JPH03273543A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH03273543A
JPH03273543A JP7421190A JP7421190A JPH03273543A JP H03273543 A JPH03273543 A JP H03273543A JP 7421190 A JP7421190 A JP 7421190A JP 7421190 A JP7421190 A JP 7421190A JP H03273543 A JPH03273543 A JP H03273543A
Authority
JP
Japan
Prior art keywords
layer
magneto
recording
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7421190A
Other languages
Japanese (ja)
Inventor
Yujiro Kaneko
裕治郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7421190A priority Critical patent/JPH03273543A/en
Publication of JPH03273543A publication Critical patent/JPH03273543A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magneto-optical recording medium having high recording sensitivity, reproducing C/N and excellent long-term stability by using a Ge- contg. Al alloy having high reflectance and small thermal conductivity to constitute a reflecting layer. CONSTITUTION:The magneto-optical recording medium consists of a transparent substrate 1 having pregrooves, and an interference layer 2, recording layer 3 and reflecting layer 4 successively formed on the substrate. The reflecting layer consists of a Ge-contg. Al alloy. The amt. of Ge is preferably 0.1-30 at.%, and more preferably, 1-20 at.%. By using such an Al alloy containing Ge as the reflecting layer 4, the obtd. magneto-optical medium has high recording sensitivity, high carrier level, and excellent long-term stability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザー光を用いて情報の記録、再生、消去を
行う光磁気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium that records, reproduces and erases information using laser light.

〔従来の技術〕[Conventional technology]

光磁気ディスクはレーザー光を用いて情報の記録、再生
及び消去を行うため記憶容量が大きく。
Magneto-optical disks use laser light to record, reproduce, and erase information, so they have a large storage capacity.

しかも記録膜に磁性体を用いているため書換えが可能で
ある。又非接触で記録、再生が出来、J!!埃の影響を
受けないことから安定性にも優れている。
Moreover, since a magnetic material is used for the recording film, rewriting is possible. Also, you can record and play back without contact, J! ! It also has excellent stability because it is not affected by dust.

この光磁気記録層(以下記録層と記す)に用いる材料と
してはTbFeCo、NdDyFeCo、TbDyFe
Co等の希土類−遷移金属(RE−丁M)非晶質合金が
知られており、これらの非晶質合金は、粒界ノイズが無
く、スパッタリング等を用いることによって容易に垂直
磁化膜が得られることから盛んに開発が行われており、
現在一部では商品化の段階に至っている。
The materials used for this magneto-optical recording layer (hereinafter referred to as recording layer) include TbFeCo, NdDyFeCo, and TbDyFe.
Rare earth-transition metal (RE-D) amorphous alloys such as Co are known, and these amorphous alloys have no grain boundary noise and can be easily formed into perpendicularly magnetized films by sputtering or the like. It is actively being developed because of its
Some of them are currently at the commercialization stage.

この光磁気記録媒体の構成として、レーザー光の記録再
生効率を向上させるために記録層を200〜300人の
厚さまで薄くし、その上に反射層を設ける方式が提案さ
れている(特公昭62−27458号公報等)。この場
合、反射層は反射率が高いことが望ましく、そのような
構成材料としてはAl、 Ag、 Au、Cu等の金属
が挙げられる。上記方式はカー効果とファラデー効果の
両方が利用できるためC/Nやジッタマージンが大きく
とれるという点で優れている。
As a structure for this magneto-optical recording medium, a method has been proposed in which the recording layer is made thin to 200 to 300 layers and a reflective layer is provided on top of it in order to improve the recording and reproducing efficiency of laser light (Japanese Patent Publication No. 62 -27458, etc.). In this case, it is desirable that the reflective layer has a high reflectance, and examples of such a constituent material include metals such as Al, Ag, Au, and Cu. The above method is superior in that it can utilize both the Kerr effect and the Faraday effect, and therefore can provide a large C/N and jitter margin.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来技術には以下のような問題点が
あった。
However, the above conventional technology has the following problems.

反射層の材料としてAu= Ag、 Al、 Cu等の
ような記録再生光であるレーザー光に対して反射率の高
い材料を用いた場合、 C/N、特にキャリアレベルが
大きくなるが、Au、 Ag、Cuのように熱伝導率も
高い材料は、記録時に反射層においてレーザー光照射に
よる熱が拡散してしまい、反射層を用いない構成の媒体
に比べて記録感度が大幅に低下してしまうといった欠点
を有している。このため、反射率の高い上記の材料の中
でも比較的熱伝導率が小さいAlが現在一般に用いられ
ている。ところが、光磁気記録媒体の高速化に対応した
記録用レーザーパワーを考慮すると肝反射層では感度上
十分とは言えない、又、A2反射層の場合、高温高湿度
な環境条件下において、酸化によって反射率が変化し、
Cハが低下したり、孔食の発生によってエラーレートが
増加したりしてしまうといった欠点がある。
When a material with high reflectivity for laser light, which is the recording/reproducing light, is used as the material for the reflective layer, such as Au=Ag, Al, Cu, etc., the C/N, especially the carrier level, increases. For materials with high thermal conductivity, such as Ag and Cu, the heat from laser light irradiation is diffused in the reflective layer during recording, resulting in a significant decrease in recording sensitivity compared to a medium configured without a reflective layer. It has drawbacks such as: For this reason, among the above-mentioned materials with high reflectivity, Al, which has a relatively low thermal conductivity, is currently generally used. However, considering the recording laser power required to increase the speed of magneto-optical recording media, the liver reflection layer cannot be said to be sufficient in terms of sensitivity, and in the case of the A2 reflection layer, under high temperature and high humidity environmental conditions, it cannot be said that the liver reflection layer has sufficient sensitivity due to oxidation. The reflectance changes,
There are drawbacks such as a decrease in C and an increase in error rate due to the occurrence of pitting corrosion.

本発明は以上のような従来技術の問題点を解決するため
になされたもので、記録感度及び再生C/Nが高く、か
つ経時安定性に優れた反射層タイプの光磁気記録媒体を
提供することを目的とする。
The present invention has been made to solve the problems of the prior art as described above, and provides a reflective layer type magneto-optical recording medium that has high recording sensitivity and reproduction C/N and has excellent stability over time. The purpose is to

〔課題を解決するための手段及び作用〕本発明者は上記
目的を達成すべく鋭意検討を重ねた結果、反射層をGe
を含有する肝合金で構成することによって、記録感度が
高くかつキャリアレベルが高く、しかも経時安定性に優
れた光磁気記録媒体が得られることを見出し、本発明を
完成するに至った。
[Means and effects for solving the problem] As a result of extensive studies to achieve the above object, the inventors have developed a reflective layer using Ge.
The present inventors have discovered that a magneto-optical recording medium with high recording sensitivity, high carrier level, and excellent stability over time can be obtained by comprising a liver alloy containing .

即ち、本発明によれば、透明な基板上に少なくとも干渉
層、光磁気記録層および反射層が順次積層されてなる光
磁気記録媒体において、前記反射層がGeを含有する脚
台金薄膜からなることを特徴とする光磁気記録媒体が提
供される。
That is, according to the present invention, in a magneto-optical recording medium in which at least an interference layer, a magneto-optical recording layer and a reflective layer are sequentially laminated on a transparent substrate, the reflective layer is made of a base metal thin film containing Ge. A magneto-optical recording medium is provided.

以下本発明を図面に基づき詳細に説明する。The present invention will be explained in detail below based on the drawings.

第1図は本発明による反射層タイプの光磁気記録媒体の
一構成例を示す断面図である。この媒体はプリグループ
付の透明な基板1上に干渉層2、記録層3及び反射N4
を順次積層して構成されている。
FIG. 1 is a sectional view showing an example of the configuration of a reflective layer type magneto-optical recording medium according to the present invention. This medium consists of a transparent substrate 1 with a pregroup, an interference layer 2, a recording layer 3 and a reflective layer 4.
It is constructed by sequentially laminating layers.

本発明の光磁気記録媒体の構成上の特徴は、反射層4を
Geを含有する静合金で構成した点にある。
A structural feature of the magneto-optical recording medium of the present invention is that the reflective layer 4 is made of a static alloy containing Ge.

本発明の光磁気記録媒体を構成する材料及び各層の必要
特性について説明すると、先ず、透明基板1としてはポ
リカーボネート(PC)、ポリメチルメタクリレート(
PMHA)、アモルファスポリオレフィン(APO)等
の樹脂からなるプラスチック基板、又はアルミノ珪酸、
バリウム硼珪酸等のガラス上に溝付き樹脂を形成した基
板等が挙げられる。これらの基板はディスク形状をなし
、厚みが1、2mm程度のものが一般に使用される。
To explain the materials constituting the magneto-optical recording medium of the present invention and the necessary characteristics of each layer, first, the transparent substrate 1 is made of polycarbonate (PC), polymethyl methacrylate (
PMHA), a plastic substrate made of resin such as amorphous polyolefin (APO), or aluminosilicate,
Examples include substrates in which grooved resin is formed on glass such as barium borosilicate. These substrates are disk-shaped and have a thickness of about 1 to 2 mm.

記録層3としてはTbFeCo、 NdDyFeCo、
丁bDyFec。
As the recording layer 3, TbFeCo, NdDyFeCo,
DingbDyFec.

等の希土類金属と遷移金属との非晶質合金薄膜、BaF
e、 、 0□、、CoFe、O,、(Bi、Y)、F
e50□2等の酸化物薄膜、MnB1. CoPt等の
多結晶合金薄膜が挙げられ、これらはいずれも膜面に垂
直な方向に磁化容易軸を有している。膜厚は合金薄膜の
場合、100〜1000入、好ましくは200〜400
Åである。酸化物薄膜の場合、多くは記録再生光に対し
て透光性が大きいので特に膜厚に制約はないが、100
0〜5000λが適当である。又記録層3は単層膜に限
らず多層膜でも良い。
Amorphous alloy thin film of rare earth metal and transition metal such as BaF
e, , 0□, , CoFe, O, , (Bi, Y), F
oxide thin film such as e50□2, MnB1. Examples include polycrystalline alloy thin films such as CoPt, and all of these have an axis of easy magnetization in a direction perpendicular to the film surface. In the case of an alloy thin film, the film thickness is 100 to 1000, preferably 200 to 400.
It is Å. In the case of oxide thin films, there are no particular restrictions on the film thickness, as most have high transparency for recording and reproducing light;
A value of 0 to 5000λ is appropriate. Further, the recording layer 3 is not limited to a single layer film, but may be a multilayer film.

干渉層3は基板1と記録層3との間に設けられる。The interference layer 3 is provided between the substrate 1 and the recording layer 3.

干渉層3は、この層に屈折率の高い(1,8以上)透明
膜を用い、光の干渉効果によって磁気光学効果をエンハ
ンスメントさせ、又反射率を落とすことでノイズを低下
させ、C/Nを向上させることを目的として設けられる
。又、記録層3が希土類金属と遷移金属とからなる非晶
質合金薄膜により構成される場合には、酸化等の腐食を
防止する機能も兼ね備えていなければならない。即ち、
空気中や基板1からの水分や酸素の侵入を防ぎ、それ自
身の耐食性が高く、記録Fr13との反応性が小さいこ
とが必要であり、具体的な材料としては、5iO1Si
O2、Al203.Ta2O,等の金属酸化物、84C
,SiC等の無機炭化物、ZrS等の金属硫化物が挙げ
られる。
The interference layer 3 uses a transparent film with a high refractive index (1.8 or more) to enhance the magneto-optic effect by the interference effect of light, and reduce noise by lowering the reflectance, and improves C/N. It is established for the purpose of improving the Furthermore, when the recording layer 3 is composed of an amorphous alloy thin film made of rare earth metals and transition metals, it must also have the function of preventing corrosion such as oxidation. That is,
It is necessary to prevent moisture and oxygen from entering the air or from the substrate 1, have high corrosion resistance, and have low reactivity with recording Fr13.A specific material is 5iO1Si.
O2, Al203. Metal oxides such as Ta2O, 84C
, inorganic carbides such as SiC, and metal sulfides such as ZrS.

これらの材料は複合して用いても良く(例えば、5iA
lON、 5iZrN等)、また単層膜に限らず多層膜
であっても良い。膜厚は屈折率によって最適値が異なる
が、通常300〜1500Å、好ましくは800〜13
00Åである。
These materials may be used in combination (for example, 5iA
1ON, 5iZrN, etc.), and is not limited to a single layer film, but may be a multilayer film. The optimum film thickness varies depending on the refractive index, but is usually 300 to 1500 Å, preferably 800 to 13
00 Å.

反射層4は本発明の特徴となるもので、前述したように
、Geを含有する静合金が構成材料として使用される。
The reflective layer 4 is a feature of the present invention, and as described above, a static alloy containing Ge is used as a constituent material.

Geの含有量は0.1〜30atomic%が好ましく
、1〜20atomic%が特に好ましい。本発明のG
eを含有する脚台全反射層4は反射率が記録再生光(波
長:830nm)に対して70−90%、熱伝導率が0
.3〜0.5caQ/cvsec・’Cであるため、み
かけ上のカー回転角を増大させ再生信号を大きくすると
ともに、記録時におけるレーザー光照射による熱の拡散
を小さくし記録感度を向上させるように作用する。
The content of Ge is preferably 0.1 to 30 atomic%, particularly preferably 1 to 20 atomic%. G of the present invention
The base total reflection layer 4 containing e has a reflectance of 70-90% for recording/reproducing light (wavelength: 830 nm) and a thermal conductivity of 0.
.. 3 to 0.5 caQ/cvsec・'C, so the apparent Kerr rotation angle is increased to increase the reproduction signal, and at the same time, the diffusion of heat due to laser light irradiation during recording is reduced to improve recording sensitivity. act.

このAl合金中にはさらに耐食性等の改善のため他の元
素(Cu、 Mn、 Mg等)を小量含有させても良い
This Al alloy may further contain small amounts of other elements (Cu, Mn, Mg, etc.) to improve corrosion resistance and the like.

反射層4の膜厚は200〜1000Aが好ましく、30
0−800Åが特に好ましい。膜厚が薄すぎた場合には
C/Nが低下し、厚すぎた場合には記録感度が低下する
The thickness of the reflective layer 4 is preferably 200 to 1000A, and 30A to 1000A is preferable.
Particularly preferred is 0-800 Å. If the film thickness is too thin, the C/N will decrease, and if it is too thick, the recording sensitivity will decrease.

基板1上に干渉層2、記録層3及び反射層4を形成する
手段としては、スパッタリング、イオンブレーティング
等の物理蒸着法、プラズマCVDのような化学蒸着法等
が用いられる。又層構成は第1図に示した構成以外に、
記録層3と反射層4との間にさらに第2の干渉層5を設
けたり(第2図)、反射層4の上に保護層を設けたり、
又それらの膜面どうしを接着剤によって貼り合わせた両
面記録タイプの構成でも本発明の効果はそこなわれない
As means for forming the interference layer 2, the recording layer 3, and the reflective layer 4 on the substrate 1, physical vapor deposition methods such as sputtering and ion blasting, chemical vapor deposition methods such as plasma CVD, etc. are used. In addition to the layer structure shown in Figure 1,
A second interference layer 5 may be further provided between the recording layer 3 and the reflective layer 4 (FIG. 2), a protective layer may be provided on the reflective layer 4,
Furthermore, the effects of the present invention are not impaired even in the case of a double-sided recording type structure in which the film surfaces are bonded together with an adhesive.

〔実施例〕〔Example〕

次に実施例をあげて本発明をさらに詳細に説明するが、
本発明はここに例示の実施例に限定されるものではない
Next, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to the embodiments illustrated herein.

(実施例) 直径130+wm、厚さ1、2mmのプリグループ付ポ
リカーボネート基板をスパッタリング装置の真空槽内に
セットし、 5X10−’Torr以下になるまで真空
排気した。次にArとN2との混合ガスを真空槽内に導
入し、圧力を5 X 10−’ Torrに調整し、S
iをターゲットとして放電電力2kW(4w/cm”)
で高周波スパッタリン、グを行い、基板上に干渉層とし
てSiN膜を1000人堆積した。続いて記録層として
ThxzDyxzFegsCO*合金(添数字は組成(
atomic%)を示す)をターゲットとして同様にス
パッタリングによってTbDyFeC。
(Example) A polycarbonate substrate with a pre-group having a diameter of 130+wm and a thickness of 1 or 2 mm was set in a vacuum chamber of a sputtering apparatus, and the vacuum chamber was evacuated to 5×10 −' Torr or less. Next, a mixed gas of Ar and N2 was introduced into the vacuum chamber, the pressure was adjusted to 5 x 10-' Torr, and S
Discharge power 2kW (4w/cm") with i as target
Using high frequency sputtering, 1000 SiN films were deposited on the substrate as an interference layer. Next, a ThxzDyxzFegsCO* alloy (the suffix indicates the composition (
atomic%)) was similarly sputtered using TbDyFeC as a target.

膜を250入設けた。更にGeチップを配置したAlメ
タ−ットをスパッタリングし500A厚の反射層を形成
し、実施例の記録媒体とした。なお、反射層中のGeの
量はNiターゲット上のAlチップの数をかえてgff
i5した。
250 membranes were installed. Furthermore, a reflective layer having a thickness of 500 Å was formed by sputtering an Al metal having Ge chips arranged thereon, and a recording medium of the example was obtained. Note that the amount of Ge in the reflective layer is determined by changing the number of Al chips on the Ni target.
I did i5.

(比較例1及び2) 上記実施例と同様にして記録層までの形成を行い、その
上に反射層として肋膜、Ge膜をスパッタリングによっ
て400大形威し、それぞれ比較例1及び2の記録媒体
とした。
(Comparative Examples 1 and 2) The recording layer was formed in the same manner as in the above example, and a 400 mm film and a Ge film were formed as a reflective layer by sputtering on the recording layer of Comparative Examples 1 and 2, respectively. And so.

以上のようにして作製した各記録媒体のC/N及び記録
感度を測定した。その結果を第3図に示す。
The C/N and recording sensitivity of each recording medium produced as described above were measured. The results are shown in FIG.

記録感度は2次歪みが最小になるときの記録パワーとし
た。なお、記録再生条件は以下の通りとした。
The recording sensitivity was determined as the recording power at which the second-order distortion was minimized. Note that the recording and reproducing conditions were as follows.

記録条件: CAV 1800rpm、半径30mmの
記録位置。
Recording conditions: CAV 1800 rpm, recording position with a radius of 30 mm.

記録周波数3.7MHz 再生条件: CAV 1800rpm、再生パワー1m
W第3図より、利合金中のGe含有量が増加するに伴い
記録感度が向上し、一方C/NはGe含有量が増加する
に伴い徐々に低下する傾向にあるが、Ge含有量が30
atomic%まではそれほど減少しないことがわかる
。つまり肝合金中のGe含有量が30atomic瓢ま
ではC/Nを低下させることなく記録感度が向上するこ
とが確認された。又、実施例の媒体2枚の膜面どうしを
接着剤によって貼り合わせて両面記録タイプの記録媒体
を作威し、該記録媒体について80℃、85%RHの条
件で環境試験を行った。その結果、この記録媒体では2
000時間後においても初期に比べてピットエラーレー
トに変化がなく、経時安定性にも優れていることがわか
った。
Recording frequency 3.7MHz Playback conditions: CAV 1800rpm, playback power 1m
W Figure 3 shows that the recording sensitivity improves as the Ge content in the alloy increases, while the C/N tends to gradually decrease as the Ge content increases. 30
It can be seen that it does not decrease much up to atomic%. In other words, it was confirmed that the recording sensitivity was improved without decreasing the C/N when the Ge content in the liver alloy reached 30 atomic gourd. Further, a double-sided recording type recording medium was prepared by bonding the film surfaces of two media of the example together using an adhesive, and an environmental test was conducted on the recording medium under conditions of 80° C. and 85% RH. As a result, this recording medium has 2
Even after 1,000 hours, there was no change in the pit error rate compared to the initial period, and it was found that the stability over time was also excellent.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、反射率が
高く熱伝導率の小さい、Geを含有するAl合金を用い
て反射層を構成したので、記録感度及び再生C/Nが高
く、かつ経時安定性に優れた光磁気記録媒体の提供が可
能となる。
As explained in detail above, according to the present invention, since the reflective layer is constructed using a Ge-containing Al alloy that has high reflectance and low thermal conductivity, recording sensitivity and reproduction C/N are high. Moreover, it becomes possible to provide a magneto-optical recording medium with excellent stability over time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光磁気記録媒体の層構成例を示す
断面図、第2図は本発明による光磁気記録媒体の別の層
構成例を示す断面図、第3図はC/N及び記録感度の測
定結果を示すグラフである。 1・・・基板     2,5・・・干渉層3・・・光
磁気記録層 4・・・反射層
FIG. 1 is a cross-sectional view showing an example of the layer structure of the magneto-optical recording medium according to the present invention, FIG. 2 is a cross-sectional view showing another example of the layer structure of the magneto-optical recording medium according to the present invention, and FIG. It is a graph showing measurement results of recording sensitivity. 1...Substrate 2,5...Interference layer 3...Magneto-optical recording layer 4...Reflection layer

Claims (1)

【特許請求の範囲】[Claims] (1)透明な基板上に少なくとも干渉層、光磁気記録層
および反射層が順次積層されてなる光磁気記録媒体にお
いて、前記反射層がGeを含有するAl合金薄膜からな
ることを特徴とする光磁気記録媒体。
(1) A magneto-optical recording medium in which at least an interference layer, a magneto-optical recording layer and a reflective layer are sequentially laminated on a transparent substrate, wherein the reflective layer is made of an Al alloy thin film containing Ge. magnetic recording medium.
JP7421190A 1990-03-23 1990-03-23 Magneto-optical recording medium Pending JPH03273543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7421190A JPH03273543A (en) 1990-03-23 1990-03-23 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7421190A JPH03273543A (en) 1990-03-23 1990-03-23 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH03273543A true JPH03273543A (en) 1991-12-04

Family

ID=13540632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7421190A Pending JPH03273543A (en) 1990-03-23 1990-03-23 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH03273543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886969A (en) * 1990-05-25 1999-03-23 Hitachi, Ltd. High-density information recording/reproducing method
EP1146509A2 (en) * 1997-03-27 2001-10-17 Mitsubishi Chemical Corporation Optical information recording medium
US8192905B2 (en) 2006-04-20 2012-06-05 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus, and process cartridge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886969A (en) * 1990-05-25 1999-03-23 Hitachi, Ltd. High-density information recording/reproducing method
EP1146509A2 (en) * 1997-03-27 2001-10-17 Mitsubishi Chemical Corporation Optical information recording medium
EP1146509A3 (en) * 1997-03-27 2002-05-02 Mitsubishi Chemical Corporation Optical information recording medium
US8192905B2 (en) 2006-04-20 2012-06-05 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus, and process cartridge

Similar Documents

Publication Publication Date Title
JPH03273543A (en) Magneto-optical recording medium
JPS62239349A (en) Magneto-optical recording medium
US5091267A (en) Magneto-optical recording medium and process for production of the same
JP2527762B2 (en) Magneto-optical recording medium
JP3205921B2 (en) Magneto-optical recording medium
JPH03273544A (en) Magneto-optical recording medium
JP2507592B2 (en) Optical recording medium
JPH03156753A (en) Optical recording medium
JP2829335B2 (en) Magneto-optical recording medium
JPS62239347A (en) Magneto-optical recording medium
JP2528188B2 (en) Optical recording medium
JP2955639B2 (en) Optical information recording medium
JPH04219644A (en) Magneto-optical recording medium
JP2754658B2 (en) Magneto-optical recording medium
JPH03122845A (en) Optical recording medium
JP2740814B2 (en) Magneto-optical recording medium
JP2959645B2 (en) Optical information recording medium
JPH04337543A (en) Magneto-optical recording medium
JPH04243038A (en) Magneto-optical recording medium
JPS62239350A (en) Magneto-optical recording medium
JPH0231352A (en) Magneto-optical recording medium
JPH0536132A (en) Magneto-optical recording medium
JPS63291234A (en) Magneto-optical recording medium
JPH05225629A (en) Magneto-optical recording medium
JPH0512733A (en) Magneto-optical recording medium