JPH04337544A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH04337544A
JPH04337544A JP13847391A JP13847391A JPH04337544A JP H04337544 A JPH04337544 A JP H04337544A JP 13847391 A JP13847391 A JP 13847391A JP 13847391 A JP13847391 A JP 13847391A JP H04337544 A JPH04337544 A JP H04337544A
Authority
JP
Japan
Prior art keywords
layer
recording layer
magneto
film
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13847391A
Other languages
Japanese (ja)
Inventor
Yujiro Kaneko
裕治郎 金子
Hitoshi Nakamura
均 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP13847391A priority Critical patent/JPH04337544A/en
Publication of JPH04337544A publication Critical patent/JPH04337544A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To meet the requirements for higher densities and larger capacities by providing the magneto-optical recording medium having a high magneto- optical effect and high recording sensitivity even in a short wavelength region. CONSTITUTION:After 1st and 2nd recording layers 3, 4 are provided via an interference layer 2 on a transparent substrate 1, a protective layer 5 is provided thereon. The 1st recording layer 3 is constituted of an alloy film contg. one or more of Co and Fe. At least one or over among Pt, Pd, Rh, Ga, Si, Cr, Al, and Ge, are incorporated into this alloy film. The 2nd recording layer 4 is constituted of an amorphous alloy film consisting of a rare earth metal and a transition metal. A substrate layer 6 for improving the crystal orientability of the 1st recording layer 3 is provided between the interference layer 2 and the 1st recording layer 3. The higher C/N is easily obtd. even with the short wavelength laser by adopting such layer constitution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はレーザー光を用いて情報
の記録、再生、消去を行う光磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording, reproducing and erasing information using laser light.

【0002】0002

【従来の技術及び発明が解決しようとする課題】光磁気
ディスクはレーザー光を用いて情報の記録、再生及び消
去を行うため記憶容量が大きく、しかも記録層に磁性膜
を用いているため書換えが可能である。又、非接触で記
録再生が出来、塵埃の影響を受けないことから信頼性に
も優れている。この光磁気記録層(以下記録層と記す)
に用いられる材料としては、TbFeCo、NdDyF
eCo、TbDyFeCo等の希土類−遷移金属(RE
−TM)非晶質合金が知られており、粒界ノイズが無く
、スパッタリングを用いることによって容易に垂直磁化
膜が得られることから活発に開発が行なわれており、現
在商品化もすすんでいる。
[Prior Art and Problems to be Solved by the Invention] Magneto-optical disks use laser light to record, reproduce, and erase information, so they have a large storage capacity, and since they use a magnetic film for the recording layer, they cannot be rewritten. It is possible. In addition, it has excellent reliability because it can record and reproduce without contact and is not affected by dust. This magneto-optical recording layer (hereinafter referred to as recording layer)
Materials used include TbFeCo, NdDyF
Rare earth-transition metals (RE
-TM) Amorphous alloys are known, and are actively being developed because they have no grain boundary noise and can easily produce perpendicularly magnetized films using sputtering, and are currently being commercialized. .

【0003】一方、将来における高密度・大量化の要求
に対して、記録再生光に短波長レーザー(波長:現在8
30nm→670,470nm)を用い、記録ビットを
小さくすることによって面密度を高くすることが必要と
なる。ところがTbFeCoのような現在一般に用いら
れているRE−TM非晶質合金は短波長になるにつれて
カー回転角が減少し、C/Nが低下してしまうといった
問題点が存在する。これを解決する手段として、磁気交
換結合を利用した二層膜の再生用層にNdDyFeCo
のような短波長域でもカー回転角の大きな材料を用いた
り、或いはCoとPt又はCoとPdが交互に積層され
た人工格子膜を記録層として用いることが提案されてい
る。
On the other hand, in order to meet future demands for high density and mass production, short wavelength lasers (wavelength: currently 8
30 nm→670, 470 nm), and it is necessary to increase the areal density by reducing the recording bit size. However, currently commonly used RE-TM amorphous alloys such as TbFeCo have the problem that the Kerr rotation angle decreases as the wavelength becomes shorter, resulting in a lower C/N ratio. As a means to solve this problem, NdDyFeCo was added to the reproducing layer of the two-layer film using magnetic exchange coupling.
It has been proposed to use a material with a large Kerr rotation angle even in a short wavelength range, such as , or to use an artificial lattice film in which Co and Pt or Co and Pd are alternately laminated as a recording layer.

【0004】しかしながら、NdDyFeCo膜やCo
/Pt等の人工格子膜を用いる方法はいずれも作製が容
易でなかったり、ノイズレベルが著しく高かったりして
、従来の光磁気記録媒体を越える特性をもつまでには至
っていない。
However, NdDyFeCo films and Co
None of the methods using superlattice films such as /Pt are easy to manufacture or have extremely high noise levels, and have not yet achieved characteristics superior to those of conventional magneto-optical recording media.

【0005】従って、本発明の目的は、高密度・大容量
化に必須であるレーザーの短波長化に対応すべく、短波
長域でもカー回転角のような磁気光学効果が大きく、し
かも記録感度の高い光磁気記録媒体を提供することにあ
る。
Therefore, an object of the present invention is to have a large magneto-optical effect such as the Kerr rotation angle even in a short wavelength range, and to improve the recording sensitivity in order to cope with the shortening of the wavelength of lasers, which is essential for high density and large capacity. The object of the present invention is to provide a magneto-optical recording medium with high performance.

【0006】[0006]

【課題を解決するための手段】そこで本発明者らは鋭意
検討を行った結果、Co又はFeに特定の元素を添加し
た合金(膜厚100Å以下)と、膜面に垂直方向に磁化
容易軸を有するRE−TM非晶質合金膜との二層膜を記
録層にすることによって670nm以下の短波長レーザ
ーに対してもC/Nの低下しない光磁気記録媒体を提案
した(特願平3−18449号)。
[Means for Solving the Problems] As a result of extensive research, the inventors of the present invention have developed an alloy (with a film thickness of 100 Å or less) in which a specific element is added to Co or Fe, and an alloy with an easy magnetization axis perpendicular to the film surface. We proposed a magneto-optical recording medium in which the C/N does not decrease even for short wavelength lasers of 670 nm or less by using a double-layer film with an RE-TM amorphous alloy film having a -18449).

【0007】ところがCo又はFe合金膜は通常、無配
向の多結晶膜であることから、膜面に平行な方向に磁化
容易軸をもつ面内磁化膜であり、垂直方向に磁化させる
ことは容易でない。しかるに、本発明者らは、更に検討
を進めていった結果、特定の下地層を設けることによっ
て、これらの合金膜の結晶面が一定方向に配向し、この
配向した合金を用いた二層膜は、配向していないものに
比べてより短波長記録に適していることを見い出し、本
発明を完成するに至った。
However, since a Co or Fe alloy film is usually a non-oriented polycrystalline film, it is an in-plane magnetized film with an axis of easy magnetization parallel to the film surface, and it is easy to magnetize it in the perpendicular direction. Not. However, as a result of further investigation, the present inventors discovered that by providing a specific underlayer, the crystal planes of these alloy films are oriented in a certain direction, and that a two-layer film using this oriented alloy is possible. discovered that it is more suitable for short wavelength recording than those that are not oriented, and completed the present invention.

【0008】すなわち、本発明によれば、透明基板上に
少なくとも干渉層、第1の記録層、第2の記録層及び保
護層を順次形成した光磁気記録媒体において、第1の記
録層が下記の一般式化1で表わされるCo及びFeの1
つ以上を含む合金膜から成り、かつ第2の記録層が膜面
に垂直な方向に磁化容易軸を有する希土類−遷移金属非
晶質合金膜から成り、かつ干渉層と第1の記録層の間に
第1の記録層の結晶配向性を向上させることを目的とし
た下地層を設けたことを特徴とする光磁気記録媒体が提
供される。
That is, according to the present invention, in a magneto-optical recording medium in which at least an interference layer, a first recording layer, a second recording layer and a protective layer are sequentially formed on a transparent substrate, the first recording layer has the following structure. 1 of Co and Fe represented by the general formula 1
The second recording layer is made of a rare earth-transition metal amorphous alloy film having an axis of easy magnetization perpendicular to the film surface, and the interference layer and the first recording layer are There is provided a magneto-optical recording medium characterized in that an underlayer is provided between the first and second recording layers for the purpose of improving the crystal orientation of the first recording layer.

【化1】[Chemical formula 1]

【0009】以下図に沿って本発明の構成を詳細に説明
する。図1は本発明による光磁気記録媒体の一構成例を
示す断面図で、透明基板1上に、干渉層2、第1の記録
層3、第2の記録層4及び保護層5が順次積層された構
成で、第1の記録層3がCo又はFeの1つ以上を含む
合金膜から成り、第2の記録層4が膜面に垂直な方向に
磁化容易軸を有するRE−TM非晶質合金膜から成り、
かつ干渉層2と第1の記録層3との間に第1の記録層3
であるFe又はCo合金膜の結晶配向性を向上させるた
めの下地層6を設けたことを特徴とする。
The configuration of the present invention will be explained in detail below with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the configuration of a magneto-optical recording medium according to the present invention, in which an interference layer 2, a first recording layer 3, a second recording layer 4, and a protective layer 5 are sequentially laminated on a transparent substrate 1. In this structure, the first recording layer 3 is made of an alloy film containing one or more of Co or Fe, and the second recording layer 4 is an RE-TM amorphous film having an axis of easy magnetization in a direction perpendicular to the film surface. Made of quality alloy membrane,
and a first recording layer 3 between the interference layer 2 and the first recording layer 3.
The feature is that a base layer 6 is provided to improve the crystal orientation of the Fe or Co alloy film.

【0010】(基板)本発明に用いる透明基板1として
は、ポリカーボネート(PC)、ポリメチルメタクリレ
ート(PMMA)、アモルファスポリオレフィン(AP
O)等の樹脂からなる溝付き成形基板、又はアルミノケ
イ酸、バリウム硼珪酸等のガラス表面に溝付き紫外線硬
化樹脂(エポキシアクリレート等)層を形成した基板等
が挙げられる。これらの基板はディスク形状をしており
、厚みは1.2mm程度である。図1の1Aはガラス基
板、1Bは紫外線硬化樹脂層を示したものである。
(Substrate) As the transparent substrate 1 used in the present invention, polycarbonate (PC), polymethyl methacrylate (PMMA), amorphous polyolefin (AP
Examples include a grooved molded substrate made of a resin such as O), or a substrate formed with a grooved ultraviolet curing resin (epoxy acrylate or the like) layer on a glass surface of aluminosilicate, barium borosilicate, or the like. These substrates are disk-shaped and have a thickness of about 1.2 mm. 1A in FIG. 1 shows a glass substrate, and 1B shows an ultraviolet curing resin layer.

【0011】(干渉層)本発明においては、上記基板1
上間に干渉層2を設けている。この干渉層2には屈折率
の高い(1.8以上)透明な膜を用い、この層における
再生光の多重反射を利用してみかけのカー回転角を増大
させ、それによってC(キャリア)レベルを上げ、又反
射率を小さくすることでN(ノイズ)レベルを下げて、
トータルでC/Nを向上させることを目的としている。 又、RE−TM非晶質合金膜のように酸化等の腐食を起
こしやすい材料を第2の記録層4に用いているため、こ
の干渉層2は記録層の酸化を防止する保護膜としての役
割りも兼ね備えていなければならない。それには基板1
からの水や酸素の侵入を防ぎ、それ自身の耐食性が高く
、記録層との反応性が小さいことが必要である。具体的
な材料としては、SiO、SiO2、Al2O3、Ta
2O5等の金属酸化物、Si、Al、Zr、Ge等との
金属窒化物、B4C、SiC等の無機炭化物、ZnS等
の金属硫化物が挙げられ、これらは複合していたり(例
、SiAlON、SiZrN)、多層膜であったりして
も良い。膜厚の最適値は屈折率によって異なるが、通常
500〜2000Åで好ましくは800〜1200Åで
ある。
(Interference layer) In the present invention, the above substrate 1
An interference layer 2 is provided between the two. A transparent film with a high refractive index (1.8 or more) is used for this interference layer 2, and the apparent Kerr rotation angle is increased by utilizing multiple reflections of the reproduced light in this layer, thereby increasing the C (carrier) level. By increasing the reflectance and decreasing the reflectance, the N (noise) level can be lowered.
The purpose is to improve the total C/N. Furthermore, since a material that is prone to corrosion such as oxidation, such as RE-TM amorphous alloy film, is used for the second recording layer 4, this interference layer 2 is used as a protective film to prevent oxidation of the recording layer. They must also fulfill their roles. For that, board 1
It is necessary to prevent water and oxygen from penetrating, have high corrosion resistance, and have low reactivity with the recording layer. Specific materials include SiO, SiO2, Al2O3, Ta
Examples include metal oxides such as 2O5, metal nitrides with Si, Al, Zr, Ge, etc., inorganic carbides such as B4C, SiC, and metal sulfides such as ZnS, and these may be composites (e.g., SiAlON, SiZrN) or a multilayer film. The optimal value of the film thickness varies depending on the refractive index, but is usually 500 to 2000 Å, preferably 800 to 1200 Å.

【0012】(記録層)本発明の特徴のひとつは記録層
にある。この記録層はCo又はFe合金膜(第1の記録
層3)と膜面に垂直な方向に磁化容易軸を有するRE−
TM非晶質合金膜(第2の記録層4)との二層から構成
されており、記録再生光が入射する基板1側に第1の記
録層3を設けている。情報の記録は第2の記録層4で行
なわれるが、第1の記録層3が100Å以下と薄いとき
、第2の記録層4との磁気交換結合によって垂直方向に
磁化され、再生の際Co合金又はFe合金の磁気光学効
果(カー回転、ファラデー回転)と第2の記録層4の磁
気光学効果の両方を利用して信号を読み取ることが出来
る。両層の組成は下記に示す通りである。
(Recording layer) One of the features of the present invention is the recording layer. This recording layer has a Co or Fe alloy film (first recording layer 3) and an RE-
It is composed of two layers: a TM amorphous alloy film (second recording layer 4), and the first recording layer 3 is provided on the side of the substrate 1 where the recording/reproducing light is incident. Information is recorded in the second recording layer 4, but when the first recording layer 3 is as thin as 100 Å or less, it is magnetized in the perpendicular direction due to magnetic exchange coupling with the second recording layer 4, and Co Signals can be read using both the magneto-optic effect (Kerr rotation, Faraday rotation) of the alloy or Fe alloy and the magneto-optic effect of the second recording layer 4. The compositions of both layers are as shown below.

【表1】[Table 1]

【0013】尚、第2の記録層4にはCr、Ti、Pt
、Pdが少量(1〜5原子%)含有されても良い。第1
の記録層3は再生光の入射側に位置しており、できるだ
け磁気光学効果の大きな材料であることが望ましい。 CoやFe膜は本来磁気光学効果が大きく670nm以
下の短波長域でも低下しないが、磁化容易軸が面内方向
であるため単層では垂直磁化膜が必要条件である光磁気
記録媒体の記録層としては不適当である。又、磁気交換
結合を利用した二層膜を用いても容易には垂直方向に磁
化されない。よって本発明ではCoやFeの磁気光学効
果を低下させずかつ垂直方向に磁化しやすくなるように
Pt、Pd、Rh、Ga、Si、Cr、Al及びGeの
少なくとも1種以上の元素を添加する。
[0013] The second recording layer 4 contains Cr, Ti, and Pt.
, Pd may be contained in a small amount (1 to 5 atomic %). 1st
The recording layer 3 is located on the incident side of the reproduction light, and is preferably made of a material with as large a magneto-optic effect as possible. Co and Fe films inherently have a large magneto-optic effect and do not deteriorate even in the short wavelength range of 670 nm or less, but since the axis of easy magnetization is in the in-plane direction, a perpendicular magnetization film is required for a single layer in the recording layer of a magneto-optical recording medium. It is inappropriate as such. Furthermore, even if a two-layer film using magnetic exchange coupling is used, it is not easily magnetized in the perpendicular direction. Therefore, in the present invention, at least one element of Pt, Pd, Rh, Ga, Si, Cr, Al, and Ge is added so as not to reduce the magneto-optic effect of Co and Fe and to facilitate magnetization in the perpendicular direction. .

【0014】図2に、ガラス基板上に第1の記録層3と
して(A)Co80Pt20膜(添字は原子%を表わす
)と(B)Co膜を、又第2の記録層4としてTb12
Dy12Fe68Co8(800Å)を順次形成し、ガ
ラス基板側から測定した残留カー回転角(θkr)と第
1の記録層3の膜厚との関係を示した。第1の記録層3
にCo膜を用いた試料(B)に比べると、Ptを添加し
た試料(A)の方が(θkr)が約2倍大きくなってい
る。θkrが最大となるときの膜厚は70〜80(Å)
であり、150Åを越えると急激に低下している。これ
は膜厚が厚すぎると磁気交換結合が働かなくなるためで
あり、Co合金の場合、組成によっても異なるが第1の
記録層3の膜厚は50〜100Åが好ましい。Fe合金
についても同様なことがいえる。
FIG. 2 shows (A) a Co80Pt20 film (subscripts represent atomic %) and (B) a Co film as a first recording layer 3 on a glass substrate, and a Tb12 film as a second recording layer 4.
Dy12Fe68Co8 (800 Å) was sequentially formed, and the relationship between the residual Kerr rotation angle (θkr) measured from the glass substrate side and the film thickness of the first recording layer 3 is shown. first recording layer 3
Compared to the sample (B) using a Co film, the sample (A) with Pt added has (θkr) approximately twice as large. The film thickness when θkr is maximum is 70 to 80 (Å)
, and it decreases rapidly when it exceeds 150 Å. This is because magnetic exchange coupling does not work if the film is too thick, and in the case of a Co alloy, the film thickness of the first recording layer 3 is preferably 50 to 100 Å, although it varies depending on the composition. The same can be said of Fe alloys.

【0015】又、第2の記録層4は記録を目的として設
ける層で、記録されたビットが安定に存在するために保
磁力(Hc)の大きな垂直磁化膜でなければならない。 よって従来より光磁気記録材料として一般に知られてい
るRE−TM非晶質合金、例えばTbFeCo、NdD
yFeCo、TbDyFeCo等が適している。この第
2の記録層4は当然ながら小さなレーザーパワーで記録
出来る方が良いためキュリー点(Tc)が160〜20
0℃と低い下記一般式化2で示されるものが中でも望ま
しい。又、膜厚は400〜1200Åが好ましい。
The second recording layer 4 is a layer provided for the purpose of recording, and must be a perpendicularly magnetized film with a large coercive force (Hc) in order for recorded bits to exist stably. Therefore, RE-TM amorphous alloys, which are generally known as magneto-optical recording materials, such as TbFeCo and NdD
Suitable materials include yFeCo and TbDyFeCo. Naturally, it is better for this second recording layer 4 to be able to record with a small laser power, so the Curie point (Tc) is 160 to 20.
Among them, those represented by the following general formula 2, which are as low as 0°C, are preferable. Further, the film thickness is preferably 400 to 1200 Å.

【化3】[Chemical formula 3]

【0016】(下地層)本発明の特徴のもうひとつは、
干渉層−第1の記録層間に設けられる下地層6にある。 この下地層6は第1の記録層3であるCo又はFe合金
膜の結晶性を向上させ、かつ特定の結晶面を一定方向に
配向させることによって、より膜面に垂直方向に磁化し
易くさせることを目的としている。又、下地層6は記録
層に対して記録再生光の入射側に位置しているため、記
録再生光に対して透光性の高い膜である必要がある。具
体的な材料としては、ZnO、AlN、MgO、BeO
などが挙げられる。これらは第1の記録層3をエピタキ
シャル成長させなければならないため、当然ながら下地
層6自身もある程度特定の面が配向した結晶膜でなけれ
ばならない。一方、結晶膜は膜厚が厚いと結晶粒が大き
くなり媒体ノイズの原因となるため、なるべく薄い方が
良い。従って50〜500Å程度が好ましい。ただし、
再生光の多重反射を考慮し、干渉層2の膜厚等によって
最適値は決定される。さらにこの下地層6と干渉層2は
兼用しても良い。
(Underlayer) Another feature of the present invention is that
It is in the underlayer 6 provided between the interference layer and the first recording layer. This underlayer 6 improves the crystallinity of the Co or Fe alloy film, which is the first recording layer 3, and orients specific crystal planes in a certain direction, thereby making it easier to magnetize in the direction perpendicular to the film surface. The purpose is to In addition, since the underlayer 6 is located on the recording and reproducing light incident side with respect to the recording layer, it needs to be a film that is highly transparent to the recording and reproducing light. Specific materials include ZnO, AlN, MgO, BeO
Examples include. Since the first recording layer 3 must be grown epitaxially, the underlying layer 6 itself must naturally be a crystal film with a certain degree of orientation in a specific plane. On the other hand, if the crystal film is thick, the crystal grains will become large and cause media noise, so it is better to make it as thin as possible. Therefore, the thickness is preferably about 50 to 500 Å. however,
The optimum value is determined by the thickness of the interference layer 2, etc., taking into account multiple reflections of the reproduction light. Further, the base layer 6 and the interference layer 2 may be used together.

【0017】(保護層)本発明では、通常記録層上に保
護膜5を設ける。この保護層5は、空気中(片面仕様デ
ィスクの場合)又は接着層(両面仕様ディスクの場合)
からの水や酸素又はハロゲン元素のような記録層に有害
な物質の侵入を防止し、記録層を保護する目的で設けら
れるため、干渉層2同様、それ自身の耐食性が高く、記
録層との反応性も小さいことが必要である。具体的な材
料としては干渉層2で挙げた材料以外にAl、Cr、N
i、Mo、Pt等の金属又はそれらから成る合金も用い
ることが出来る。
(Protective layer) In the present invention, a protective film 5 is usually provided on the recording layer. This protective layer 5 is exposed to air (in the case of a single-sided disc) or an adhesive layer (in the case of a double-sided disc).
It is provided for the purpose of protecting the recording layer by preventing harmful substances such as water, oxygen, or halogen elements from entering the recording layer.Like the interference layer 2, it has high corrosion resistance and is highly resistant to corrosion with the recording layer. It is also necessary that the reactivity is low. In addition to the materials mentioned for the interference layer 2, specific materials include Al, Cr, and N.
Metals such as i, Mo, and Pt, or alloys made of these metals can also be used.

【0018】基板1上に、干渉層2、下地層6、第1及
び第2の記録層3,4及び保護層5を形成する手段とし
ては、スパッタリング、イオンプレーティング等の物理
蒸着法、プラズマCVDのような化学蒸着法等が用いら
れる。又、層構成は図1に示した以外に、保護層5上に
さらに5〜10μmの有機保護膜(カバー層)を設けた
り、又それらの膜面どうしを接着剤によって貼り合わせ
た構成でも本発明の効果はそこなわれない。
Means for forming the interference layer 2, underlayer 6, first and second recording layers 3, 4, and protective layer 5 on the substrate 1 include physical vapor deposition methods such as sputtering and ion plating, and plasma A chemical vapor deposition method such as CVD is used. In addition to the layer configuration shown in FIG. 1, the present invention also includes a structure in which an organic protective film (cover layer) of 5 to 10 μm is further provided on the protective layer 5, or in which the film surfaces are bonded together with an adhesive. The effect of the invention will not be impaired.

【0019】[0019]

【実施例】次に本発明を実施例により更に詳細に説明す
る。 実施例1〜16 直径130mm、厚さ1.2mmの紫外線硬化樹脂から
成るプリグルーブ付ガラス基板をスパッタ装置の真空槽
内にセットし、5×10−7(Torr)以下になるま
で真空排気した。まずArとN2との混合ガスを真空槽
内に導入し、圧力を5×10−3(Torr)に調整し
、Siをターゲットとして放電電力2KW(4W/cm
2)で高周波スパッタリングを行い、干渉層としてSi
Nx膜(膜厚は表2参照)をした。次に同様な方法によ
って連続して下地層膜(膜組成及び膜厚は表2参照)を
堆積し、続いてCo合金とTbDyFeCo合金をター
ゲットとして各々直流スパッタリングによって二層から
なる記録層(膜組成及び膜厚は表2参照)を形成した。 更に保護層として干渉層と同様な方法によってSiNx
膜を800Å堆積してディスク化し、それぞれ実施例1
〜3、5〜7、9〜11、13〜15の光磁気ディスク
とした。実施例4,8,12及び16の光磁気ディスク
においては干渉層と下地層を兼用した構成とした。尚、
表2の組成における添字は原子%を表わす。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples. Examples 1 to 16 A pregrooved glass substrate made of ultraviolet curable resin with a diameter of 130 mm and a thickness of 1.2 mm was set in a vacuum chamber of a sputtering device, and evacuated to a temperature of 5 x 10-7 (Torr) or less. . First, a mixed gas of Ar and N2 is introduced into a vacuum chamber, the pressure is adjusted to 5 x 10-3 (Torr), and the discharge power is 2KW (4W/cm) using Si as a target.
In step 2), high-frequency sputtering is performed to form an interference layer of Si.
An Nx film (see Table 2 for film thickness) was formed. Next, an underlayer film (see Table 2 for film composition and film thickness) was successively deposited by the same method, and then a two-layer recording layer (film composition: and film thickness (see Table 2). Furthermore, as a protective layer, SiNx is formed by the same method as the interference layer.
A film of 800 Å was deposited to form a disk, each of which was used in Example 1.
-3, 5-7, 9-11, and 13-15 magneto-optical disks. The magneto-optical disks of Examples 4, 8, 12, and 16 had a configuration in which the interference layer and the underlayer were combined. still,
The subscripts in the compositions in Table 2 represent atomic %.

【0020】[0020]

【表2】[Table 2]

【0021】比較例1 実施例1において干渉層(SiN膜)の膜厚を1000
Åとし、下地層を設けず、第1の記録層にCo膜(50
Å)を用いた以外は同様にして光磁気ディスクを得た。
Comparative Example 1 In Example 1, the thickness of the interference layer (SiN film) was 1000
Å, no underlayer is provided, and a Co film (50
A magneto-optical disk was obtained in the same manner except that Å) was used.

【0022】比較例2 実施例2において下地層を設けず、第1の記録層も設け
ないこと以外は同様にして光磁気ディスクを得た。
Comparative Example 2 A magneto-optical disk was obtained in the same manner as in Example 2 except that neither the underlayer nor the first recording layer was provided.

【0023】実施例1〜16及び比較例1、2の光磁気
ディスクについて基板側からθkrと反射率(R)を測
定し、各々の性能指数√R・θkrを求めた。これを表
2に併せて示す。尚、この時の光の波長は670nmの
ものを用いた。又、実施例1と比較例1、2の光磁気デ
ィスクの√R・θkrの波長依存性を図3に示す。
The θkr and reflectance (R) of the magneto-optical disks of Examples 1 to 16 and Comparative Examples 1 and 2 were measured from the substrate side, and the performance index √R·θkr of each was determined. This is also shown in Table 2. Note that the wavelength of light used at this time was 670 nm. Further, FIG. 3 shows the wavelength dependence of √R·θkr of the magneto-optical disks of Example 1 and Comparative Examples 1 and 2.

【0024】表2より、2種類の比較例に比べて本発明
の実施例1〜16の方がいずれも670nmの波長にお
いて√R・θkrが高くなっていることがわかる。又、
図3より実施例1はさらに短波長域でも√R・θkrが
あまり低下しておらず、他の実施例2〜16についても
同様な結果が得られている。
From Table 2, it can be seen that √R·θkr is higher in Examples 1 to 16 of the present invention than in the two comparative examples at a wavelength of 670 nm. or,
As shown in FIG. 3, in Example 1, √R·θkr did not decrease much even in the shorter wavelength range, and similar results were obtained for other Examples 2 to 16.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明によ
れば、二層膜構成の記録層の一層に下地層によって結晶
配向したCo又はFe合金膜を用いたので、短波長レー
ザーでも高出力が得られ、高密度・大容量の光磁気記録
媒体が実現出来る。又、記録層のもう一方にキュリー点
の低いTbDyFeCo膜を用いると一層高感度な媒体
になる。さらに作製も容易となる。
Effects of the Invention As explained in detail above, according to the present invention, since a Co or Fe alloy film crystal-oriented by an underlayer is used as one layer of the recording layer of a two-layer film structure, even short wavelength lasers can achieve high performance. The output can be obtained, and a high-density, large-capacity magneto-optical recording medium can be realized. Furthermore, if a TbDyFeCo film with a low Curie point is used as the other side of the recording layer, a medium with even higher sensitivity can be obtained. Furthermore, production becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による一構成例の光磁気記録媒体の断面
図である。
FIG. 1 is a cross-sectional view of a magneto-optical recording medium of one configuration example according to the present invention.

【図2】磁気カー回転角と第1の記録層膜厚との関係を
示す図である。
FIG. 2 is a diagram showing the relationship between the magnetic Kerr rotation angle and the first recording layer thickness.

【図3】実施例1と比較例1、2におけるθkrの波長
依存性を示す図である。
FIG. 3 is a diagram showing the wavelength dependence of θkr in Example 1 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1  透明基板 2  干渉層 3  第1の記録層 4  第2の記録層 5  保護層 6  下地層 1 Transparent substrate 2 Interference layer 3 First recording layer 4 Second recording layer 5 Protective layer 6 Base layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  透明基板上に少なくとも干渉層、第1
の記録層、第2の記録層及び保護層を順次形成した光磁
気記録媒体において、第1の記録層が下記の一般式化1
で表わされるCo及びFeの1つ以上を含む合金膜から
成り、かつ第2の記録層が膜面に垂直な方向に磁化容易
軸を有する希土類−遷移金属非晶質合金膜から成り、か
つ干渉層と第1の記録層の間に第1の記録層の結晶配向
性を向上させることを目的とした下地層を設けたことを
特徴とする光磁気記録媒体。 【化1】
1. At least an interference layer, a first
In a magneto-optical recording medium in which a recording layer, a second recording layer and a protective layer are sequentially formed, the first recording layer has the following general formula 1.
The second recording layer is made of a rare earth-transition metal amorphous alloy film having an axis of easy magnetization perpendicular to the film surface, and has an interference film. 1. A magneto-optical recording medium characterized in that an underlayer is provided between the first recording layer and the first recording layer for the purpose of improving the crystal orientation of the first recording layer. [Chemical formula 1]
【請求項2】  第1の記録層の膜厚が50〜100Å
であることを特徴とする請求項1に記載の光磁気記録媒
体。
Claim 2: The thickness of the first recording layer is 50 to 100 Å.
The magneto-optical recording medium according to claim 1, characterized in that:
【請求項3】  第2の記録層が下記一般式化2で表わ
される合金から成ることを特徴とする請求項1又は2に
記載の光磁気記録媒体。 【化3】
3. The magneto-optical recording medium according to claim 1, wherein the second recording layer is made of an alloy represented by the following general formula 2. [Chemical 3]
【請求項4】  下地層がZnO、AlN、MgO及び
BeOの内の1つから成ることを特徴とする請求項1な
いし3のいずれか一項に記載の光磁気記録媒体。
4. The magneto-optical recording medium according to claim 1, wherein the underlayer is made of one of ZnO, AlN, MgO and BeO.
JP13847391A 1991-05-14 1991-05-14 Magneto-optical recording medium Pending JPH04337544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13847391A JPH04337544A (en) 1991-05-14 1991-05-14 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13847391A JPH04337544A (en) 1991-05-14 1991-05-14 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH04337544A true JPH04337544A (en) 1992-11-25

Family

ID=15222886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13847391A Pending JPH04337544A (en) 1991-05-14 1991-05-14 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH04337544A (en)

Similar Documents

Publication Publication Date Title
US4753853A (en) Double-layered magnetooptical recording medium
US4975339A (en) Magneto-optical recording medium with at least one protective layer containing platinum and/or palladium
JPH04337544A (en) Magneto-optical recording medium
JP2932687B2 (en) Magneto-optical recording medium
JPH04243038A (en) Magneto-optical recording medium
JP2555113B2 (en) Manufacturing method of optical magnetic recording medium
JPH03122845A (en) Optical recording medium
JPH0536132A (en) Magneto-optical recording medium
JPH03273543A (en) Magneto-optical recording medium
KR940007286B1 (en) Optical-magnetic medium
KR100209584B1 (en) Magneto-optical disk
JPH04337543A (en) Magneto-optical recording medium
JPS61278061A (en) Photomagnetic recording medium
KR970010942B1 (en) Optical recording medium
JPS62121943A (en) Optical recording medium
JPH02128346A (en) Magneto-optical disk
JPH0512733A (en) Magneto-optical recording medium
JPH0644624A (en) Magneto-optical recording medium
JPH04219644A (en) Magneto-optical recording medium
JPS6358642A (en) Magneto-optical recording medium
JPH05225628A (en) Magneto-optical recording medium
JPH0896429A (en) Magneto-optical recording medium
JPS63149847A (en) Magneto-optical recording medium
JPH0785512A (en) Magneto-optical recording medium
JPH05290417A (en) Magneto-optical recording medium