電圧を印加した
状態にて実施例3と同様の条件でそれぞれ加熱処理を行
って磁気ディスクを作製した。これらの磁気ディスクの
保磁力Hcを測定した結果、加熱処理なしのもの、逆バイ
アス電圧を印加せず加熱処理のみを行うものに比べて、
高い保磁力を有する磁気ディスクが得られた。
Example 4 A carbon substrate having a thickness of 3000
ÅCr underlayer and 200Åthick 1st Co62.5Ni30Cr 7.5layer
And the first Cr intermediate layer with a thickness of 50Å and the second Co with a thickness of 200Å
62.5Ni30Cr7.5Layer, the second Cr intermediate layer with a thickness of 50Å, and the thickness
 200Å 3rd Co62.5Ni30Cr7.5Layers and Zr protection with a thickness of 300Å
The protective layer and the D.C.
It was sequentially formed by a sputtering method using a sputtering device. Got
Sample in a vacuum atmosphere (vacuum degree 30 × 10-3Tor
In r), a reverse bias voltage of 300 V was applied.
In this state, heat treatment is performed under the same conditions as in Example 3.
A magnetic disk was produced. Of these magnetic disks
As a result of measuring the coercive force Hc, no
Compared to the one that only heat treatment without applying the ass voltage,
A magnetic disk having a high coercive force was obtained.

【0022】〔実施例5〕Cr下地層を省いた点以外は実
施例3と同様の手順にて磁気ディスクを作製し、その保
磁力Hcを測定した。その結果、加熱処理なしのもの、逆
バイアス電圧を印加せず加熱処理のみを行うものに比べ
て、高い保磁力を有する磁気ディスクが得られた。
Example 5 A magnetic disk was manufactured in the same procedure as in Example 3 except that the Cr underlayer was omitted, and its coercive force Hc was measured. As a result, a magnetic disk having a high coercive force was obtained as compared with the magnetic disk without heat treatment and the magnetic disk with no reverse bias voltage applied and only heat treatment.

【0023】〔実施例6〕Cr下地層を省いた点以外は実
施例4と同様の手順にて磁気ディスクを作製し、その保
磁力Hcを測定した。その結果、加熱処理なしのもの、逆
バイアス電圧を印加せず加熱処理のみを行うものに比べ
て、高い保磁力を有する磁気ディスクが得られた。
Example 6 A magnetic disk was manufactured in the same procedure as in Example 4 except that the Cr underlayer was omitted, and its coercive force Hc was measured. As a result, a magnetic disk having a high coercive force was obtained as compared with the magnetic disk without heat treatment and the magnetic disk with no reverse bias voltage applied and only heat treatment.

【0024】〔実施例7〕加熱処理を大気雰囲気中にて
行うようにした点以外は実施例1と同様の手順にて磁気
ディスクを作製し、その保磁力Hcを測定した。その結
果、加熱処理を大気雰囲気中にて行う場合においても、
加熱処理なしのもの、逆バイアス電圧を印加せず加熱処
理のみを行うものに比べて、高い保磁力を有する磁気デ
ィスクが得られた。
[Example 7] A magnetic disk was manufactured in the same procedure as in Example 1 except that the heat treatment was carried out in the atmosphere, and its coercive force Hc was measured. As a result, even when the heat treatment is performed in the atmosphere,
A magnetic disk having a high coercive force was obtained as compared with the case where no heat treatment was performed and the case where only heat treatment was performed without applying a reverse bias voltage.

【0025】〔実施例8〕磁気ディスク用基板としてチ
タン基板(神戸製鋼所製、純チタンKS40、JIS1種)
とSiO2−Li2O−Al2O3 系の組成になる結晶化ガラス基板
とを用いてそれぞれ磁気ディスクを作製し、その保磁力
Hcを測定した。この場合、カーボン基板を上記の両基板
に変更した点以外は実施例1と同様の手順にて磁気ディ
スクの作製を行った。その結果、磁気ディスク用基板と
してチタン基板、結晶化ガラス基板を用いた場合におい
ても、加熱処理なしのもの、逆バイアス電圧を印加せず
加熱処理のみを行うものに比べて、高い保磁力を有する
磁気ディスクが得られた。なお、上記各実施例では、Cr
下地層、Co系合金磁性体層、Cr中間層、及び保護層など
をスパッタ法により形成する例について説明したが、こ
の発明による方法は、これらの各層をめっき法などによ
り形成するものにも適用可能である。
[Embodiment 8] A titanium substrate (Kobe Steel Co., Ltd., pure titanium KS40, JIS class 1) as a magnetic disk substrate.
And a crystallized glass substrate having a composition of the SiO 2 —Li 2 O—Al 2 O 3 system were used to fabricate magnetic disks, and their coercive force
Hc was measured. In this case, a magnetic disk was manufactured by the same procedure as in Example 1 except that the carbon substrate was changed to both of the above substrates. As a result, even when a titanium substrate or a crystallized glass substrate is used as the magnetic disk substrate, it has a higher coercive force than those without heat treatment and with only heat treatment without applying a reverse bias voltage. A magnetic disk was obtained. In each of the above examples, Cr
The example of forming the underlayer, the Co-based alloy magnetic material layer, the Cr intermediate layer, the protective layer and the like by the sputtering method has been described, but the method according to the present invention is also applicable to the case where each of these layers is formed by the plating method or the like. It is possible.

【0026】[0026]

【発明の効果】請求項1、2の発明による磁気ディスク
の製造方法によると、基板上に、Co系合金磁性体層、あ
るいは中間層としての非磁性体層を間に挟んで上下にCo
系合金磁性体層を形成し、このCo系合金磁性体層上に保
護層を形成した後、このものをバイアス電圧を印加した
状態にて温度 250℃以上で加熱処理するようにした方法
であるので、加熱処理を行わない方法、あるいはバイア
ス電圧を印加することなく加熱処理のみを行う方法に比
べて、Co系合金磁性体層の結晶粒界へのCrなどの非磁性
元素の偏析がより促進されることにより、Co系合金磁性
体層の各結晶粒の磁気的な分離が進み、磁気的相互作用
が弱められることから、高い保磁力を有する磁気ディス
クを得ることができる。請求項3、4の発明による磁気
ディスクの製造方法によると、Cr下地層の作用によって
Co系合金磁性体層の磁化容易軸が面内に配向され易くな
ることと、上記の保磁力向上効果とにより、より高い保
磁力を有する磁気ディスクを得ることができる。
According to the method of manufacturing a magnetic disk of the first and second aspects of the present invention, a Co-based alloy magnetic material layer or a non-magnetic material layer serving as an intermediate layer is sandwiched between the upper and lower Co layers on a substrate.
This is a method in which a system alloy magnetic material layer is formed, a protective layer is formed on this Co system alloy magnetic material layer, and this is then heat-treated at a temperature of 250 ° C. or higher with a bias voltage applied. Therefore, segregation of non-magnetic elements such as Cr to the crystal grain boundaries of the Co-based alloy magnetic layer is more promoted compared to methods that do not perform heat treatment or methods that perform only heat treatment without applying a bias voltage. By doing so, the magnetic separation of the crystal grains of the Co-based alloy magnetic material layer progresses and the magnetic interaction is weakened, so that a magnetic disk having a high coercive force can be obtained. According to the magnetic disk manufacturing method of the third and fourth aspects of the invention, the action of the Cr underlayer
A magnetic disk having a higher coercive force can be obtained due to the easy axis of magnetization of the Co-based alloy magnetic layer being easily oriented in the plane and the above-mentioned effect of improving the coercive force.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る方法によって得られた磁気ディ
スクの保磁力の一例を示す図である。
FIG. 1 is a diagram showing an example of coercive force of a magnetic disk obtained by a method according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上にCo系合金よりなる磁性体層と保
護層とを順に形成した後、このものをバイアス電圧を印
加した状態にて温度 250℃以上で加熱処理することを特
徴とする磁気ディスクの製造方法。
1. A magnetic material layer made of a Co-based alloy and a protective layer are sequentially formed on a substrate, and then heat-treated at a temperature of 250 ° C. or higher while applying a bias voltage. Manufacturing method of magnetic disk.
【請求項2】 基板上にCo系合金よりなる磁性体層を形
成し、その上に非磁性体層とCo系合金よりなる磁性体層
とを少なくとも1回以上交互に形成し、最上に形成され
たCo系合金よりなる磁性体層上にさらに保護層を形成し
た後、このものをバイアス電圧を印加した状態にて温度
250℃以上で加熱処理することを特徴とする磁気ディス
クの製造方法。
2. A magnetic material layer made of a Co-based alloy is formed on a substrate, and a non-magnetic material layer and a magnetic material layer made of a Co-based alloy are alternately formed on the magnetic material layer at least once to form the uppermost layer. After further forming a protective layer on the magnetic layer made of the Co-based alloy, the temperature of this layer was increased with a bias voltage applied.
A method for manufacturing a magnetic disk, which comprises performing heat treatment at 250 ° C. or higher.
【請求項3】 基板上にCrよりなる下地層とCo系合金よ
りなる磁性体層と保護層とを順に形成した後、このもの
をバイアス電圧を印加した状態にて温度 250℃以上で加
熱処理することを特徴とする磁気ディスクの製造方法。
3. An underlayer made of Cr, a magnetic layer made of a Co-based alloy, and a protective layer are sequentially formed on a substrate, and then heat-treated at a temperature of 250 ° C. or higher while applying a bias voltage. A method of manufacturing a magnetic disk, comprising:
【請求項4】 基板上にCrよりなる下地層を形成し、こ
のCr下地層上にCo系合金よりなる磁性体層を形成し、次
いでその上に非磁性体層とCo系合金よりなる磁性体層と
を少なくとも1回以上交互に形成し、最上に形成された
Co系合金よりなる磁性体層上にさらに保護層を形成した
後、このものをバイアス電圧を印加した状態にて温度 2
50℃以上で加熱処理することを特徴とする磁気ディスク
の製造方法。
4. An underlayer made of Cr is formed on a substrate, a magnetic layer made of a Co-based alloy is formed on the Cr underlayer, and then a magnetic layer made of a non-magnetic layer and a Co-based alloy is formed thereon. Alternately formed with body layers at least once and formed on top
After forming a protective layer on the magnetic layer made of Co-based alloy, the protective layer was formed at a temperature of 2 with a bias voltage applied.
A method for manufacturing a magnetic disk, which comprises performing heat treatment at 50 ° C. or higher.
JP1222592A 1992-01-27 1992-01-27 Manufacture of magnetic disk Withdrawn JPH05205262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1222592A JPH05205262A (en) 1992-01-27 1992-01-27 Manufacture of magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1222592A JPH05205262A (en) 1992-01-27 1992-01-27 Manufacture of magnetic disk

Publications (1)

Publication Number Publication Date
JPH05205262A true JPH05205262A (en) 1993-08-13

Family

ID=11799438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222592A Withdrawn JPH05205262A (en) 1992-01-27 1992-01-27 Manufacture of magnetic disk

Country Status (1)

Country Link
JP (1) JPH05205262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759617A (en) * 1996-05-20 1998-06-02 Fujitsu Limited Production process for a hard disk magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759617A (en) * 1996-05-20 1998-06-02 Fujitsu Limited Production process for a hard disk magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH06267050A (en) Metal film type magnetic recording medium
JP2002190108A (en) Magnetic recording medium and its production method
JPH0766544B2 (en) Method of manufacturing thin film magnetic disk
JP3022909B2 (en) Magnetic recording medium and method of manufacturing the same
JP2911782B2 (en) Magnetic recording medium and method of manufacturing the same
JP2796511B2 (en) Manufacturing method of thin-film perpendicular magnetic recording medium and thin-film perpendicular magnetic recording medium
US20080037407A1 (en) Method for Manufacturing Perpendicular Magnetic Recording Medium, Perpendicular Magnetic Recording Medium, and Magnetic Recording/Reproducing Apparatus
JP2697227B2 (en) Magnetic recording medium and method of manufacturing the same
JPH05205262A (en) Manufacture of magnetic disk
JP2935606B2 (en) Manufacturing method of magnetic disk
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JP2911797B2 (en) Magnetic recording medium and method of manufacturing the same
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JPH0757237A (en) Magnetic recording medium and its production
JPS61216125A (en) Production of magnetic recording medium
JP2001503180A (en) Magnetic recording media comprising an underlayer of nickel-aluminum or iron-aluminum
JPH03235218A (en) Production of magnetic recording medium
JPH10261520A (en) Magnetic recording medium and its manufacture
JP2989820B2 (en) Magnetic recording medium and method of manufacturing the same
US20020095767A1 (en) Magnetic recording medium and manufacturing method therefore
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JPH0529965B2 (en)
JP2593590B2 (en) Manufacturing method of magnetic recording media
JP2989821B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0785440A (en) Base for magnetic recording medium and magnetic recording medium using the base

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408