JPH06267126A - Production of magneto-optical recording medium and recording medium - Google Patents

Production of magneto-optical recording medium and recording medium

Info

Publication number
JPH06267126A
JPH06267126A JP5664893A JP5664893A JPH06267126A JP H06267126 A JPH06267126 A JP H06267126A JP 5664893 A JP5664893 A JP 5664893A JP 5664893 A JP5664893 A JP 5664893A JP H06267126 A JPH06267126 A JP H06267126A
Authority
JP
Japan
Prior art keywords
magneto
recording medium
underlayer
optical recording
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5664893A
Other languages
Japanese (ja)
Inventor
Masabumi Nakada
正文 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5664893A priority Critical patent/JPH06267126A/en
Publication of JPH06267126A publication Critical patent/JPH06267126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high performance magneto-optical recording medium ensuring a low noise level by forming an underlayer on a substrate with a dielectric film subjected to sputter etching and forming a thin MnBi film on the underlayer by an ion cluster beam method. CONSTITUTION:An underlayer 2 made of a silicon nitride film is formed on a glass substrate 1 by sputtering and subjected to sputter etching with gaseous Ar under the conditions of 24.5SCCM flow rate, 0.1Pa pressure of the gas, 350W supplied power and 0.1nm/min etching rate. An MnBi layer 3 is then formed on the underlayer 2 by an ion cluster beam method and an interference layer 4 made of a silicon nitride film is formed on the MnBi layer 3 by sputtering. A reflecting layer 5 of Al is further formed on the interference layer 4 by vapor deposition and heat treatment is carried out to produce the objective magneto-optical recording medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光磁気記録媒体に関
し、特に書換え可能な光磁気ディスク等に用いられ、磁
気カー効果あるいは磁気ファラデー効果等の磁気光学効
果を用いて読み出すことの出来る光磁気記録媒体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium, and more particularly, it is used for a rewritable magneto-optical disk or the like and can be read out by using a magneto-optical effect such as a magnetic Kerr effect or a magnetic Faraday effect. Recording medium

【0002】[0002]

【従来の技術】光磁気記録媒体の材料とは、主として以
下の条件が要求される。 (a)垂直磁化膜であること。 (b)大きな保磁力を有していること。 (c)カー回転角が大きいこと。
2. Description of the Related Art Materials for magneto-optical recording media are mainly required to meet the following conditions. (A) A perpendicular magnetization film. (B) It has a large coercive force. (C) The car rotation angle is large.

【0003】Fe,Co等にTb,Gd等の重希土類を
添加した場合、磁気異方性が増加し垂直磁化膜になるこ
とが知られている。こうしたことから、光磁気記録媒体
の材料としてGdTbFe,DyFe,GdCo,Tb
Co,TbDyFe,TbFeCo等の重希土類−3d
遷移金属非晶質合金薄膜が前述の条件を満足し、かつ量
産に適し、読み出しノイズが小さいことから有望とされ
ている。特にTbFeCoは、有望視され実用材料とな
っている。
It is known that when a heavy rare earth element such as Tb or Gd is added to Fe or Co, the magnetic anisotropy is increased to form a perpendicular magnetization film. For these reasons, GdTbFe, DyFe, GdCo, and Tb are used as materials for magneto-optical recording media.
Heavy rare earth such as Co, TbDyFe, TbFeCo-3d
The transition metal amorphous alloy thin film is promising because it satisfies the above conditions, is suitable for mass production, and has low read noise. In particular, TbFeCo is a promising and practical material.

【0004】光磁気記録の高密度化の手段として、レー
ザーのビーム径を絞ることによる記録領域の微小化があ
る。記録再生ヘッドの対物レンズのNAを変えずにビー
ム径を絞るためには、レーザー光源の短波長化が必要と
なる。このために、非線形光学素子を用いた短波長光源
などの開発が進んでいる。しかし、現在実用化されてい
る重希土類−3d遷移金属非晶質合金薄膜は、波長が短
くなるにしたがいカー回転角が小さくなることが知られ
ている。また、フォトディテクタの量子変換効率も、波
長の低下により減少する。したがって、短波長レーザー
により再生した場合、再生出力が大幅に低下してしま
い、高記録密度を達成することは困難である。このた
め、短波長域でカー回転角の大きな新たな光磁気記録材
料が必要になる。
As a means for increasing the density of magneto-optical recording, there is miniaturization of the recording area by narrowing the beam diameter of the laser. In order to reduce the beam diameter without changing the NA of the objective lens of the recording / reproducing head, it is necessary to shorten the wavelength of the laser light source. For this reason, development of a short wavelength light source using a non-linear optical element and the like is in progress. However, it is known that the heavy rare earth-3d transition metal amorphous alloy thin film currently put into practical use has a smaller Kerr rotation angle as the wavelength becomes shorter. Moreover, the quantum conversion efficiency of the photodetector also decreases due to the decrease in wavelength. Therefore, when reproducing with a short wavelength laser, the reproduction output is significantly reduced, and it is difficult to achieve a high recording density. Therefore, a new magneto-optical recording material having a large Kerr rotation angle in the short wavelength region is required.

【0005】短波長用光磁気記録材料として、これまで
にガーネット、Pt/Co、軽稀土類−3d遷移金属非
晶質合金薄膜が検討されている。しかし、これらの材料
には以下のような欠点がある。
Garnet, Pt / Co, and light rare earth-3d transition metal amorphous alloy thin films have been studied as magneto-optical recording materials for short wavelengths. However, these materials have the following drawbacks.

【0006】ガーネットはファラテー回転角が大きいた
め、大きな再生出力を得ることができるが、成膜中もし
くは成膜後に結晶を成長させるためには600°C以上
の加熱が必要とされ、通常のガラス基板上に作製するこ
とは困難である。従って、基板として高価な耐熱ガラス
を使用する必要があり、媒体が高価になるという欠点が
ある。
Since garnet has a large Farathe rotation angle, a large reproduction output can be obtained, but heating at 600 ° C. or higher is required to grow crystals during or after film formation, and ordinary glass is used. It is difficult to fabricate on a substrate. Therefore, it is necessary to use expensive heat-resistant glass as the substrate, and there is a drawback that the medium becomes expensive.

【0007】Pt/Coは、短波長域で重稀土類−3d
遷移金属非晶質合金より大きなカー回転角を有するが、
フォトディテクタの変換効率の低下を補うほどの大きな
値ではない。また、結晶質であるため媒体雑音が大きく
短波長域における再生出力は低下するという欠点があ
る。(公開特許公報平3−162739)軽稀土類−3
d遷移金属非晶質合金薄膜の場合もPt/Coの場合と
同様に、十分大きなカー回転角を、記録再生が可能な組
成範囲では得ることができないという欠点を有する。
Pt / Co is a heavy rare earth-3d in the short wavelength region.
It has a larger Kerr rotation angle than the transition metal amorphous alloy,
The value is not large enough to compensate for the decrease in conversion efficiency of the photodetector. Further, since it is crystalline, medium noise is large and reproduction output in a short wavelength region is lowered. (Unexamined Japanese Patent Publication No. 3-162739) Light rare earths-3
In the case of the d-transition metal amorphous alloy thin film, as in the case of Pt / Co, there is a drawback that a sufficiently large Kerr rotation angle cannot be obtained in the composition range where recording and reproduction are possible.

【0008】従って、これらの記録材料に変わる新しい
材料の利用が必要となる。
Therefore, it is necessary to use new materials in place of these recording materials.

【0009】MnBi化合物は、基板上にBiとMnを
順次成膜したMn−Bi積層膜を加熱し反応させると,
BiのC軸配向性が保存されて、C軸配向のMnBi化
合物となる。MnBi化合物は、C軸に強い磁気異方性
を有するために垂直磁化膜となる。さらに、MnBi化
合物は、波長400nmから900nmにおいてカー回
転角が1度以上と大きいため短波長用光磁気記録材料と
して有望である。
The MnBi compound is obtained by heating and reacting a Mn-Bi laminated film in which Bi and Mn are sequentially formed on a substrate.
The C-axis orientation of Bi is preserved, and a C-axis oriented MnBi compound is obtained. Since the MnBi compound has a strong magnetic anisotropy in the C axis, it becomes a perpendicular magnetization film. Furthermore, since the MnBi compound has a large Kerr rotation angle of 1 degree or more in the wavelength range of 400 nm to 900 nm, it is promising as a magneto-optical recording material for short wavelength.

【0010】基板上にBiとMnを順次成膜したMn−
Bi積層膜を加熱し、化合物を生成させるためには、3
00℃以上の温度雰囲気中に積層膜を保持する必要があ
る。このため、基板として耐熱性の高いガラス基板が用
いられている。通常の強化ガラス基板上に薄膜を生成す
る場合、ガラス基板からのアルカリ金属等がMnBiを
変質させないために誘電体の下地層がバリアー層として
用いられてる。
Bi and Mn are sequentially formed on the substrate Mn-
In order to heat the Bi laminated film and generate the compound, 3
It is necessary to hold the laminated film in an atmosphere of a temperature of 00 ° C. or higher. Therefore, a glass substrate having high heat resistance is used as the substrate. When forming a thin film on a normal tempered glass substrate, an underlayer of a dielectric is used as a barrier layer because an alkali metal or the like from the glass substrate does not deteriorate MnBi.

【0011】次に、従来のMnBi光磁気記録媒体の製
造方法およびその記録媒体について図面を参照して説明
する。
Next, a method of manufacturing a conventional MnBi magneto-optical recording medium and the recording medium will be described with reference to the drawings.

【0012】図5は従来例のMnBi光磁気記録媒体の
熱処理前の構成断面図である。
FIG. 5 is a sectional view of the structure of a conventional MnBi magneto-optical recording medium before heat treatment.

【0013】ガラス基板51上に、下地層(スパッタに
よる窒化珪素膜)52を85nmの厚さに、Bi層53
を蒸着法(イオンクラスタービーム法)で20nmの厚
さに、Mn層54を蒸着法で12nmの厚さに、干渉層
(スパッタによる窒化珪素膜)55を200nmの厚さ
に、反射層(スパッタによるAl膜)56を20nmの
厚さに順次成膜した。このディスクを380℃3時間熱
処理し、MnとBiとを反応させ、MnBi化合物を生
成し、記録媒体を作製する。
An underlayer (silicon nitride film formed by sputtering) 52 having a thickness of 85 nm and a Bi layer 53 are formed on a glass substrate 51.
To a thickness of 20 nm by a vapor deposition method (ion cluster beam method), a Mn layer 54 to a thickness of 12 nm by a vapor deposition method, an interference layer (silicon nitride film by sputtering) 55 to a thickness of 200 nm, and a reflection layer (sputtering layer). Al film 56) was sequentially formed to a thickness of 20 nm. This disk is heat-treated at 380 ° C. for 3 hours to cause Mn and Bi to react with each other to produce a MnBi compound, thus producing a recording medium.

【0014】[0014]

【発明が解決しようとする課題】上述した従来のMnB
i化合物を光磁気記録材料として用いるための問題点と
して、MnBiが結晶質であるために発生する媒体ノイ
ズがある。これには、結晶粒界等から発生する反射率変
動性ノイズとカー回転角の変動による偏光性ノイズに分
けられる。MnBiは、カー回転角が1度以上と非常に
大きいため偏光性ノイズの低減が特に重要になる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
A problem in using the i compound as a magneto-optical recording material is medium noise generated because MnBi is crystalline. This is classified into reflectance fluctuation noise generated from grain boundaries and polarization noise caused by Kerr rotation angle fluctuation. Since MnBi has a very large Kerr rotation angle of 1 degree or more, it is particularly important to reduce the polarization noise.

【0015】[0015]

【課題を解決するための手段】本発明の光磁気記録媒体
の製造方法は、スッパタエッチング処理を施した誘電体
膜で下地層を作成し、垂直な磁気容易軸を有するMnB
i化合物薄膜をその下地層上に積層することを特徴とし
ている。
According to the method of manufacturing a magneto-optical recording medium of the present invention, an underlayer is formed of a dielectric film that has been subjected to sputter etching, and MnB having a perpendicular magnetic easy axis is formed.
It is characterized in that the i-compound thin film is laminated on the underlying layer.

【0016】また、本発明の光磁気記録媒体は、上記の
製造方法によって製造された光磁気記録媒体であって、
誘電体膜の中心線平均あらさ(Ra)が1nm以下であ
ることを特徴としている。
The magneto-optical recording medium of the present invention is a magneto-optical recording medium manufactured by the above manufacturing method,
The center line average roughness (Ra) of the dielectric film is 1 nm or less.

【0017】[0017]

【作用】MnBi膜の磁化容易軸はC軸にあり、C軸配
向性の低下は偏光性ノイズを増加させる。積層膜から熱
処理により生成したMnBi膜のC軸配向性と熱処理前
のBi膜のC軸配向性の間には比例関係があり、Bi膜
のC軸配向性を高めることがMnBi膜のC軸配向性を
高めるために重要になる。Bi膜は下地表面に対して平
行にC面を向けようとするため、下地層の表面あらさが
大きい場合、結晶配向性は低下する。誘電体膜の表面あ
らさは、誘電体の種類や成膜方法に依存するが、スパッ
タエッチング処理を施すことで表面平滑性を高めること
が出来る。
The easy axis of magnetization of the MnBi film is on the C-axis, and a decrease in C-axis orientation increases polarization noise. There is a proportional relationship between the C-axis orientation of the MnBi film generated by heat treatment from the laminated film and the C-axis orientation of the Bi film before heat treatment, and it is possible to improve the C-axis orientation of the Bi film by increasing the C-axis orientation of the MnBi film. It becomes important for enhancing the orientation. Since the Bi film tends to orient the C plane parallel to the surface of the underlayer, the crystal orientation decreases when the surface roughness of the underlayer is large. The surface roughness of the dielectric film depends on the type of the dielectric and the film forming method, but the surface smoothness can be improved by performing the sputter etching process.

【0018】従って、誘電体下地層の表面をスッパタエ
ッチングすることで、MnBi膜の結晶配向性を高め偏
光性ノイズを低減することが出来る。偏光性ノイズの低
減効果を得るためには、中心線平均あらさ(Ra)が1
nm以下であることが必要である。
Therefore, by sputtering the surface of the dielectric underlayer, the crystal orientation of the MnBi film can be enhanced and the polarization noise can be reduced. To obtain the effect of reducing the polarization noise, the centerline average roughness (Ra) is 1
It is necessary to be less than or equal to nm.

【0019】[0019]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0020】まず、本発明の第一の実施例について説明
する。
First, a first embodiment of the present invention will be described.

【0021】図1は本発明による光磁気記録媒体の一実
施例を示す部分断面図である。
FIG. 1 is a partial sectional view showing an embodiment of a magneto-optical recording medium according to the present invention.

【0022】この光磁気記録媒体は、ガラス基板1上
に、下地層(スパッタによる窒化珪素膜)2を85nm
の厚さに、MnBi層3をイオンクラスタービーム法で
32nmの厚さに、干渉層(スパッタによる窒化珪素
膜)4を200nmの厚さに、反射層(蒸着によるAl
膜)5を20nmの厚さに順次成膜し、380℃3時間
熱処理し作製する。比較のために、本第一の実施例の下
地層表面のスパッタエッチング処理を行った媒体と従来
例のスパッタエッチング処理を行わなかった媒体の2種
類を作成する。
In this magneto-optical recording medium, a base layer (silicon nitride film formed by sputtering) 2 of 85 nm is formed on a glass substrate 1.
, The MnBi layer 3 to a thickness of 32 nm by the ion cluster beam method, the interference layer (silicon nitride film by sputtering) to a thickness of 200 nm, and the reflective layer (Al by vapor deposition).
The film 5 is sequentially formed into a film having a thickness of 20 nm and heat-treated at 380 ° C. for 3 hours to produce the film. For comparison, two types of media, that is, the medium in which the sputter etching treatment of the surface of the underlayer of the first embodiment is performed and the medium in which the sputter etching treatment of the conventional example is not performed, are prepared.

【0023】スパッタエッチング処理は、Arガスを用い
流量 24.5SCCM 、ガス圧 0.1Pa、投入パワー 350W 、エ
ッチングレート 0.1nm/minの条件でおこなった。エッチ
ング時間は50分とし、5nm エッチングした。スパッタ
エッチング処理をおこなわなかった下地層のRaは2n
mであり、5nmエッチングした下地層のRaは1nm
であった。
The sputter etching treatment was carried out using Ar gas at a flow rate of 24.5 SCCM, a gas pressure of 0.1 Pa, an input power of 350 W and an etching rate of 0.1 nm / min. The etching time was 50 minutes, and the etching was 5 nm. Ra of the underlayer not subjected to the sputter etching treatment is 2n
m, and Ra of the underlayer etched by 5 nm is 1 nm
Met.

【0024】図2は図1のMnBi膜のC軸配向面であ
る(002)面のロッキングカーブを示すグラフであ
る。
FIG. 2 is a graph showing the rocking curve of the (002) plane which is the C-axis oriented plane of the MnBi film of FIG.

【0025】これは、スパッタエッチング処理を行った
媒体21と、従来例のスパッタエッチング処理を行わな
かった媒体22のロッキングカーブである。スパッタエ
ッチングを行うことで半値幅は、13.2゜から2.3 ゜に大
幅に低下しており、C軸配向性は向上する。
This is a rocking curve of the medium 21 that has been subjected to the sputter etching treatment and the medium 22 that has not been subjected to the sputter etching treatment of the conventional example. By carrying out sputter etching, the full width at half maximum is greatly reduced from 13.2 ° to 2.3 °, and the C-axis orientation is improved.

【0026】図3は図1の光磁気記録媒体を光磁気用R/
W 装置により測定した未記録時のノイズスペクトルを示
すグラフである。
FIG. 3 shows the magneto-optical recording medium of FIG.
7 is a graph showing a noise spectrum at the time of unrecording measured by a W device.

【0027】スパッタエッチング処理を行った媒体31
と、従来例のスパッタエッチング処理を行わなかった媒
体32のノイズスペクトルである。線速6m/sで測定して
いる。スパッタエッチング処理を行うことでノイズレベ
ルは低下していることがわかる。
Medium 31 that has been sputter-etched
And the noise spectrum of the medium 32 that is not subjected to the sputter etching process of the conventional example. Measured at a linear velocity of 6 m / s. It can be seen that the noise level is lowered by performing the sputter etching process.

【0028】次に、エッチング量を変えた第二の実施例
について説明する。
Next, a second embodiment in which the etching amount is changed will be described.

【0029】光磁気ディスク媒体の構成は、第一の実施
例の図1と同様である。
The structure of the magneto-optical disk medium is the same as that of the first embodiment shown in FIG.

【0030】下地層窒化珪素の成膜時の膜厚を95nm
とし、スパッタエッチング処理は、Arガスを用い流量 2
4.5SCCM 、ガス圧 0.1Pa、投入パワー 350W 、エッチン
グレート 0.1nm/minのように第一の実施例と同様の条件
で行う。エッチング時間は150分とし、15nmエッ
チングする。15nmエッチングすることで、下地層の
Raは0.5nmとなった。
The film thickness of the underlying layer of silicon nitride is 95 nm.
The sputter etching process uses Ar gas and the flow rate is 2
The conditions are the same as in the first embodiment, such as 4.5 SCCM, gas pressure 0.1 Pa, input power 350 W, and etching rate 0.1 nm / min. The etching time is 150 minutes, and the etching is 15 nm. By performing 15 nm etching, Ra of the underlayer became 0.5 nm.

【0031】図4は図1の光磁気記録媒体を光磁気用R/
W 装置により測定した未記録時のノイズスペクトルを示
すグラフである。
FIG. 4 shows the magneto-optical recording medium of FIG.
7 is a graph showing a noise spectrum at the time of unrecording measured by a W device.

【0032】スパッタエッチング処理を行った媒体41
と、従来例のスパッタエッチング処理を行わなかった媒
体42のノイズスペクトルである。線速6m/sで測定して
いる。スパッタエッチング処理を行うことでノイズレベ
ルは低下していることがわかる。また、下地層のRaを
小さくさせることで、ノイズレベルの低下量は大きくな
っている。
Medium 41 that has been sputter-etched
And the noise spectrum of the medium 42 that is not subjected to the sputter etching process of the conventional example. Measured at a linear velocity of 6 m / s. It can be seen that the noise level is lowered by performing the sputter etching process. Further, by decreasing Ra of the underlayer, the amount of decrease in noise level is increased.

【0033】MnBi層の成膜には、イオンクラスター
ビーム法のほか、蒸着法、スパッタ法、イオンプレーテ
ィング法、が可能である。また、窒化珪素のほかに、Z
nS、SiO2 ,SiO、MnO等の誘電体においても
同様の効果が得られた。
For forming the MnBi layer, an evaporation method, a sputtering method and an ion plating method can be used in addition to the ion cluster beam method. In addition to silicon nitride, Z
Similar effects were obtained with dielectrics such as nS, SiO 2 , SiO, and MnO.

【0034】[0034]

【発明の効果】以上説明したように、本発明の製造方法
では、基板上にスッパタエッチング処理を施した誘電体
膜で下地層を作成し、その下地層の上にMnBi薄膜を
熱処理で生成させることにより、ノイズレベルの低い光
磁気記録媒体を製造し、高性能な光磁気記録媒体を提供
できるという効果を有する。
As described above, according to the manufacturing method of the present invention, the underlayer is formed on the substrate by the dielectric film subjected to the sputter etching process, and the MnBi thin film is formed on the underlayer by the heat treatment. By doing so, it is possible to manufacture a magneto-optical recording medium having a low noise level and provide a high-performance magneto-optical recording medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光磁気記録媒体の一実施例を示す
部分断面図である。
FIG. 1 is a partial sectional view showing an embodiment of a magneto-optical recording medium according to the present invention.

【図2】図1のMnBi膜のC軸配向面である(00
2)面のロッキングカーブを示すグラフである。
2 is a C-axis oriented surface of the MnBi film of FIG. 1 (00
It is a graph which shows the rocking curve of 2) surface.

【図3】図1の光磁気記録媒体を光磁気用R/W 装置によ
り測定した未記録時のノイズスペクトルを示すグラフで
ある。
FIG. 3 is a graph showing a noise spectrum of the magneto-optical recording medium of FIG. 1 measured by a magneto-optical R / W device when unrecorded.

【図4】図1の光磁気記録媒体を光磁気用R/W 装置によ
り測定した未記録時のノイズスペクトルを示すグラフで
ある。
FIG. 4 is a graph showing a noise spectrum of the magneto-optical recording medium of FIG. 1 measured by a magneto-optical R / W device when unrecorded.

【図5】従来例のMnBi光磁気記録媒体の熱処理前の
構成断面図である。
FIG. 5 is a sectional view of the structure of a conventional MnBi magneto-optical recording medium before heat treatment.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 下地層 3 MnBi層 4 干渉層 5 Al反射膜 6 下地層 7 干渉層 21 スパッタエッチング処理を行った媒体 22 スパッタエッチング処理は行わなかった媒体 31 スパッタエッチング処理を行った媒体 32 スパッタエッチング処理は行わなかった媒体 41 スパッタエッチング処理を行った媒体 42 スパッタエッチング処理は行わなかった媒体 51 ガラス基板 52 下地層 53 Bi層 54 Mn層 55 干渉層 56 反射層 1 Glass Substrate 2 Underlayer 3 MnBi Layer 4 Interference Layer 5 Al Reflective Film 6 Underlayer 7 Interference Layer 21 Medium without Sputter Etching 22 Medium without Sputter Etching 31 Medium with Sputter Etching 32 Sputter Etching Medium not subjected to treatment 41 Medium subjected to sputter etching treatment 42 Medium not subjected to sputter etching treatment 51 Glass substrate 52 Underlayer 53 Bi layer 54 Mn layer 55 Interference layer 56 Reflective layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スッパタエッチング処理を施した誘電体
膜で下地層を作成し、垂直な磁気容易軸を有するMnB
i化合物薄膜をその下地層上に積層することを特徴とす
る光磁気記録媒体の製造方法。
1. A MnB having a perpendicular magnetic easy axis formed by forming an underlayer of a dielectric film that has been subjected to a sputtering etching treatment.
A method for manufacturing a magneto-optical recording medium, which comprises laminating an i-compound thin film on an underlying layer thereof.
【請求項2】 請求項1記載の製造方法であって前記下
地層、前記MnBi化合物薄膜を順次成膜し、300℃
以上の温度雰囲気中で製造することを特徴とする光磁気
記録媒体の製造方法。
2. The manufacturing method according to claim 1, wherein the underlayer and the MnBi compound thin film are sequentially formed, and the temperature is set to 300 ° C.
A method for manufacturing a magneto-optical recording medium, which is characterized in that the manufacturing is carried out in the above temperature atmosphere.
【請求項3】 請求項1記載の製造方法によって製造さ
れた光磁気記録媒体であって、前記誘電体膜の中心線平
均あらさ(Ra)が1nm以下であることを特徴とする
光磁気記録媒体。
3. A magneto-optical recording medium manufactured by the manufacturing method according to claim 1, wherein the center line average roughness (Ra) of the dielectric film is 1 nm or less. .
JP5664893A 1993-03-17 1993-03-17 Production of magneto-optical recording medium and recording medium Pending JPH06267126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5664893A JPH06267126A (en) 1993-03-17 1993-03-17 Production of magneto-optical recording medium and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5664893A JPH06267126A (en) 1993-03-17 1993-03-17 Production of magneto-optical recording medium and recording medium

Publications (1)

Publication Number Publication Date
JPH06267126A true JPH06267126A (en) 1994-09-22

Family

ID=13033183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5664893A Pending JPH06267126A (en) 1993-03-17 1993-03-17 Production of magneto-optical recording medium and recording medium

Country Status (1)

Country Link
JP (1) JPH06267126A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316439A (en) * 1986-07-08 1988-01-23 Canon Inc Production of magneto-optical recording medium
JPS63306553A (en) * 1987-06-08 1988-12-14 Fujitsu Ltd Production of magneto-optical disk
JPH02118042A (en) * 1988-04-28 1990-05-02 Zong Okeshue Yuanuu Ryanjiusuo Alloy material for data memory of magneto- optical disc
JPH0426942A (en) * 1990-05-22 1992-01-30 Kuraray Co Ltd Production of magneto-optical recording medium
JPH04364246A (en) * 1991-06-12 1992-12-16 Sumitomo Metal Mining Co Ltd Magneto-optical recording medium and production thereof
JPH0554448A (en) * 1991-08-28 1993-03-05 Nec Corp Production of magneto-optical recording medium
JPH05250742A (en) * 1992-03-04 1993-09-28 Kuraray Co Ltd Magneto-optical recording medium and stamper employed in production thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316439A (en) * 1986-07-08 1988-01-23 Canon Inc Production of magneto-optical recording medium
JPS63306553A (en) * 1987-06-08 1988-12-14 Fujitsu Ltd Production of magneto-optical disk
JPH02118042A (en) * 1988-04-28 1990-05-02 Zong Okeshue Yuanuu Ryanjiusuo Alloy material for data memory of magneto- optical disc
JPH0426942A (en) * 1990-05-22 1992-01-30 Kuraray Co Ltd Production of magneto-optical recording medium
JPH04364246A (en) * 1991-06-12 1992-12-16 Sumitomo Metal Mining Co Ltd Magneto-optical recording medium and production thereof
JPH0554448A (en) * 1991-08-28 1993-03-05 Nec Corp Production of magneto-optical recording medium
JPH05250742A (en) * 1992-03-04 1993-09-28 Kuraray Co Ltd Magneto-optical recording medium and stamper employed in production thereof

Similar Documents

Publication Publication Date Title
US6638597B1 (en) Magneto-optical recording medium
JPH056820A (en) Magneto-optical recording medium
JPH06267126A (en) Production of magneto-optical recording medium and recording medium
JP2861807B2 (en) Method for manufacturing magneto-optical recording medium
US5876858A (en) Magneto-optical recording medium with magnetic film having large magnetic anisotropy
JP2814604B2 (en) Recording / playback method
JP2661532B2 (en) Method of manufacturing magneto-optical recording medium and magneto-optical recording medium
JP2555245B2 (en) Magneto-optical recording medium and manufacturing method thereof
JP2555113B2 (en) Manufacturing method of optical magnetic recording medium
JPS59116990A (en) Photomagnetic recording medium
JPH0766579B2 (en) Magneto-optical recording medium and manufacturing method thereof
JP2528184B2 (en) Magneto-optical recording medium
JP3022642B2 (en) Method for manufacturing magneto-optical recording medium
JPS6180637A (en) Manufacture of photomagnetic recording medium
JPH0536134A (en) Magneto-optical recording medium
JPH04274039A (en) Production of magneto-optical recording medium
JPH0594647A (en) Production of magneto-optical recording medium
JPH05282718A (en) Magneto-optical recording medium
JPS60197967A (en) Optical recording medium
JPH04337544A (en) Magneto-optical recording medium
JPH0664759B2 (en) Amorphous magneto-optical layer
JPH01112549A (en) Production of magneto-optical recording medium
JPH05266520A (en) Magneto-optical recording medium and its production
JPH08180479A (en) Magneto-optical recording medium and its production
JPH08315435A (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961203