JPH03156753A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH03156753A
JPH03156753A JP2029431A JP2943190A JPH03156753A JP H03156753 A JPH03156753 A JP H03156753A JP 2029431 A JP2029431 A JP 2029431A JP 2943190 A JP2943190 A JP 2943190A JP H03156753 A JPH03156753 A JP H03156753A
Authority
JP
Japan
Prior art keywords
optical recording
layer
recording medium
magneto
metal reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2029431A
Other languages
Japanese (ja)
Other versions
JP2541677B2 (en
Inventor
Kazutomi Suzuki
鈴木 和富
Takashi Tomie
崇 冨江
Tadanori Nakatani
中谷 忠則
Kiyoshi Chiba
潔 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to CA 2017284 priority Critical patent/CA2017284C/en
Priority to US07/528,981 priority patent/US5093174A/en
Priority to EP19900110529 priority patent/EP0406569B1/en
Priority to DE1990622497 priority patent/DE69022497T2/en
Priority to KR1019900009111A priority patent/KR100194131B1/en
Publication of JPH03156753A publication Critical patent/JPH03156753A/en
Application granted granted Critical
Publication of JP2541677B2 publication Critical patent/JP2541677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve recording sensitivity and to obtain the optical recording medium having good C/N and excellent durability by using an AgAu alloy obtained by incorporating Au into Ag for the metallic reflecting layer. CONSTITUTION:The metallic reflecting layer is formed with an AgAu alloy obtained by incorporating >=0.5 atomic percent of Au into Ag. Namely, the AgAu alloy film has low heat conductivity, the recording sensitivity of the medium is improved, the reflectivity is not significantly reduced as compared with an Ag film, etc., and hence the C/N of the medium is improved. Furthermore, the film itself is highly durable and has a good protecting function. Consequently, the durability of the medium is improved, and a magneto-optical recording medium excellent in recording sensitivity, C/N and durability is obtained.

Description

【発明の詳細な説明】 く利用分野〉 本発明はレーザー等の光により、情報の記録、再生、消
去等を行なう光記録媒体に関する。更に詳細には、金属
反射層を有する光記録媒体に関し、中でも記録層が光磁
気記録層である光磁気記録媒体に特に好ましく適用でき
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to an optical recording medium on which information is recorded, reproduced, erased, etc. using light such as a laser. More specifically, the present invention relates to an optical recording medium having a metal reflective layer, and is particularly preferably applicable to a magneto-optical recording medium in which the recording layer is a magneto-optical recording layer.

〈従来技術〉 光記録媒体は高密度・大容量の情報記録媒体として種々
の研究開発が行なわれている。特に情報の消去可能な光
磁気記録媒体は応用分野が広く稲々の材料・システムが
発表されており、その実用化が待望されている。
<Prior Art> Various research and developments are being conducted on optical recording media as high-density, large-capacity information recording media. In particular, magneto-optical recording media from which information can be erased have a wide range of applications, and numerous materials and systems have been announced, and their practical application is eagerly awaited.

上述の光磁気記録材料としては、例えば、特開昭52−
31703号公報記載のFeTb、特開昭56−126
907号公報記載のFeTbG4、特開昭58−737
46号公報記載のFeTbCo、 FeCoDy、特開
昭61−165846号公報記載のPeNd等既に多く
の提案がある。しかし、これらの情報の消去可能な光磁
気記録媒体の実用化には、記録、再生特性のより一層の
向上が必要である。
As the above-mentioned magneto-optical recording material, for example, JP-A-52-
FeTb described in Publication No. 31703, JP-A-56-126
FeTbG4 described in Publication No. 907, JP-A-58-737
There have already been many proposals such as FeTbCo and FeCoDy described in Japanese Patent Application Laid-Open No. 165846/1984. However, in order to put these information erasable magneto-optical recording media into practical use, it is necessary to further improve recording and reproducing characteristics.

これに対し、光磁気記録層上、もしくはその上に誘電体
層を介して金属反射層を設ける方法が提案されている。
In contrast, a method has been proposed in which a metal reflective layer is provided on the magneto-optical recording layer or thereon via a dielectric layer.

この方式はカー効果とファラデー効果の併用により高い
C/Nを得る点で優れている。従来この金属反射層とし
て、AIを用いたもの(特開昭58−83346号公報
、特開昭59−132434号公報) 、Cmを用いた
ちのく特開昭59−8150号公報〉、AI系合金を用
いたもの〈特開昭62−137743号公報〉、ステン
レスを用いたもの(特開昭59−171054号公報)
、Teを用いたらのく特開昭62−52744号公報)
、非晶質金属膜を用いたもの(特開昭61−57053
号公報)等が提案されている。しかしながら、高反射率
のAg、 AI、 eu等を用いた場合にはその高熱伝
導性のため記録感度が大幅に低下し、一方比較的熱伝導
性の低いステンレス、Teを用いた場合には記録感度は
向上するが反射率が低いため、十分なC/N比が得られ
ないという問題を有する。
This method is excellent in that a high C/N can be obtained by using both the Kerr effect and the Faraday effect. Conventionally, as this metal reflective layer, AI was used (JP-A-58-83346, JP-A-59-132434), Cm was used (JP-A-59-8150), AI-based Those using alloy (Japanese Unexamined Patent Publication No. 62-137743), those using stainless steel (Japanese Unexamined Patent Publication No. 59-171054)
, Taranoku using Te (Japanese Patent Application Laid-Open No. 62-52744)
, using an amorphous metal film (Japanese Patent Application Laid-Open No. 61-57053
Publication No. 2), etc. have been proposed. However, when materials such as Ag, AI, and eu with high reflectivity are used, recording sensitivity decreases significantly due to their high thermal conductivity, while when stainless steel and Te, which have relatively low thermal conductivity, are used, recording Although the sensitivity is improved, the reflectance is low, so there is a problem that a sufficient C/N ratio cannot be obtained.

また高温多湿化での記録層の劣化があり、これら金属層
で記録層を保護する必要があった。
Furthermore, the recording layer deteriorates due to high temperature and humidity, and it is necessary to protect the recording layer with these metal layers.

これらの問題に対し、AIへのTa添加(特開昭64−
4938号公報1 、An、 Ag、 AI、 Cuへ
のTi、 Mg、希土類添加(特開昭59−38781
号公報)、A1へのCo −111g合金、Mg−3i
合金、Cr、 Sn、 Mgの添加(特開昭62−23
9349号公報)、AIへのTi添加(特開昭62−1
37743号公報、特開昭64−66847号公報)等
の各種合金膜が提案されている。しかし、これらの従来
の合金膜により、高反射率を保持したままで熱伝導率を
改善することは可能であるが、高温多湿化での耐久性を
改善するには、添加元素をかなりの量添加する必要があ
り、これに必要な量添加すると反射層として必要な高反
射率を保持することはできず、反射層と保護層の両機能
を満足するものが得られない。
To solve these problems, Ta addition to AI (Japanese Unexamined Patent Application Publication No. 1983-1999)
No. 4938 Publication 1, Addition of Ti, Mg, and Rare Earths to An, Ag, AI, and Cu (JP-A-59-38781
No. Publication), Co-111g alloy to A1, Mg-3i
Addition of alloy, Cr, Sn, Mg (JP-A-62-23
9349), addition of Ti to AI (JP-A-62-1
Various alloy films have been proposed, such as those disclosed in Japanese Patent Laid-open No. 37743 and Japanese Unexamined Patent Publication No. 64-66847. However, although it is possible to improve thermal conductivity while maintaining high reflectance with these conventional alloy films, it is necessary to add significant amounts of additive elements to improve durability under high temperature and high humidity conditions. If it is added in the necessary amount, it will not be possible to maintain the high reflectance required for the reflective layer, and it will not be possible to obtain a layer that satisfies both the functions of a reflective layer and a protective layer.

〈発明の目的〉 本発明はかかる現状に鑑みなされたもので、金属反射層
の改良により高感度で高C/N比の特性を有し、かつ耐
久性に優れた光記録媒体を提供することを目的としたも
のである。
<Objective of the Invention> The present invention was made in view of the current situation, and it is an object of the present invention to provide an optical recording medium that has characteristics of high sensitivity and high C/N ratio and excellent durability by improving the metal reflective layer. The purpose is to

〈発明の構成及び作用効果〉 上述の目的は以下の本発明により達成される。<Structure and effects of the invention> The above objects are achieved by the invention as follows.

すなわち、本発明は、金属反射層を有する光記録媒体に
おいて、該金属反射層がAgにAuを0.5at%以上
含有せしめたAgAu合金からなることを特徴とする光
記録媒体である。
That is, the present invention is an optical recording medium having a metal reflective layer, characterized in that the metal reflective layer is made of an AgAu alloy containing 0.5 at% or more of Au in Ag.

上述の本発明は以下のようにしてなされたものである。The above-mentioned present invention was made as follows.

すなわち、本発明者らは上述の欠点を克服すべく鋭意検
討した結果、該金属反射層をAgにAuを含有せしめた
AgAu合金とすることにより、従来例のAg反射膜に
比較して記録感度が大巾に向上し、C/Nが良好で更に
耐久性にも優れた光記録媒体が得られることを見出し、
本発明に到達した。
That is, as a result of intensive studies by the present inventors to overcome the above-mentioned drawbacks, by making the metal reflective layer an Ag-Au alloy in which Ag contains Au, the recording sensitivity is improved compared to the conventional Ag reflective film. discovered that it is possible to obtain an optical recording medium with a large improvement in C/N ratio, and excellent durability.
We have arrived at the present invention.

以下、これについて詳細に説明する。This will be explained in detail below.

本発明のAgAu合金の金属反射膜を設けた光記録媒体
で記録感度が向上する理由は、記録感度が金属反射膜の
熱伝導性と密接に関係しているところから、熱伝導率の
よいAuを含有せしめたAgAu合金の熱伝導率がAg
膜に比較して驚くべきことに低下したことによる。
The reason why the recording sensitivity of the optical recording medium provided with the AgAu alloy metal reflective film of the present invention is improved is that the recording sensitivity is closely related to the thermal conductivity of the metal reflective film. The thermal conductivity of AgAu alloy containing Ag
This is due to a surprising decrease compared to the membrane.

そして、かかる熱伝導率の低下の効果、換言すれば記録
感度の向上の面から本発明のAgAu合金のAuの含有
量は、0.5at%以上、更に好ましくは2.0at%
以上であり、この範囲は媒体特に光磁気記録媒体の耐久
性面からも好ましい。Auの含有量の上限については記
録感度面、耐久性面では特に制限はないが、実施例の光
磁気記録媒体においては、Auの増加により若干C、/
 Nが低下しくこれは反射率の低下と関連すると考えら
れる)、また記録感度向上(熱伝導率低下)効果も飽和
する傾向にあり、Auの価格を考慮すると実用面からは
50at%以下が好ましい。そして、C/′Nすなわち
反射率及び記録感度すなわち熱伝導率の特性の面からは
、30 at%以下、更には15 at%以下が好まし
い。
In view of the effect of reducing thermal conductivity, in other words, improving recording sensitivity, the content of Au in the AgAu alloy of the present invention is 0.5 at% or more, more preferably 2.0 at%.
This range is preferable from the viewpoint of durability of the medium, especially the magneto-optical recording medium. There is no particular restriction on the upper limit of the Au content in terms of recording sensitivity and durability, but in the magneto-optical recording medium of the example, due to the increase in Au, there is a slight increase in C, /
(This is thought to be related to a decrease in reflectance), and the effect of improving recording sensitivity (decreasing thermal conductivity) tends to reach saturation. Considering the price of Au, from a practical standpoint, 50 at% or less is preferable. . From the viewpoint of C/'N, that is, reflectance, and recording sensitivity, that is, thermal conductivity, it is preferably 30 at% or less, more preferably 15 at% or less.

なお、本発明のAgAu合金はその特性を損なわない範
囲で他の金属元素を含有してもよいことはいうまでもな
い。
It goes without saying that the AgAu alloy of the present invention may contain other metal elements within a range that does not impair its properties.

更にこのAgAu合金に特定の元素を含有せしめること
により、記録感度向上すなわち熱伝導率低下、C/N向
上、更には耐久性向上が得られることを見出した。この
特定の元素は、Ti、 Ta、 Zr、 Y。
Furthermore, it has been found that by incorporating specific elements into this AgAu alloy, it is possible to improve recording sensitivity, that is, to lower thermal conductivity, to improve C/N, and to improve durability. This particular element is Ti, Ta, Zr, Y.

Re等のAg、 Auを除いた遷移金属、In、 Sn
、 Zn、 Mgの群から選ばれた少なくとも1種の元
素であり、中でもTi、 Ta、 Zr、 Yの少なく
とも1種が好ましい。またこれらの元素によりAu含有
量が少なくても充分な前述の効果が得られ、Au量削減
によるコストダウンがはかれる。この中でもAgにAu
を0.5〜15 at%含有せしめ、更に前記特定の元
素の少なくとも1種を0.3〜8.0at%含有せしめ
なAgAu合金が、記録感度、高温高湿下での耐久性、
C/N、コストの4点で優れている点で好ましく、とり
わけAuと前記特定元素の合計の含有量が1.0〜15
 at%である組成のAgAu合金が好ましい。
Ag such as Re, transition metals other than Au, In, Sn
, Zn, and Mg, and at least one of Ti, Ta, Zr, and Y is preferred. Furthermore, due to these elements, sufficient effects described above can be obtained even with a small Au content, and costs can be reduced by reducing the Au content. Among these, Ag and Au
The AgAu alloy containing 0.5 to 15 at% of 0.5 to 15 at% and further containing 0.3 to 8.0 at% of at least one of the above-mentioned specific elements has excellent recording sensitivity, durability under high temperature and high humidity,
It is preferable because it is excellent in the four points of C/N and cost, and in particular, the total content of Au and the specific element is 1.0 to 15
Preferred is an AgAu alloy having a composition of at%.

なお、以上の本発明の金属反射膜には経時安定性を更に
改善するために、Cr、 Nb、 Reなどの他の元素
を少量添加してもよい。
Incidentally, in order to further improve the stability over time, a small amount of other elements such as Cr, Nb, and Re may be added to the metal reflective film of the present invention.

これらの金属反射層の膜厚は100〜200OAが好ま
しく、300〜800 Aがさらに好ましい。厚すぎる
場合には感度が低下し、薄すぎる場合には反射膜の反射
率が低下しC/Nが劣化する。
The thickness of these metal reflective layers is preferably 100 to 200 OA, more preferably 300 to 800 OA. If it is too thick, the sensitivity will decrease, and if it is too thin, the reflectance of the reflective film will decrease and the C/N will deteriorate.

これら金属反射層の形成方法としては、公知の真空蒸着
法、スパッタリング法、イオンビームスパッタリング法
、CVD法などが考えられるが、下地層との接着性、合
金組成の制御性、組成分布などの点でスパッタリング法
が好ましい。また膜の堆積速度、スパッタガス圧などは
、生産性、膜応力を考慮し、適宜選択される。
Possible methods for forming these metal reflective layers include well-known vacuum evaporation methods, sputtering methods, ion beam sputtering methods, and CVD methods; A sputtering method is preferred. Further, the film deposition rate, sputtering gas pressure, etc. are appropriately selected in consideration of productivity and film stress.

本発明の光記録媒体としては、前述の光磁気記録媒体の
他、周知のコンパクトディスク、ビデオディスク等反射
膜を用いるものであれば特に限定されないことは本発明
の趣旨から明らかである。
It is clear from the spirit of the present invention that the optical recording medium of the present invention is not particularly limited as long as it uses a reflective film, such as well-known compact disks and video disks, in addition to the above-mentioned magneto-optical recording medium.

中でも酸化しやすい希土類元素を記録層として用いる光
磁気記録媒体に特に好ましく適用できる。
Among them, it can be particularly preferably applied to a magneto-optical recording medium that uses a rare earth element that is easily oxidized as a recording layer.

ところで、この光磁気記録媒体は、記録層としては、光
熱磁気効果により記録できるものであればよく、公知の
、膜面に垂直な方向に磁化容易方向を有し、磁気光学効
果の大きい磁性金属薄膜、例えば前述のFeTb合金、
FeTbCo合金、FeTbGd合金及びNdDyFe
Co合金、等の希土類元素−遷移金属元素の非晶質合金
が代表例として挙げられる。光磁気記録層の膜厚は15
0〜1000人、好ましくは200〜500 Aである
By the way, in this magneto-optical recording medium, the recording layer may be any material as long as it can record by the photothermal magnetic effect, and may be a known magnetic metal having an easy magnetization direction perpendicular to the film surface and having a large magneto-optic effect. a thin film, such as the aforementioned FeTb alloy,
FeTbCo alloy, FeTbGd alloy and NdDyFe
Typical examples include amorphous alloys of rare earth elements and transition metal elements, such as Co alloys. The film thickness of the magneto-optical recording layer is 15
0 to 1000 people, preferably 200 to 500 A.

またその積層構成は、その金属反射層が光磁気記録層の
光入射面と反対側に形成される点を除いてその構成は特
に限定されない。中でも金属反射層と光磁気記録層間に
透明誘電体層を設ける構成は、感度、C/N、耐久性の
向上面より好ましい。
Further, the laminated structure is not particularly limited except that the metal reflective layer is formed on the side opposite to the light incident surface of the magneto-optical recording layer. Among these, a configuration in which a transparent dielectric layer is provided between the metal reflective layer and the magneto-optical recording layer is preferable from the viewpoint of improving sensitivity, C/N, and durability.

更に、基板と光磁気記録層間にも誘電体層を設けた構成
、つまり光磁気記録層を透明誘電体層ではさんだ構成は
、−層のC/N向上、透湿防止などの効果による耐久性
向上が得られ更に好ましい。
Furthermore, a structure in which a dielectric layer is also provided between the substrate and the magneto-optical recording layer, that is, a structure in which the magneto-optical recording layer is sandwiched between transparent dielectric layers, improves durability due to effects such as improving C/N of the layer and preventing moisture permeation. It is more preferable because improvement can be obtained.

一方、金属反射層を光磁気記録層上に直接接して設けた
構成でも、本発明のAgAu合金からなる金属反射層は
実用上充分な性能を示す。この構成は透明誘電体層が不
要となるので、生産性と媒体コストの観点より好ましい
。これらの各構成は目的に応じて選択される。
On the other hand, even in a configuration in which the metal reflective layer is provided in direct contact with the magneto-optical recording layer, the metal reflective layer made of the AgAu alloy of the present invention exhibits practically sufficient performance. This configuration eliminates the need for a transparent dielectric layer, and is therefore preferable from the viewpoint of productivity and medium cost. Each of these configurations is selected depending on the purpose.

上記構成に用いる基板側、金属反射層側の両透明誘電体
層としては、その目的により光干渉効果、カー効果エン
ハンスメント等の効果を奏することが必要で、ある程度
以上の高屈折率を有することが好ましい。また使用する
レーザー光に透明であることか必要であり、透明誘電体
層としては公知の通り金属の酸化物、窒化物、硫化物、
炭化物、弗化物もしくはこれらの複合体が適用できる。
Both the transparent dielectric layers on the substrate side and the metal reflective layer side used in the above structure need to have effects such as optical interference effect and Kerr effect enhancement depending on their purpose, and must have a high refractive index above a certain level. preferable. In addition, it is necessary to be transparent to the laser beam used, and as a transparent dielectric layer, metal oxides, nitrides, sulfides,
Carbide, fluoride, or a composite thereof can be applied.

具体的には酸化ケイ素、酸化インジウム、酸化タンタル
、酸化アルミニウム、チッ化ケイ素、チッ化アルミニウ
ム、チッ化チタン、硫化亜鉛、フッ化マグネシウム、フ
ッ化アルミニウム、炭化ケイ素及びこれらの複合物が挙
げられるが、これに限定されないことはいうまでもない
。これらの誘電体は、膜中に金属元素を含んだものでも
よい。またパリレン、ポリイミド、パラフィンなど有機
物も適用できる。これら透明誘電体の複層1造でもよい
Specific examples include silicon oxide, indium oxide, tantalum oxide, aluminum oxide, silicon nitride, aluminum nitride, titanium nitride, zinc sulfide, magnesium fluoride, aluminum fluoride, silicon carbide, and composites thereof. , needless to say, is not limited to this. These dielectrics may contain metal elements in their films. Organic materials such as parylene, polyimide, and paraffin can also be used. A multilayer structure of these transparent dielectrics may be used.

光磁気記録層等の酸化しやすい記5i層に接する透明誘
電体としては、酸化劣化防止面から窒化物等の酸素を含
まないものが好ましい。中でも窒化アルミニウム、窒化
シリコン、アルミニウム・シリコン窒化物が膜応力、膜
質面から好ましく適用される。
The transparent dielectric material in contact with the oxidizable layer 5i, such as the magneto-optical recording layer, is preferably one that does not contain oxygen, such as nitride, from the viewpoint of preventing oxidative deterioration. Among them, aluminum nitride, silicon nitride, and aluminum-silicon nitride are preferably used in terms of film stress and film quality.

これら透明誘電体層の膜厚は、媒体構成、屈折率により
最適値が変化する。例えば前述の透明誘電体層で光磁気
記録層を挟んだ構成では、基板と光磁気記録層との間の
透明誘電体層の膜厚によって、光磁気記録層と金属反射
層との間の透明誘電体層の最適膜厚も変化するので、一
義的に決めることはできないが、通常は、基板と光磁気
記録層との間の透明誘電体膜厚が300〜1600人程
度、光磁気記録層と金属反射層との間の透明誘電体膜厚
が30〜600人が好適に用いられる。しかしもちろん
、これらの膜厚範囲に限定されるものではない。
The optimum thickness of these transparent dielectric layers varies depending on the medium configuration and refractive index. For example, in the above-mentioned structure in which a magneto-optical recording layer is sandwiched between transparent dielectric layers, the thickness of the transparent dielectric layer between the substrate and the magneto-optical recording layer will depend on the thickness of the transparent dielectric layer between the magneto-optical recording layer and the metal reflective layer. The optimal thickness of the dielectric layer also varies, so it cannot be determined unambiguously, but usually the thickness of the transparent dielectric between the substrate and the magneto-optical recording layer is about 300 to 1,600, and the thickness of the magneto-optical recording layer The thickness of the transparent dielectric film between the metal reflective layer and the metal reflective layer is preferably 30 to 600 mm. However, of course, the film thickness is not limited to these ranges.

これら透明誘電体層は常法により形成される。These transparent dielectric layers are formed by conventional methods.

例えば前述の無機物よりなるものは公知の真空蒸着法、
スパッタリング法、イオンビームスパッタリング法、C
VD法等で作製される。
For example, for those made of the above-mentioned inorganic substances, the known vacuum evaporation method,
Sputtering method, ion beam sputtering method, C
It is manufactured by VD method etc.

また基板としては、ガラス、アクリル樹脂、ポリカーボ
ネート樹脂、エポキシ樹脂、4−メチルペンテン樹脂及
びそれらの変成品などが好適に用いられるが、機械的強
度、価格、耐候性、耐熱性、透湿量の点でポリカーボネ
ート樹脂が好ましい。
In addition, glass, acrylic resin, polycarbonate resin, epoxy resin, 4-methylpentene resin, and modified products thereof are preferably used as the substrate, but they are limited in mechanical strength, price, weather resistance, heat resistance, and moisture permeability. In this respect, polycarbonate resin is preferred.

上述した構成の金属反射層上に無機材料からなる無機保
護層を設けることにより、高温高湿下や、耐ガス性など
の耐久性が更に改善され、より好ましい。特にAgAu
合金ではH2Sガスなどにより劣化し、特性が低下する
場合があるが、この無機保護層により、それを著しく改
善することができる。
By providing an inorganic protective layer made of an inorganic material on the metal reflective layer having the above-mentioned structure, durability such as resistance to high temperature and high humidity and gas resistance is further improved, which is more preferable. Especially AgAu
Although alloys may be degraded by H2S gas or the like and their properties may deteriorate, this inorganic protective layer can significantly improve this.

この無機保護層としては耐透湿性、ガスバリヤ性の良い
ものであれば特に限定されないが、記録特性、耐久性面
より熱伝導率が低く、それ自身耐久性に優れているもの
が好ましく適用される。かかる無機保護層としては、金
属膜と誘電体膜が挙げられる。
This inorganic protective layer is not particularly limited as long as it has good moisture permeability and gas barrier properties, but in terms of recording properties and durability, it is preferably applied that has a low thermal conductivity and is itself excellent in durability. . Such inorganic protective layers include metal films and dielectric films.

金属膜は、それ自身の耐久性が充分高く、かつ媒体の記
録感度を低下させないために熱伝導率が低いことが必要
である。そのような特性を有する金属であれば特に限定
する必要はないが、中でもTi、 Cr、 Ni及びこ
れらの合金からなる金属膜は特に好ましい。なお、金属
膜の膜厚は上記諸点より10〜300人が好ましく、更
に好ましくは30〜250人である。
The metal film itself must have sufficiently high durability and low thermal conductivity so as not to reduce the recording sensitivity of the medium. There is no need to specifically limit the metal as long as it has such characteristics, but metal films made of Ti, Cr, Ni, and alloys thereof are particularly preferred. Note that the thickness of the metal film is preferably 10 to 300 people, more preferably 30 to 250 people, from the above points.

一方誘電体膜は、熱伝導率が低く膜厚が厚くても記録特
性への影響が小さく、十分な保護ができる点で優れてい
る。かかる誘電体膜には前述のエンハンス層等として公
知の透明誘電体がそのまま適用できるが特に耐透湿性も
良いという点で窒化アルミニウム、窒化シリコン、アル
ミニウム・シリコン窒化物の窒化物膜、酸化シリコン、
R化チタンの酸化物膜が好ましく、中でも窒化物膜が酸
素が関係しない点で好ましい。
On the other hand, dielectric films are superior in that they have low thermal conductivity, have little effect on recording characteristics even if they are thick, and can provide sufficient protection. For such dielectric films, known transparent dielectrics can be used as they are as the aforementioned enhancement layer, but aluminum nitride, silicon nitride, nitride films of aluminum/silicon nitride, silicon oxide,
An oxide film of titanium Ride is preferable, and a nitride film is particularly preferable since oxygen is not involved.

誘電体膜の膜厚は、その材料の熱伝導度、生産性、耐久
性改善に及ぼす効果によって決められる。
The thickness of the dielectric film is determined by its effect on improving the thermal conductivity, productivity, and durability of the material.

一義的には言えないが、10〜500人、好ましくは5
0〜300人が好適に用いられる。
Although it cannot be said unambiguously, 10 to 500 people, preferably 5
0 to 300 people are preferably used.

またこの無機保護層は光記録層、金属反射層の上面だけ
でなく、それらの端部を覆うことによりその効果は一層
顕著になる。
Furthermore, by covering not only the upper surfaces of the optical recording layer and the metal reflective layer but also the edges thereof, the inorganic protective layer becomes more effective.

前記金属反射層及び無機保護層の形成方法としては、公
知の真空蒸着法、スパッタリング法、イオンビームスパ
ッタリング法、CVD法などが考えられるが、下地層と
の接着性1合金組成の制御性2組成分布などの点でスパ
ッタリング法が好ましい。また膜の堆積速度、ガス圧な
どは、生産性。
As a method for forming the metal reflective layer and the inorganic protective layer, publicly known vacuum evaporation methods, sputtering methods, ion beam sputtering methods, CVD methods, etc. can be considered. A sputtering method is preferable in terms of distribution and the like. In addition, the film deposition rate, gas pressure, etc. are factors that affect productivity.

膜応力を考慮し、適宜選択される。It is selected appropriately in consideration of membrane stress.

更に、通常はこの無機保護層上に、機械的保護、更なる
耐久性の向上等の目的で有機の光及び熱硬化型樹脂ある
いは熱可塑性樹脂からなる有機保護層を設けるのが一般
である。
Furthermore, it is common to provide an organic protective layer made of an organic photo- and thermosetting resin or thermoplastic resin on this inorganic protective layer for the purpose of mechanical protection, further improvement of durability, and the like.

以上の構成の光記録媒体は、公知の通り上記構成のまま
で、更に保護平板、保護フィルム等必要な保護を付加し
て片面記録媒体として、あるいはその2枚を金属反射層
側で貼り合わせた両面記録媒体として使用される。
As is known, the optical recording medium with the above structure can be used as a single-sided recording medium by adding necessary protection such as a protective flat plate or a protective film, or by bonding the two sheets together with the metal reflective layer side. Used as a double-sided recording medium.

以下、本発明を光磁気記録媒体の実施例に基いて説明す
るが、本発明は以下の実施例に限定されるものではない
The present invention will be described below based on examples of magneto-optical recording media, but the present invention is not limited to the following examples.

〈実施例1・〜4.比較例1〉 第1図に示す基板1上に透明誘電体層2、光磁気記録層
3、金属反射層4を順次積層し、さらに有機保護層5を
積層した構成の光磁気記録媒体を以下のように作成し評
価した。
<Example 1-4. Comparative Example 1 A magneto-optical recording medium having a structure in which a transparent dielectric layer 2, a magneto-optical recording layer 3, a metal reflective layer 4 are sequentially laminated on a substrate 1 shown in FIG. 1, and an organic protective layer 5 is further laminated is as follows. It was created and evaluated as follows.

直径130mm 、厚さ1.2mmの円盤で1.6μm
ピッチのグループを有するポリカーボネート樹脂(PC
〉製のディスク基板1を、3ターゲツト設置可能な高周
波マグネトロンスパッタ装置(アネルバ■製5PF−4
30H型)の真空槽内に配置し、4 X 1O−7To
rrになるまで排気しな。
1.6 μm in a disk with a diameter of 130 mm and a thickness of 1.2 mm.
Polycarbonate resin (PC) with pitch groups
A high-frequency magnetron sputtering device (manufactured by ANELVA 5PF-4
30H type) vacuum chamber, and 4 x 1O-7To
Do not exhaust until it reaches rr.

次にAr、N2の混合ガス(Ar : N2=70 :
 30 vo1%)を真空槽内に導入し、圧力10mT
orrになるようにA r / N2混合ガス流量を調
整した。ターゲットとしては直径100mm 、厚さ5
mmのAl5oS!5o (以下、添数字は組成(原子
%)を示す)の焼結体からなる円盤を用い、放電電力5
00W、放電周波数13.561EZで高周波スパッタ
リングを行ない、PC基板を回転(自転)させながら、
透明誘電体2としてAl5iN膜′を800人堆積した
Next, a mixed gas of Ar and N2 (Ar: N2=70:
30 vo1%) was introduced into the vacuum chamber, and the pressure was 10 mT.
The A r /N2 mixed gas flow rate was adjusted so that the A r /N2 mixed gas flow rate was orr. The target is 100mm in diameter and 5mm thick.
mm of Al5oS! Using a disk made of a sintered body of 5o (hereinafter, the suffix indicates the composition (atomic %)), the discharge power was 5o.
Performing high frequency sputtering at 00W and discharge frequency of 13.561EZ, while rotating (rotating) the PC board,
As the transparent dielectric 2, 800 Al5iN films were deposited.

続いて光磁気記録層3として、Tb2□FeフtCos
合金ターゲットを用い、Arガス圧2m Torr、放
電電力150Wの条件で高周波スパッタリングを行ない
、約300人のTbFeCo合金膜を堆積した。
Subsequently, as the magneto-optical recording layer 3, Tb2□FeftCos
Approximately 300 TbFeCo alloy films were deposited by high-frequency sputtering using an alloy target under conditions of Ar gas pressure of 2 m Torr and discharge power of 150 W.

更に引き続いて、Agターゲットを用い、適宜3mm角
ximm厚のAuチップをターゲット上に配し、Arガ
ス圧2m Torr、放電電力100Wの条件で高周波
スパッタリングを行ない、Auの含有量を変えた表1、
の実施例1〜4の各組成のAgAu合金からなる400
人の金属反射層4を堆積し、PC基板/ A I S 
iN/TbFeCo/金属反射層の積層構造の光磁気デ
ィスクを得た。金属反射層4の各AgAu合金膜のAu
量はAgターゲット上のAuチップの数を変化させて表
1の実施例1〜4の各組成に調整した。
Subsequently, using an Ag target, appropriately placing an Au chip of 3 mm square and xi mm on the target, high frequency sputtering was performed under the conditions of Ar gas pressure of 2 m Torr and discharge power of 100 W, and the Au content was varied.Table 1 ,
400 made of AgAu alloys having the respective compositions of Examples 1 to 4.
Deposit the metal reflective layer 4 on the PC board/AIS
A magneto-optical disk having a laminated structure of iN/TbFeCo/metal reflective layer was obtained. Au of each AgAu alloy film of metal reflective layer 4
The amount was adjusted to each composition of Examples 1 to 4 in Table 1 by changing the number of Au chips on the Ag target.

これら各層の形成時において、PC基板は20rpmで
回転させた。
During the formation of each of these layers, the PC board was rotated at 20 rpm.

得られた光磁気ディスクは光磁気記録再生装置(ナカミ
チ1朱製0MS−1000型)を用い、下記条件でC、
/ Nと記録感度の指標となる最適記録レーザーパワー
を評価した。書込み時の半導体レーザーパワーを変化さ
せ、再生信号の二次高調波が最小となる時が最適記録条
件とした。
The obtained magneto-optical disk was recorded with C,
/N and the optimum recording laser power, which is an index of recording sensitivity, were evaluated. The semiconductor laser power during writing was varied, and the optimal recording condition was set when the second harmonic of the reproduced signal was minimized.

[記録条件] ディスク回転速度: 1800rpm 、記録トラック
位置:半径30mm位置、記録周波数: 2MHz 、
記録時の印加磁界=500エルステッド [再生条件] ディスク回転速度: 1800rpm 、続出レザーパ
ワー + 1.2mW 最適記録レーザーパワー及びC/Nの測定結果を表−1
に示す。
[Recording conditions] Disk rotation speed: 1800 rpm, recording track position: 30 mm radius, recording frequency: 2 MHz,
Magnetic field applied during recording = 500 Oe [Reproduction conditions] Disk rotation speed: 1800 rpm, successive laser power + 1.2 mW Table 1 shows the measurement results of the optimum recording laser power and C/N.
Shown below.

なお、表−1の比絞例1は金属反射層以外は実施例1〜
4と同じ構成で、金属反射層を実施例1〜4のkuチッ
プを除去して形成したAnを含有しない単なるAg反射
膜を有する光磁気ディスクである。
Note that Example 1 in Table 1 is the same as Example 1 except for the metal reflective layer.
This magneto-optical disk has the same structure as Example 4, but has a metal reflective layer formed by removing the ku chips of Examples 1 to 4, and has a simple Ag reflective film that does not contain An.

またその最適記録レーザーパワーの欄の(20mW以上
)は、用いたレーザーの最大出力10mWでは記録でき
ず、ディスク回転速度を半分にして10mWで少しの再
生信号が得られた状態をいう。
Also, (20 mW or more) in the optimum recording laser power column means that recording was not possible with the maximum output of the laser used, 10 mW, and a small reproduction signal was obtained with the disk rotation speed halved to 10 mW.

表 1 また、実施例1,2.3と比較例1のディスクの金属反
射層4上に、スピンコーターで紫外線硬化型のフェノー
ルノボラックエポキシアクリレート樹脂を塗布し、その
後紫外線照射により硬化させ、約20μmの有機保護層
5を設けた。これらのサンプルを温度70℃、湿度85
%の条件で1000hrの加速劣化試験を行なったとこ
ろ、比較例1では多くのピンホールが発生したが、実施
例1..2.3のディスクではC/N、外観とも全く変
化がなく、本発明の金属反射膜は、反射膜自体が耐久性
に優れると共に記録膜の劣化を防止する保護機能も有す
ることが確認された。
Table 1 Furthermore, on the metal reflective layer 4 of the disks of Examples 1, 2.3 and Comparative Example 1, an ultraviolet curable phenol novolac epoxy acrylate resin was applied using a spin coater, and then cured by ultraviolet irradiation to a thickness of about 20 μm. An organic protective layer 5 was provided. These samples were heated to a temperature of 70°C and a humidity of 85°C.
When an accelerated deterioration test was conducted for 1000 hours under conditions of .. There was no change in C/N or appearance in the disc No. 2.3, confirming that the metal reflective film of the present invention has excellent durability and also has a protective function to prevent deterioration of the recording film. .

〈実施例5・〜9〉 金属反射層4を、実施例1〜4と異なりAgターゲット
上にAuのチップだけではなく、この他に含有させる特
定の元素としてTi、 Ta、 Zr、 Yのチップを
のせて形成し、各々の金属を添加したAgAu合金膜と
した以外は、実施例1〜4と同様の方法で同じ構成の光
磁気ディスクサンプルを作製し、同様の評価を行なった
。その結果を表−2に示す。
<Examples 5 to 9> Unlike Examples 1 to 4, the metal reflective layer 4 was not only made of Au chips on the Ag target, but also contained Ti, Ta, Zr, and Y chips as specific elements. Magneto-optical disk samples having the same configuration as in Examples 1 to 4 were prepared in the same manner as in Examples 1 to 4, except that the AgAu alloy films were formed by adding the respective metals, and the same evaluations were performed. The results are shown in Table-2.

表−2 また実施例5〜9のサンプル上に、前述の実施例]・〜
3と同じ有機保護層5を設け、温度80℃、湿度85%
の条件で1000hrの加速劣化試験を行なったが、い
ずれもC/N、外観とも全く変化がみられず、実施例の
金属反射層は前述の耐久性並びに保護性能を有すること
が確認された。
Table 2 In addition, on the samples of Examples 5 to 9, the above-mentioned Examples]・~
The same organic protective layer 5 as in 3 was provided, and the temperature was 80°C and the humidity was 85%.
An accelerated deterioration test was conducted for 1000 hours under the following conditions, but no change was observed in either C/N or appearance, confirming that the metal reflective layer of the example had the above-mentioned durability and protective performance.

以上の実施例で示すように、AgにAuを0.5at%
以上添加しなAgh合金膜は、C/N、記録感度、高温
高湿下での耐久性に優れ、とりわけ特定の元素Ti、 
Ta、 Zr、 Yを含有せしめたA g A、u合金
では記録感度が更に向上することがわかる。
As shown in the above examples, 0.5 at% of Au is added to Ag.
The Agh alloy film without any of the above additives has excellent C/N, recording sensitivity, and durability under high temperature and high humidity.
It can be seen that the recording sensitivity is further improved in the A g A, u alloy containing Ta, Zr, and Y.

〈実施例10〜12.比較例2〉 実施例1〜10と同じ第1図の積層構成の光磁気記録媒
体を以下のように作成し、実施例1〜10の倍に近い記
録密度、加速劣化試験時間で評価した。
<Examples 10-12. Comparative Example 2> A magneto-optical recording medium having the same laminated structure shown in FIG. 1 as in Examples 1 to 10 was prepared as follows, and evaluated at a recording density nearly twice that of Examples 1 to 10 and an accelerated deterioration test time.

直径130mm 、厚さl、、2mmの円盤で1.6.
c、zmピッチのグループを有するポリカーボネート樹
脂())C)製のディスク基板1を、3ターゲツト設置
可能な高周波マグネトロンスパッタ装置(アネルバ■製
5PF−430H型)の真空槽内に配置し、4 X 1
O−7Torrになるまで排気した。
1.6 for a disk with a diameter of 130 mm and a thickness of 1, 2 mm.
A disk substrate 1 made of polycarbonate resin ()) C) having groups with a pitch of c and zm was placed in a vacuum chamber of a high frequency magnetron sputtering device (Model 5PF-430H manufactured by Anelva ■) capable of installing 3 targets. 1
The exhaust was evacuated to O-7 Torr.

次にA、r、N2の混合ガス(Ar : N2= 70
 : 30 vo1%)を真空槽内に導入し、圧力10
m TorrになるようにA r / N2混合ガス流
量を調整した。ターゲットとしては直径100mm 、
厚さ5mmのAl3oSi7oの焼結体からなる円盤を
用い、放電電力500W、放電周波数13、56MH7
で高周波スパッタリングを行ない、PC基板を回転(自
転)させながら、透明誘電体2としてAl5iN膜を8
00人堆積しな。
Next, a mixed gas of A, r, and N2 (Ar: N2 = 70
: 30 vo1%) was introduced into the vacuum chamber, and the pressure was 10
The A r /N2 mixed gas flow rate was adjusted so that it became m Torr. The target is 100mm in diameter,
Using a disk made of a sintered body of Al3oSi7o with a thickness of 5 mm, discharge power was 500W, discharge frequency was 13, and 56MH7.
While rotating (rotating) the PC board, an Al5iN film was deposited as the transparent dielectric 2 by high-frequency sputtering.
00 people piled up.

続いて光磁気記録層3として、Tb2□Fe7xCoB
合金ターゲットを用い、Arガス圧2m Torr、放
電電力150Wの条件で高周波スパッタリングを行ない
、約225人のTbFeCo合金膜を堆積しな。
Subsequently, as the magneto-optical recording layer 3, Tb2□Fe7xCoB
Using an alloy target, high frequency sputtering was performed under the conditions of Ar gas pressure of 2 m Torr and discharge power of 150 W to deposit approximately 225 TbFeCo alloy films.

更に引き続いて、Agターゲットを用い、適宜3mm角
X 1 mm厚のA1チップ、更にはTi、 Taチッ
プをターゲット上に配し、Arガス圧2m Torr、
放電電力LOOWの条件で高周波スパッタリングを行な
い、Au、 Ti、 Taの含有量を変えた表−3の実
施例10・〜12の各組成のAgAu合金からなる40
0人の金属反射層4を堆積し、pc基板/Al5iN 
/TbFeCo/金属反射層の積層構造の光磁気ディス
クを得な。
Subsequently, using an Ag target, a 3 mm square x 1 mm thick A1 chip, as well as Ti and Ta chips were placed on the target, and Ar gas pressure was set at 2 m Torr.
High-frequency sputtering was performed under the condition of LOW discharge power, and the contents of Au, Ti, and Ta were varied.
Deposit metal reflective layer 4 on PC board/Al5iN
To obtain a magneto-optical disk having a laminated structure of /TbFeCo/metal reflective layer.

金属反射層4の各AgAu合金膜のAu、 Ti、 T
aのlはAgターゲット上のAn、 Ti、 Taの各
チップの数を変化させて表−3の実施例10〜12の各
組成に調整しな。
Au, Ti, T of each AgAu alloy film of metal reflective layer 4
l of a was adjusted to each composition of Examples 10 to 12 in Table 3 by changing the number of An, Ti, and Ta chips on the Ag target.

これら各層の形成時において、PC基板は20rpmで
回転させた。
During the formation of each of these layers, the PC board was rotated at 20 rpm.

更に、金属反射層4上にスピンコーターで紫外線硬化型
のフェノールノボラックエポキシアクリレート樹脂を塗
布し、その後紫外線照射により硬化させ、約20μmの
有機保護層を設けた。
Furthermore, an ultraviolet-curable phenol novolac epoxy acrylate resin was applied onto the metal reflective layer 4 using a spin coater, and then cured by ultraviolet irradiation to provide an organic protective layer of about 20 μm.

得られた光磁気ディスクの初期特性を測定するとともに
、温度80℃、相対湿度85%の条件で実施例1〜9の
倍の2000hrの耐久性試験を行い、C/Nを測定す
るとともにピンホールの増加数を測定した。光磁気特性
の初期値は光磁気記録再生装置(ナカミチ■製0MS−
1000型)を用い、下記条件で記録パワーを変化させ
、再生信号の二次高調波が最小となる時が最適記録条件
としな。下記の通り、記録周波数は実施例1〜9の2倍
近い3.7MHzとした。
In addition to measuring the initial characteristics of the obtained magneto-optical disk, a durability test of 2000 hours, which is twice as long as in Examples 1 to 9, was conducted at a temperature of 80°C and a relative humidity of 85%, and the C/N was measured. The increase in number of was measured. The initial values of the magneto-optical characteristics are determined by the magneto-optical recording and reproducing device (0MS- manufactured by Nakamichi ■).
1000 type), the recording power was varied under the following conditions, and the optimum recording condition was when the second harmonic of the reproduced signal was at its minimum. As described below, the recording frequency was set to 3.7 MHz, which is nearly twice that of Examples 1 to 9.

し記録条件] ディスク回転速度: 1800rpm 、記録トラック
位置二半径30mm位置、記録周波数: 3.7MHz
、記録時の印加磁界=300エルステッド、 duty
: 50%[再生条件] ディスク回転速度: 1800rpm 、読出レザーパ
ワ:1.2mW 最適記録レーザーパワー、C/Nをらびに2000hr
7iのピンホールの増加数を表−3に示す。
[Recording conditions] Disc rotation speed: 1800 rpm, recording track position at 30 mm radius, recording frequency: 3.7 MHz
, Applied magnetic field during recording = 300 oersted, duty
: 50% [Reproduction conditions] Disc rotation speed: 1800 rpm, read laser power: 1.2 mW, optimum recording laser power, C/N and 2000 hr
Table 3 shows the increase in the number of pinholes for 7i.

なお、表−3の比較例2は金属反射層4以外は実施例1
0〜12と同じ構成で、金属反射層4を単なるAg膜よ
りなるAg反射膜(400A)とした光磁気ディスクで
ある。比較例2では最大記録パワ10mWの前記装置で
は測定できず、従って必要な記録パワーは10mW以上
としな。
Note that Comparative Example 2 in Table 3 is the same as Example 1 except for the metal reflective layer 4.
This is a magneto-optical disk having the same configuration as Nos. 0 to 12, with the metal reflection layer 4 being an Ag reflection film (400A) made of a simple Ag film. In Comparative Example 2, measurement could not be performed using the above-mentioned apparatus with a maximum recording power of 10 mW, so the required recording power was set to be 10 mW or more.

実施例10〜12ではピンホール増加数が若干多いが、
2000hr経過後でもC/Nの変化はなく、C/ N
 、記録レーザーパワーのレベルも充分であり実用に耐
えるレベルにあると言える。
In Examples 10 to 12, the number of pinholes increased slightly, but
There was no change in C/N even after 2000 hours, and C/N
The recording laser power level is also sufficient and can be said to be at a level suitable for practical use.

表−3 〈実施例13〜21、比較例3,4〉 実施例1〜12の耐久性改善を目的に、その積層構成に
おいて、光磁気記録層3と金属反射層4との間に透明誘
電体層6を挿入した第2図の積層構成の光磁気ディスク
を作成し、評価した。
Table 3 <Examples 13 to 21, Comparative Examples 3 and 4> In order to improve the durability of Examples 1 to 12, a transparent dielectric was added between the magneto-optical recording layer 3 and the metal reflective layer 4 in the laminated structure. A magneto-optical disk having the laminated structure shown in FIG. 2 in which the body layer 6 was inserted was prepared and evaluated.

光磁気ディスクは、実施例10〜12において、光磁気
記録層3の形成に続いて、後面の透明誘電体層6を前面
の透明誘電体層3と全く同様に120人の膜厚に形成す
る以外は実施例10〜12と全く同様にして、表−4に
示す各種AgAu合金からなる金属反射層を有するもの
を製作した。
In Examples 10 to 12, for the magneto-optical disk, following the formation of the magneto-optical recording layer 3, the transparent dielectric layer 6 on the rear surface was formed to a thickness of 120 nm in exactly the same manner as the transparent dielectric layer 3 on the front surface. Except for this, in exactly the same manner as in Examples 10 to 12, products having metal reflective layers made of various AgAu alloys shown in Table 4 were manufactured.

そして、得られな各光磁気ディスクの評価も実施例10
〜12と全く同様にして行った。
Also, evaluation of each obtained magneto-optical disk was also carried out in Example 10.
It was carried out in exactly the same manner as in 12.

表 なお、表−4の比較例3は、金属反射層4以外は実施例
13〜21と同じ構成で、金属反射層4を実施例13〜
21のAuチップを除去して形成したAuを含有しない
単なるAg反射膜とした光磁気ディスクである。また比
較例4は、金属反射層4のみをAlTi合金(Ti:2
at%)にして600人厚に形成し、その他は実施例1
3〜21と同じ構成の光磁気ディスクである。
Table 4 Comparative Example 3 has the same configuration as Examples 13 to 21 except for the metal reflective layer 4.
This is a magneto-optical disk which is formed by removing the Au chip of No. 21 and is simply an Ag reflective film that does not contain Au. Further, in Comparative Example 4, only the metal reflective layer 4 was formed using an AlTi alloy (Ti:2
at%) to a thickness of 600, and the rest was as in Example 1.
This is a magneto-optical disk having the same configuration as Nos. 3 to 21.

金属反射層4が、Agの場合く比較例3)には、記録パ
ワーが大きく、本評価装置(最大性能10mW)では測
定することができなかった。また加速劣化試験でのピン
ホール増加が大きい。比較例4のAlTiの場合にはC
ZNが低く、かつピンホールの増加が著しく大きい。こ
れに対し、本発明の実施例では記録感度、CZNも優れ
ており、かつ200Ohr後の加速劣化試験結果におい
ても、CZNの変化は全くなく、またピンホールの増加
数も少なく耐久性の点でも優れていることが確認された
In Comparative Example 3), in which the metal reflective layer 4 was made of Ag, the recording power was so large that it could not be measured with this evaluation device (maximum performance: 10 mW). In addition, the increase in pinholes in accelerated aging tests is large. In the case of AlTi in Comparative Example 4, C
ZN is low and the number of pinholes increases significantly. On the other hand, in the examples of the present invention, the recording sensitivity and CZN are excellent, and even in the accelerated deterioration test results after 200 Ohr, there is no change in CZN at all, and the number of pinholes is small, and the durability is also good. It was confirmed that it was excellent.

そして、実施例10〜12との比較から、光磁気記録層
3と金属反射層4との間に透明誘電体層6を設けること
により、若干積層構成は複雑になるものの、高温高湿下
での耐久性が大巾に改善されるとともに、CZN、記録
感度の記録再生特性も改善されることが確認された。
From a comparison with Examples 10 to 12, it was found that although the layered structure becomes somewhat complicated by providing the transparent dielectric layer 6 between the magneto-optical recording layer 3 and the metal reflective layer 4, it can be used under high temperature and high humidity conditions. It was confirmed that the durability of CZN was greatly improved, and the recording and reproducing characteristics of CZN and recording sensitivity were also improved.

〈実施例22〜27〉 実施例13〜21の構成において、更に耐久性の向上を
目的にその金属反射層4の上に無機保護層7を設けた第
3図の積層構成の光磁気ディスクを作成し、実施例13
〜21と同様に評価した。
<Examples 22 to 27> In the configurations of Examples 13 to 21, a magneto-optical disk having the laminated configuration shown in FIG. Created and Example 13
- Evaluation was made in the same manner as in 21.

本例の光磁気ディスクは実施例14及び17と同じ構成
でその金属反射層4上に、実施例13〜21と同じよう
にして表−5の各膜厚のAl5iN膜を形成したもの及
びその光磁気記録層と同様の条件でTiターゲットのス
パッタにより表−5の各膜厚のTi金属膜を設けたもの
である。その評価結果を表−5に示す。
The magneto-optical disk of this example has the same structure as Examples 14 and 17, and has an Al5iN film of each thickness shown in Table 5 formed on the metal reflective layer 4 in the same manner as Examples 13 to 21. Ti metal films having the thicknesses shown in Table 5 were formed by sputtering a Ti target under the same conditions as those for the magneto-optical recording layer. The evaluation results are shown in Table-5.

表−5 無機保護層を設けることにより、記録感度、CZNとも
良好で、かつ耐久性を更に改善することができる。とり
わけ、Al5iN膜を設けたものでは記録感度を全く低
下させずに、耐久性を改善できる。
Table 5 By providing an inorganic protective layer, both recording sensitivity and CZN are good, and durability can be further improved. In particular, those provided with an Al5iN film can improve durability without reducing recording sensitivity at all.

以上の通り本発明は、AgにAuを0.5at%以上、
更にはTi、 Ta、 7.r、 Y等の前述の特定元
素を所定量含有せしめなAgAu合金膜を反射膜とした
光記録媒体であり、そのAgAu合金膜の優れた特性に
より以下の通り優れた特性の光記録媒体を実現する効果
を奏する。すなわち、AgAu合金膜はその熱伝導率が
小さくなって媒体の記録感度が向上し、その反射率もA
g膜等に比して大きく低下せず、よって媒体のC/Nも
良好で、又その膜自体が耐久性に優れ且つ良好な保護機
能を有するため媒体の耐久性も向上し、記録感度、C/
N、耐久性に優れた光記録媒体が得られる。更に無機保
護層を設けることにより、記録感度を低下させることな
く、−層の耐久性を改善できる。
As described above, the present invention includes 0.5 at% or more of Au in Ag,
Furthermore, Ti, Ta, 7. This is an optical recording medium that uses an AgAu alloy film as a reflective film, which contains a predetermined amount of the above-mentioned specific elements such as r, Y, etc. The excellent properties of the AgAu alloy film realize an optical recording medium with the following excellent properties. It has the effect of In other words, the thermal conductivity of the AgAu alloy film decreases, improving the recording sensitivity of the medium, and the reflectance also increases.
The C/N ratio of the medium is also good, and the film itself is highly durable and has a good protective function, so the durability of the medium is also improved, and the recording sensitivity and C/
N. An optical recording medium with excellent durability can be obtained. Furthermore, by providing an inorganic protective layer, the durability of the negative layer can be improved without reducing recording sensitivity.

このように本発明は光記録媒体、中で6金属反射膜によ
る特性向上が必要で劣化し易い記録層を用いる光磁気記
録媒体の特性向上に大きな寄与をなすものである。
As described above, the present invention makes a significant contribution to improving the characteristics of optical recording media, especially magneto-optical recording media that use a recording layer that requires improvement of characteristics by a 6-metal reflective film and is susceptible to deterioration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1〜12の積層構成の説明図、第2図
は実施例13〜21の積層構成の説明図、第3図は実施
例22〜27の積層構成の説明図である。 1:基板、2,6:透明誘電体層、3:光磁気記録層、
4:金属反射層、5:有機保護層、7:無機保護層。
FIG. 1 is an explanatory diagram of the laminated structure of Examples 1 to 12, FIG. 2 is an explanatory diagram of the laminated structure of Examples 13 to 21, and FIG. 3 is an explanatory diagram of the laminated structure of Examples 22 to 27. . 1: Substrate, 2, 6: Transparent dielectric layer, 3: Magneto-optical recording layer,
4: Metal reflective layer, 5: Organic protective layer, 7: Inorganic protective layer.

Claims (1)

【特許請求の範囲】 1)金属反射層を有する光記録媒体において、該金属反
射層がAgにAuを0.5at%以上含有せしめたAg
Au合金からなることを特徴とする光記録媒体。 2)前記AgAu合金のAu含有量が0.5〜50at
%である請求項第1項記載の光記録媒体。 3)前記AgAu合金がAuを0.5〜15at%を含
有し、さらにAg及びAuを除いた遷移金属元素、In
、Sn、Zn、Mgの群から選ばれた少なくとも1種以
上の特定元素を0.3〜8.0at%含有したAgAu
合金である請求項第1項又は第2項記載の光記録媒体。 4)前記AgAu合金のAuと特定元素との合計含有量
が1.0〜15at%である請求項第3項記載の光記録
媒体。 5)前記特定元素がTi、Ta、Zr、Y、Re、In
、Sn、Zn、Mgの群から選ばれた少なくとも1種の
元素である請求項第3項又は第4項記載の光記録媒体。 6)前記特定元素がTi、Ta、Zr、Yの群から選ば
れた少なくとも1種の元素である請求項第5項記載の光
記録媒体。 7)前記金属反射層が光記録層に接している請求項第1
項〜第6項記載のいずれかの光記録媒体。 8)前記金属反射層と、光記録層間に透明誘電体層が設
けられていることを特徴とする請求項第1項〜第6項記
載のいずれかの光記録媒体。 9)光記録層の金属反射層側と反対の側に透明誘電体層
が積層されていることを特徴とする請求項第1項〜第8
項記載のいずれかの光記録媒体。 10)前記金属反射層上に無機材料からなる無機保護層
を設けたことを特徴とする請求項第1項〜第9項記載の
いずれかの光記録媒体。 11)前記光記録層が、光磁気記録層である請求項第1
項〜第10項記載のいずれかの光記録媒体。
[Scope of Claims] 1) In an optical recording medium having a metal reflective layer, the metal reflective layer contains Ag containing 0.5 at% or more of Au.
An optical recording medium characterized by being made of an Au alloy. 2) The Au content of the AgAu alloy is 0.5 to 50 at.
%. The optical recording medium according to claim 1. 3) The AgAu alloy contains 0.5 to 15 at% of Au, and further contains transition metal elements other than Ag and Au, In
AgAu containing 0.3 to 8.0 at% of at least one specific element selected from the group of , Sn, Zn, and Mg.
The optical recording medium according to claim 1 or 2, which is an alloy. 4) The optical recording medium according to claim 3, wherein the total content of Au and specific elements in the AgAu alloy is 1.0 to 15 at%. 5) The specific element is Ti, Ta, Zr, Y, Re, In
5. The optical recording medium according to claim 3, wherein the optical recording medium is at least one element selected from the group consisting of , Sn, Zn, and Mg. 6) The optical recording medium according to claim 5, wherein the specific element is at least one element selected from the group of Ti, Ta, Zr, and Y. 7) Claim 1, wherein the metal reflective layer is in contact with an optical recording layer.
6. The optical recording medium according to any one of items 6 to 6. 8) The optical recording medium according to any one of claims 1 to 6, characterized in that a transparent dielectric layer is provided between the metal reflective layer and the optical recording layer. 9) Claims 1 to 8, characterized in that a transparent dielectric layer is laminated on the side of the optical recording layer opposite to the metal reflective layer side.
Any of the optical recording media listed in Section 1. 10) The optical recording medium according to any one of claims 1 to 9, characterized in that an inorganic protective layer made of an inorganic material is provided on the metal reflective layer. 11) Claim 1, wherein the optical recording layer is a magneto-optical recording layer.
The optical recording medium according to any one of items 1 to 10.
JP2029431A 1989-07-04 1990-02-13 Optical recording medium Expired - Lifetime JP2541677B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA 2017284 CA2017284C (en) 1989-07-04 1990-05-22 Optical recording medium
US07/528,981 US5093174A (en) 1989-07-04 1990-05-25 Optical recording medium
EP19900110529 EP0406569B1 (en) 1989-07-04 1990-06-02 Optical recording medium
DE1990622497 DE69022497T2 (en) 1989-07-04 1990-06-02 Optical recording medium.
KR1019900009111A KR100194131B1 (en) 1989-07-04 1990-06-21 Optical recording media

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20489189 1989-08-09
JP1-204891 1989-08-09

Publications (2)

Publication Number Publication Date
JPH03156753A true JPH03156753A (en) 1991-07-04
JP2541677B2 JP2541677B2 (en) 1996-10-09

Family

ID=16498109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029431A Expired - Lifetime JP2541677B2 (en) 1989-07-04 1990-02-13 Optical recording medium

Country Status (1)

Country Link
JP (1) JP2541677B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094934A1 (en) * 1998-06-22 2001-05-02 Target Technology Company, LLC. Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
JP2002237097A (en) * 2000-12-08 2002-08-23 Mitsubishi Chemicals Corp Optical recording medium
JP2003113433A (en) * 2001-10-03 2003-04-18 Hitachi Metals Ltd Ag ALLOY FILM FOR ELECTRONIC PARTS AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
WO2006137405A1 (en) * 2005-06-21 2006-12-28 Toshima Mfg Co., Ltd. Material for thin film formation, thin film formed therefrom and method of forming thin film
US7465424B2 (en) 2001-03-16 2008-12-16 Ishifuku Metal Industry Co., Ltd. Sputtering target material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598150A (en) * 1982-07-02 1984-01-17 Sharp Corp Magnetooptical storage element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598150A (en) * 1982-07-02 1984-01-17 Sharp Corp Magnetooptical storage element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094934A1 (en) * 1998-06-22 2001-05-02 Target Technology Company, LLC. Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
EP1094934A4 (en) * 1998-06-22 2001-12-05 Target Technology Co Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
JP2002237097A (en) * 2000-12-08 2002-08-23 Mitsubishi Chemicals Corp Optical recording medium
US7465424B2 (en) 2001-03-16 2008-12-16 Ishifuku Metal Industry Co., Ltd. Sputtering target material
JP2003113433A (en) * 2001-10-03 2003-04-18 Hitachi Metals Ltd Ag ALLOY FILM FOR ELECTRONIC PARTS AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
WO2006137405A1 (en) * 2005-06-21 2006-12-28 Toshima Mfg Co., Ltd. Material for thin film formation, thin film formed therefrom and method of forming thin film

Also Published As

Publication number Publication date
JP2541677B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
CA2017284C (en) Optical recording medium
US5786078A (en) Magneto-optical recording medium
JPH0325737A (en) Magneto-optical recording medium
JPH0567360A (en) Magneto-optical recording medium
JPH03156753A (en) Optical recording medium
JPH03288346A (en) Optical recording medium
JPH02267752A (en) Optical recording medium
JPH03122845A (en) Optical recording medium
JP2523180B2 (en) Optical recording medium and manufacturing method thereof
JP2507592B2 (en) Optical recording medium
JPH02223040A (en) Magneto-optical recording medium
JP2528188B2 (en) Optical recording medium
JP2559871B2 (en) Optical recording medium
JPH03142728A (en) Optical recording medium
JP2754658B2 (en) Magneto-optical recording medium
JP2960470B2 (en) Magneto-optical recording medium
JPH02128346A (en) Magneto-optical disk
JP2528173B2 (en) Optical recording medium
KR100194131B1 (en) Optical recording media
JPH02297737A (en) Optical recording medium
JPH02308454A (en) Magneto-optical recording medium
JPH02261822A (en) Optical recording medium and preparation thereof
JP2663167B2 (en) Optical recording medium
JPH0325738A (en) Magneto-optical recording medium
JPH03238638A (en) Magneto-optical recording medium