JPS6180637A - Manufacture of photomagnetic recording medium - Google Patents

Manufacture of photomagnetic recording medium

Info

Publication number
JPS6180637A
JPS6180637A JP20166384A JP20166384A JPS6180637A JP S6180637 A JPS6180637 A JP S6180637A JP 20166384 A JP20166384 A JP 20166384A JP 20166384 A JP20166384 A JP 20166384A JP S6180637 A JPS6180637 A JP S6180637A
Authority
JP
Japan
Prior art keywords
recording medium
film
heat treatment
heat
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20166384A
Other languages
Japanese (ja)
Inventor
Toshio Niihara
敏夫 新原
Ken Sugita
杉田 愃
Shinji Takayama
高山 新司
Katsuhiro Kaneko
金子 克弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20166384A priority Critical patent/JPS6180637A/en
Publication of JPS6180637A publication Critical patent/JPS6180637A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To stabilize the vertical magnetic anisotropy by heat-treating the recording medium. CONSTITUTION:A photoelectromagnetic medium is manufactured, for example, by laminating an Si3N4 film 2, a Tb-Fe film 3 (composed in 25:75:5atm%), and the Si3N4 film 2 successively on a glass substrate 1 each in 1,000 Angstrom thickness by sputtering. The heat treatment of the recording medium can be carried out after a magnetic thin film is formed or after the laminated films of a protective film (SiO2, Si3N4, etc.) and a reflective film (Al, Cu, etc.) are formed. Although the heat treatment can be carried out in the atmosphere, the treatment is preferably carried out in an inert gas (N2, Ar, He, etc.) or in vacuum to control the deterioration of the characteristic due to oxidation to a minimum. Although the heat treating temp. depends on the characteristic of the magnetic thin film, the treatment is preferably conducted in the temp. range 100-500 deg.C.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光磁気記録媒体の製造方法に係り、特に、多数
回の繰り返し記録・再生・消去に対して安定な搬送波対
雑音比(C/N)を有し、その特性変化が小さい光磁気
記録媒体の製造に好適な光磁気記録媒体の製造方法に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a magneto-optical recording medium, and in particular, to a method for manufacturing a magneto-optical recording medium, in particular, a method for producing a carrier-to-noise ratio (C/N ), and relates to a method for manufacturing a magneto-optical recording medium suitable for manufacturing a magneto-optical recording medium with small changes in characteristics.

〔発明の背景〕[Background of the invention]

一度記録した情報を消去し、繰り返し使用することがで
きる光記録として光磁気記録が注目を浴びている。ただ
し、記録・再生・消去を多数回繰り返した場合、C/N
が次第に低下したり、高温環境下では、その特性が次第
に劣化したりすることが知られている。この原因は主と
して、記録媒体に用いられる非晶質磁性薄膜(Tb−F
e、Tb−Fe−Goなど)の垂直磁気異方性が、熱履
歴や熱活性化を受けて次第に低下するためである。しか
るに、従来の製造方法ではこの問題点を充分認識してお
らず1作製状態のままで記録媒体として使用されている
。非晶質薄膜の磁気異方性低下に関しては、例えば、I
EEE Trans、 Magn、 MAG−13゜1
603 (1977)における片山らによる”DIFF
ERENTORIGIN  OF  TIIE  1)
ERPENDICULARANISOTROP’/  
INAMORPIIOυS Gd−Fe FROM G
d−Co FILMS”において論じられている。
Magneto-optical recording is attracting attention as an optical record that can erase information once recorded and use it repeatedly. However, if recording/playback/erasing is repeated many times, the C/N
It is known that its properties gradually decrease in high temperature environments. This is mainly due to the amorphous magnetic thin film (Tb-F
This is because the perpendicular magnetic anisotropy of the materials (e.g., Tb-Fe-Go, etc.) gradually decreases as a result of thermal history and thermal activation. However, in the conventional manufacturing method, this problem is not sufficiently recognized and the recording medium is used as a recording medium in its original state. Regarding the decrease in magnetic anisotropy of amorphous thin films, for example, I
EEE Trans, Magn, MAG-13゜1
603 (1977) by Katayama et al.
ERENTORIGIN OF TIIE 1)
ERPENDICULARANISOTROP'/
INAMORPIIOυS Gd-Fe FROM G
d-Co FILMS”.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、熱履歴や熱活性化に対してその垂直磁
気異方性が安定に保たれるような、光磁気記録媒体の製
造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a magneto-optical recording medium whose perpendicular magnetic anisotropy is maintained stably against thermal history and thermal activation.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、光磁気記録媒体
の製造方法において、該記録媒体を熱処理することを特
徴としている。
In order to achieve the above object, the present invention is characterized in that, in a method for manufacturing a magneto-optical recording medium, the recording medium is subjected to heat treatment.

すなわち、光磁気記録媒体として用いる希土類と遷移金
属からなる非晶質磁性薄膜(たとえば、Tb−Fe、 
Tb−Co、 Tb−Fe−Go、 Gd−Go。
That is, an amorphous magnetic thin film (for example, Tb-Fe,
Tb-Co, Tb-Fe-Go, Gd-Go.

Gd −Fe、 Gd −Tb −Fe、 ・・・・・
)を100〜500℃の温度範囲で数分〜数時間程度熱
処理し。
Gd -Fe, Gd -Tb -Fe, ...
) is heat treated at a temperature range of 100 to 500°C for several minutes to several hours.

熱履歴や熱活性化に対して垂直磁気異方性の安定を図る
ものである。熱処理は、酸化による特性劣化を防止する
ため不活性ガス(N 2.Ar、Ne等)中か真空中で
行うことが望ましいが、磁性薄膜上に保護膜(Sin2
.SiO等)を形成すれば大気中で行っても差支えない
This aims to stabilize perpendicular magnetic anisotropy against thermal history and thermal activation. The heat treatment is preferably performed in an inert gas (N2, Ar, Ne, etc.) or vacuum to prevent property deterioration due to oxidation.
.. There is no problem even if the process is carried out in the atmosphere, provided that SiO, etc.) is formed.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の(−)の実施例を図面を用いて説明する。 Embodiments (-) of the present invention will be described below with reference to the drawings.

第1図は、5in2膜で表面を覆ったTb−Fe非晶質
薄膜(キュリ一温度:145℃)を、3Q/minの大
気圧N2流雰囲気中で200 ’Cの温度で熱処理した
ときの、−軸異方性定数Ku(初期値で規格化されてい
る)の時間変化を示したものである。尚、Tb−Fe非
晶質膜、SiO2膜は高周波スパッタ法(Ar:5X1
0−3Torr)により順次基板上にそれぞれ1000
人積層に製造した。また、Tb−Fe非晶質膜の組成は
Tbを258七%、Feを75at%とした。
Figure 1 shows the results when a Tb-Fe amorphous thin film (Curie temperature: 145°C) whose surface was covered with a 5in2 film was heat-treated at a temperature of 200'C in an atmosphere of atmospheric pressure N2 flow at 3Q/min. , shows the time change of the -axis anisotropy constant Ku (normalized by the initial value). Note that the Tb-Fe amorphous film and SiO2 film were prepared by high-frequency sputtering method (Ar: 5X1
0-3 Torr) on the substrate sequentially.
Manufactured in layers. The composition of the Tb-Fe amorphous film was 2587% Tb and 75 at% Fe.

Kuは約10分間の熱処理後一定となり安定することが
わかる。従来の製造方法では、蒸着法やスパッタ法でT
b−Fe非晶質膜を作製した後、熱処理工程を終ること
がなかった。そのため、繰り返し記録・消去による温度
上昇や熱履歴により第1図に示した10分間の熱処理と
同様な効果が現れ。
It can be seen that Ku becomes constant and stable after about 10 minutes of heat treatment. In conventional manufacturing methods, T
After producing the b-Fe amorphous film, the heat treatment process was never completed. Therefore, due to the temperature rise and thermal history due to repeated recording and erasing, an effect similar to that of the 10-minute heat treatment shown in FIG. 1 appears.

第3図に示すようにC/N (初期値で規格化されてい
る)の低下が104〜105回の繰り返し記録・消去回
数で認められる。第2図は第1図に示した実験で用いた
Tb−Fe薄膜(200’C,10分間の熱処理が施さ
れている)を再び200℃で熱処理したときのKuの変
化を示したものである。
As shown in FIG. 3, a decrease in C/N (normalized to the initial value) is observed after 104 to 105 repeated recording/erasing times. Figure 2 shows the change in Ku when the Tb-Fe thin film used in the experiment shown in Figure 1 (heat treated at 200'C for 10 minutes) was heat treated again at 200°C. be.

すなわち、これによれば200°C,tO分間の熱処理
をTb−Fe薄膜に施したことにより、熱履歴。
That is, according to this, the Tb-Fe thin film was subjected to heat treatment at 200°C for tO minutes, thereby changing its thermal history.

熱活性化に対するKuの安定化が図られていることがわ
かる。この熱処理した薄膜を使用したときには第4図に
示すように10’〜1o8回の繰り返し記録・消去回数
までC/Nが一定になった。
It can be seen that Ku is stabilized against thermal activation. When this heat-treated thin film was used, as shown in FIG. 4, the C/N remained constant up to a number of repeated recording and erasing times of 10' to 108 times.

記録媒体の熱処理は、第5図に示したように磁性薄膜形
成後でもよいし、第6図に示すように保護膜(SjO2
,Si、N 4など)や反射膜(AQ。
The heat treatment of the recording medium may be performed after forming the magnetic thin film as shown in FIG. 5, or after the formation of the protective film (SjO2
, Si, N4, etc.) and reflective films (AQ.

Cuなど)などの積層膜を形成してからでもよい。This may be done after forming a laminated film of Cu, etc.).

上述の試料は第6図に示すプロセスを経て熱処理されて
いる。もちろん大気中で熱処理を行ってもよいが、酸化
による特性劣化を最小限に押さえるためには不活性ガス
(前述のN2やAr、Heなど)中か、真空中で行うこ
とが望ましい。尚、大気中で熱処理を行う場合には磁性
薄膜上に保護膜(SiO2、SiO,Si、N4など)
を形成してから行うことが望ましい。
The above-mentioned sample was heat treated through the process shown in FIG. Of course, the heat treatment may be performed in the air, but in order to minimize property deterioration due to oxidation, it is preferable to perform the heat treatment in an inert gas (such as the aforementioned N2, Ar, or He) or in a vacuum. In addition, when heat treatment is performed in the atmosphere, a protective film (SiO2, SiO, Si, N4, etc.) is applied on the magnetic thin film.
It is desirable to do this after forming the

熱処理温度は磁性落脱の特性に依存する。たとえばキュ
リ一点記録材料(Dy −Fe、 Tb −Fe −C
oなど)ではキュリ一温度が80〜200℃の温度範囲
にあるので、低くともtoo’c以上の温度で熱処理を
行う必要がある。一方、上述の材料では350〜450
°Cで非晶質から結晶質への相変化が生じるため、熱処
理温度はこれ以上でなければならない。ただし、Geや
Wなどの元素を添加することにより上述の材料の結晶化
温度は500℃程度まで上昇するため、熱処理温度の上
限は500℃が適当である。
The heat treatment temperature depends on the characteristics of the magnetic drop. For example, Curie single point recording material (Dy -Fe, Tb -Fe -C
Since the Curie temperature is in the temperature range of 80 to 200°C, it is necessary to perform the heat treatment at a temperature of at least too'c or higher. On the other hand, the above materials have a
Since a phase change from amorphous to crystalline occurs at °C, the heat treatment temperature must be higher than this temperature. However, since the crystallization temperature of the above-mentioned materials increases to about 500°C by adding elements such as Ge and W, it is appropriate that the upper limit of the heat treatment temperature is 500°C.

熱処理時間は熱処理温度によって変える必要があり、お
おむね、数分〜数時間程度である。高温度で熱処理する
ほど短時間でよい。
The heat treatment time needs to be changed depending on the heat treatment temperature, and is generally about several minutes to several hours. The higher the heat treatment, the shorter the time required.

次に第7図を用いて本発明の他の実施例を説明する。第
7図はガラス基板I上にSi、N、膜2゜Tb−Fe膜
3(組成、(原子数パーセント)25ニア0 : 5)
、Si、N4膜2をスパッタリングにより順次それぞれ
tooo人積層して製造した光磁気記録媒体である。こ
の製造状態のままの媒体(A)と、′!M造後真後真空
中250℃の温度で30分保持し熱処理を旋した媒体(
B)とを1!!何し、温度200℃、湿度90%の環境
試験を行ったときのKuの変化を第8図に示す。媒体(
B)では熱処理効果により、垂直異方性が極めて安定化
していることがわかる。またこの環境試験により、媒体
(A)では垂直異方性と同時にカー回転角が徐々に減少
したが、媒体(B)ではKuと同様にほぼ一定の値を保
持し続けた。
Next, another embodiment of the present invention will be described using FIG. Figure 7 shows a Si, N, film 2°Tb-Fe film 3 (composition, (atomic percent) 25 near 0:5) on a glass substrate I.
This is a magneto-optical recording medium manufactured by sequentially laminating too many , Si, and N4 films 2 by sputtering. This medium (A) in its manufactured state and '! The medium (
B) and 1! ! FIG. 8 shows the change in Ku when an environmental test was conducted at a temperature of 200° C. and a humidity of 90%. Medium (
In B), it can be seen that the perpendicular anisotropy is extremely stabilized due to the heat treatment effect. Further, in this environmental test, in the medium (A), the Kerr rotation angle gradually decreased at the same time as the perpendicular anisotropy, but in the medium (B), it continued to maintain a substantially constant value like Ku.

また、他の希土類と遷移金層からなる非晶質磁性薄膜(
Tb −Go、 Gd −Fe、 Gd −Go、 C
d −Tb−Fe薄膜等)においても熱処理により上述
した効果が認められた。
In addition, an amorphous magnetic thin film consisting of other rare earth elements and a transition gold layer (
Tb-Go, Gd-Fe, Gd-Go, C
d -Tb-Fe thin film, etc.), the above-mentioned effect was also observed by heat treatment.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、記録媒体を
熱処理することにより、垂直磁気異方性の安定化を大幅
に図ることができる。
As described in detail above, according to the present invention, perpendicular magnetic anisotropy can be significantly stabilized by heat-treating the recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は熱処理によるKuの変化を示す図、第
3図、第4図は繰り返し記録・消去回数に対するC/N
の変化を示す図、第5図、第6図は熱処理時間を示す図
、第7図は光磁気記録媒体の一例を示す断面図、第8図
は製造法の異なる2つの記録媒体のKuの変化を示す図
である。 1・・・ガラス基板、 2・・・5i−JN4膜。 3−Tb−Fe−Go膜。 大地膚ヒc/AI(Aモス、序A立) 第夕図 第 I 笛 7図 第 2図 片間(分)
Figures 1 and 2 are diagrams showing changes in Ku due to heat treatment, Figures 3 and 4 are C/N versus number of repeated recording/erasing times.
Figures 5 and 6 are diagrams showing heat treatment times, Figure 7 is a cross-sectional view of an example of a magneto-optical recording medium, and Figure 8 is a graph of Ku of two recording media manufactured using different manufacturing methods. It is a figure showing a change. 1...Glass substrate, 2...5i-JN4 film. 3-Tb-Fe-Go film. Daichihadahic/AI (A moss, introduction A standing) Evening figure I Flute 7 figure 2 Katama (minute)

Claims (1)

【特許請求の範囲】[Claims] 希土類と遷移金属とからなる非晶質磁性薄膜を記録媒体
に用いた光磁気記録媒体の製造方法において、光磁気記
録媒体層を所定基板上に形成する工程、該記録媒体を1
00〜500℃の温度範囲で熱処理する工程を有するこ
とを特徴とする光磁気記録媒体の製造方法。
In a method of manufacturing a magneto-optical recording medium using an amorphous magnetic thin film made of rare earth and transition metal as a recording medium, a step of forming a magneto-optical recording medium layer on a predetermined substrate,
A method for manufacturing a magneto-optical recording medium, comprising a step of heat treatment at a temperature range of 00 to 500°C.
JP20166384A 1984-09-28 1984-09-28 Manufacture of photomagnetic recording medium Pending JPS6180637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20166384A JPS6180637A (en) 1984-09-28 1984-09-28 Manufacture of photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20166384A JPS6180637A (en) 1984-09-28 1984-09-28 Manufacture of photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6180637A true JPS6180637A (en) 1986-04-24

Family

ID=16444833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20166384A Pending JPS6180637A (en) 1984-09-28 1984-09-28 Manufacture of photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6180637A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298046A (en) * 1986-06-17 1987-12-25 Nec Corp Production of magnet-optical recording medium
JPS63317946A (en) * 1987-06-19 1988-12-26 Seiko Epson Corp Production of magneto-optical recording medium
WO2000074044A1 (en) * 1999-05-28 2000-12-07 Fujitsu Limited Magnetic recording medium and magnetic disk

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298046A (en) * 1986-06-17 1987-12-25 Nec Corp Production of magnet-optical recording medium
JPS63317946A (en) * 1987-06-19 1988-12-26 Seiko Epson Corp Production of magneto-optical recording medium
WO2000074044A1 (en) * 1999-05-28 2000-12-07 Fujitsu Limited Magnetic recording medium and magnetic disk

Similar Documents

Publication Publication Date Title
JP2586367B2 (en) Soft magnetic material, method of manufacturing the same, and magnetic head
JPS6180637A (en) Manufacture of photomagnetic recording medium
US5501913A (en) Garnet polycrystalline film for magneto-optical recording medium
JP2519982B2 (en) Method for manufacturing in-plane magnetic recording medium
JPH09305968A (en) Manufacture of magnetic recording medium
JP2817870B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3414823B2 (en) Magneto-optical recording medium
JP2935606B2 (en) Manufacturing method of magnetic disk
JPS61194635A (en) Production of thin film permanent magnet
JP2853529B2 (en) Magnetic recording medium substrate and magnetic recording medium using the same
JPS63273236A (en) Magneto-optical recording medium
JPS60177454A (en) Photomagnetic recording medium having excellent durability
JPH03162736A (en) Production of magneto-optical recording medium
JPH04281240A (en) Production of magneto-optical recording medium
JPH04274039A (en) Production of magneto-optical recording medium
JPS63281250A (en) Magnetooptics thin film material and manufacture thereof
JPH056589A (en) Production of magneto-optical recording medium
JPH0594647A (en) Production of magneto-optical recording medium
JPH05101935A (en) Garnet polycrystalline film for optical magnetic recording medium, optical magnetic recording medium, and optical magnetic recording disk
JPS62267946A (en) Production of recording medium for magneto-optical disk
JPH05325183A (en) Manufacture of magnetic disk
JPH03208321A (en) Manufacture of magnetic film
JPH06267126A (en) Production of magneto-optical recording medium and recording medium
JPH05314553A (en) Magneto-optical recording medium and its production
JPS6325857A (en) Magneto-optical disk and its production