JP2528188B2 - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JP2528188B2
JP2528188B2 JP1272771A JP27277189A JP2528188B2 JP 2528188 B2 JP2528188 B2 JP 2528188B2 JP 1272771 A JP1272771 A JP 1272771A JP 27277189 A JP27277189 A JP 27277189A JP 2528188 B2 JP2528188 B2 JP 2528188B2
Authority
JP
Japan
Prior art keywords
layer
optical recording
recording medium
oxide
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1272771A
Other languages
Japanese (ja)
Other versions
JPH03134834A (en
Inventor
昌彦 関谷
潔 千葉
多嘉之 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1272771A priority Critical patent/JP2528188B2/en
Publication of JPH03134834A publication Critical patent/JPH03134834A/en
Application granted granted Critical
Publication of JP2528188B2 publication Critical patent/JP2528188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレーザー等の光により情報の記録・再生・消
去等を行う光記録媒体に関する。更に詳細には、透明基
板上に膜面に垂直な方向に磁化容易方向を有した金属薄
膜よりなる光磁気記録層を形成し、磁気光学効果により
情報を記録・再生する光磁気記録に好適な、媒体性能並
びに耐環境性の優れた光記録媒体に関する。
The present invention relates to an optical recording medium for recording / reproducing / erasing information by using light from a laser or the like. More specifically, it is suitable for magneto-optical recording in which a magneto-optical recording layer made of a metal thin film having a direction of easy magnetization perpendicular to the film surface is formed on a transparent substrate and information is recorded / reproduced by the magneto-optical effect. , An optical recording medium having excellent medium performance and environmental resistance.

[従来技術] 光記録媒体中でも光磁気記録媒体は高密度・大容量で
かつ書換可能な情報記録媒体として一部でその市販が開
始されている。
[Prior Art] Among optical recording media, the magneto-optical recording medium has been partially put on the market as a rewritable information recording medium having high density and large capacity.

上述の光磁気記録媒体の記録層としては、例えば、特
開昭52−31703号公報記載のTbFe、特開昭58−73746号公
報記載のTbFeCo等、既に多くの提案がある。しかしこれ
らの材料はその磁気光学特性の1つであるカー回転角が
0.3〜0.5゜と極めて小さく、記録された信号の再生時の
CNR(Carrierto Noise Ratio)が低いという問題があ
る。同時にこれらの材料は大半は酸化等の腐食を起こし
易いという耐久性の面での問題もある。そこで、これら
の問題を解決するため、基板と記録層の間に光干渉層兼
保護層として透明誘電体層を設け、光干渉効果、すなわ
ち光の多重反射を利用してカー回転角の向上をかはると
同時に、基板側からの酸素等のガスの拡散を防止するこ
とが提案されている。このような透明誘電体層として
は、Si3N4,AlN,AlSiN,TiN,TaN,NbN,ZnS等の窒化物、硫
化物もしくはこれらの複合体等で形成されることが好ま
しいとされている。
Many proposals have already been made for the recording layer of the above-described magneto-optical recording medium, such as TbFe described in JP-A-52-31703 and TbFeCo described in JP-A-58-73746. However, these materials have a Kerr rotation angle that is one of their magneto-optical properties.
Very small at 0.3 to 0.5 °,
There is a problem that the CNR (Carrier to Noise Ratio) is low. At the same time, most of these materials also have a problem in terms of durability that they are susceptible to corrosion such as oxidation. Therefore, in order to solve these problems, a transparent dielectric layer is provided as a light interference layer and a protective layer between the substrate and the recording layer to improve the Kerr rotation angle by utilizing the light interference effect, that is, the multiple reflection of light. At the same time as fogging, it has been proposed to prevent diffusion of gas such as oxygen from the substrate side. It is said that such a transparent dielectric layer is preferably formed of a nitride such as Si 3 N 4 , AlN, AlSiN, TiN, TaN, NbN, ZnS, a sulfide, or a composite thereof. .

ところで、これらの材料について検討したところ、特
にプラスチック基板上に多層膜を形成した場合、環境試
験によりグルーブに沿った剥離等が生じる問題があり、
耐酸化性とは別の面で耐久性での問題があることが判っ
た。
By the way, when these materials were examined, especially when a multilayer film was formed on a plastic substrate, there was a problem that peeling along the groove occurred due to an environmental test,
It has been found that there is a problem with durability on a side different from oxidation resistance.

[発明の目的] ところで本発明者らは、かかる現状を解決するものと
して、先に出願した特願昭63−313751号明細書におい
て、新規なIn(インジウム)又はSn(すず)の少なくと
も一方の窒酸化物からなる誘電体層を、また、特開昭63
−328851号明細書において、In又はSnの少なくとも一方
と(ビスマス)Biとの酸化物、更には窒酸化物からなる
誘電体層を提案した。これら新規な透明誘電体層は、優
れた光学特性と共に耐久性面でも改良された性能を示し
た。
[Purpose of the Invention] As a solution to the present situation, the inventors of the present invention disclosed in Japanese Patent Application No. 63-313751 previously filed at least one of novel In (indium) and Sn (tin). A dielectric layer made of oxynitride is also disclosed in
In the specification of -328851, a dielectric layer composed of an oxide of at least one of In and Sn and (bismuth) Bi, and further made of a nitric oxide was proposed. These new transparent dielectric layers showed improved performance in durability as well as excellent optical properties.

しかしながら、一部市販の開始された光磁気記録媒体
では、更に長期安定した記録保存に対する要求が強く、
より一層の耐久性向上が求められている。そこで、前記
の本発明者らの提案した新規の誘電体層を用いた光磁気
記録媒体について耐久性を後述の高温高湿下の加速テス
トで検討したところ、実用化の目安とされた1000時間は
充分耐えるが、更に好ましいとされる2000時間以上では
CNRの低下が大きくなるものが見出された。
However, in some commercially available magneto-optical recording media, there is a strong demand for long-term stable recording storage,
Further improvement in durability is required. Therefore, when the durability of the magneto-optical recording medium using the novel dielectric layer proposed by the inventors of the present invention was examined in an accelerated test under high temperature and high humidity described later, 1000 hours, which was a standard for practical use, was obtained. Can withstand, but more than 2000 hours is considered more preferable
It was found that the CNR was significantly reduced.

本発明は、かかる問題を解決するためになされたもの
で、本発明者らが先に提案した上記新規な透明誘電体層
を用い、長期安定した耐久性のよい光記録媒体を提供す
ることを目的としたものである。
The present invention has been made to solve such a problem, and it is an object of the present invention to provide an optical recording medium which is stable for a long time and has good durability, using the above-mentioned novel transparent dielectric layer previously proposed by the present inventors. It is intended.

[発明の構成及び作用] 上記目的は以下の本発明により達成される。すなわ
ち、本発明は基板と記録層との間に透明誘電体層を有す
る光記録媒体において、前記透明誘電体層が、前記基板
上に積層された、In又はSnの少なくとも一方の窒酸化
物、或いはIn又はSnの少なくとも一方とBiの酸化物又は
窒酸化物からなる第1の層と、第1の層の記録層側に積
層した酸素を含まない透明誘電体からなる第2の層とか
らなることを特徴とする光記録媒体である。
[Configuration and Function of the Invention] The above object is achieved by the present invention described below. That is, the present invention, in the optical recording medium having a transparent dielectric layer between the substrate and the recording layer, the transparent dielectric layer is laminated on the substrate, at least one of Ni or Ni oxide, Alternatively, a first layer made of at least one of In and Sn and Bi oxide or oxynitride, and a second layer made of a transparent dielectric material containing no oxygen, which is laminated on the recording layer side of the first layer. It is an optical recording medium characterized by the following.

上述の本発明は以下のようにしてなされたものであ
る。すなわち、上述のIn又はSnの少なくとも一方の窒酸
化物、更にはIn又はSnの少なくとも一方とBiの窒酸化物
もしくは酸化物を用いた光磁気記録媒体のCNRの低下が
大きくなる原因については、該窒酸化物もしくは酸化物
と記録層の界面に存在する遊離酸素又は該窒酸化物もし
くは酸化物中の結合不完全な酸素等による記録層の酸化
が原因と考えられる。この窒酸化物もしくは酸化物の透
明誘電体層の特性を生かすには、該窒酸化物もしくは酸
化物から記録層に及ぼす酸素による劣化を防ぐバリアー
層を設け、記録層の酸化を防ぐことが必要で、そのよう
な材料としては、Si3N4,AlN,AlSiN,TiN,TaN,NbN,ZnS等
の窒化物、硫化物もしくはこれらの複合体等からなる酸
素を含まない透明誘電体層が適していると考えられた。
以上述べたような点から、透明誘電体層を2層化し、基
板側を前記窒酸化物もしくは酸化物とし、記録層側を窒
化物又は硫化物等の酸素を含まない透明誘電体としたと
ころ、高温高湿耐環境性試験における亀裂や剥離が生じ
ず、CNRの低下がない耐久性に優れた光記録媒体を得る
ことができた。
The present invention described above has been made as follows. That is, for at least one of the above-mentioned In or Sn oxynitrides, further, at least one of In or Sn and the Bi nitriding oxides or oxides for a cause of a large decrease in the CNR of the magneto-optical recording medium using an oxide, It is considered that the cause is oxidation of the recording layer due to free oxygen existing at the interface between the oxide or the oxide and the recording layer or incompletely bonded oxygen in the oxide or the oxide. In order to make full use of the characteristics of the transparent oxide layer of nitric oxide or oxide, it is necessary to prevent the oxidation of the recording layer by providing a barrier layer for preventing deterioration of the recording layer due to oxygen from the nitric oxide or oxide. in, such materials, Si 3 N 4, AlN, AlSiN, TiN, TaN, NbN, nitrides such as ZnS, a transparent dielectric layer containing no oxygen consisting of sulfides or their complexes and the like suitable Was considered to be.
From the above-mentioned point, the transparent dielectric layer is made into two layers, the substrate side is the above-mentioned nitride oxide or oxide, and the recording layer side is a transparent dielectric material containing no oxygen such as nitride or sulfide. It was possible to obtain an optical recording medium excellent in durability without cracking or peeling in the high temperature and high humidity environment resistance test and without lowering CNR.

従って、上記本発明の第1層を形成する透明誘電体の
1つは、前述の特願昭63−313751号明細書に開示のもの
であり、In又はSnの少なくとも一方の酸化物に窒素含有
せしめたIn又は/及びSnの窒酸化物であり、窒素はIn,S
nの窒化物、窒酸化物等種々の状態で含有されていると
考えられる。同明細書に記載の通り、この窒酸化物膜は
従来より公知の酸化物、窒化物の単独膜に対して、媒体
の反りを左右する内部応力が数分の1以下と大巾に低下
する。又エンハンスメント効果に直結する屈折率もITO
(Indium−Tin−Oxide)膜等の酸化物膜より増加し、更
に水蒸気等に対するガスバリヤ性も向上する。一方接着
性もIT膜と同様良好で、AlSiN等の窒素膜よりはるかに
優れている。そして上記内部応力は膜形成時のガス圧の
広範囲において得られており、安定生産面でも有利であ
る。
Therefore, one of the transparent dielectrics forming the first layer of the present invention is the one disclosed in the above-mentioned Japanese Patent Application No. 63-313751, in which at least one oxide of In and Sn contains nitrogen. Nitrogen is an In and / or Sn nitrite, and nitrogen is In, S
It is considered that n is contained in various states such as nitride and oxynitride. As described in this specification, the internal stress that influences the warp of the medium is greatly reduced to a fraction or less as compared with the conventionally known oxide and nitride single films in this oxide film. . Moreover, the refractive index directly linked to the enhancement effect is ITO.
(Indium-Tin-Oxide) film and the like oxide film, the gas barrier property against water vapor is also improved. On the other hand, the adhesiveness is as good as the IT film and far superior to the nitrogen film such as AlSiN. The internal stress is obtained in a wide range of gas pressure during film formation, which is also advantageous in terms of stable production.

またこのIn,Snの窒酸化物は1部微結晶を含む場合も
あるがアモルファスが主体であり、耐久性面及び光学特
性の均一化従ってノイズレベルの低下面でも一層有利で
ある。特にこの点で全アモルファスのものが好ましい。
In addition, this In, Sn nitriding oxide may contain a part of fine crystals, but is mainly amorphous, which is more advantageous in terms of durability and homogenization of optical characteristics, and hence noise level. In this respect, all-amorphous ones are particularly preferable.

かかる作用は、1at%(原子%)以下という微量の窒
素含有量においても確認されており、従って本発明のIn
又は/及びSnの窒酸化物の窒素含有量は基本的には特に
制限はない。但し、窒素含有量の増加に伴なって高分子
樹脂との接着性が低下する傾向があり、かかる面から、
窒素含有量は、40at%以下が好ましい。又、内部応力、
屈折率の面からは、窒素含有量は、1at%以上が好まし
い。
This effect has been confirmed even at a trace nitrogen content of 1 at% (atomic%) or less.
Basically, the nitrogen content of the nitrogen oxide of Sn and / or Sn is not particularly limited. However, as the nitrogen content increases, the adhesiveness to the polymer resin tends to decrease, and from this aspect,
The nitrogen content is preferably 40 at% or less. Also, internal stress,
From the viewpoint of refractive index, the nitrogen content is preferably 1 at% or more.

なお、上記窒素含有量は、膜中に含まれる全窒素を含
むもので、窒化物等あらゆる形態で含まれる窒素を包含
するものである。
The nitrogen content includes all nitrogen contained in the film, and includes nitrogen contained in any form such as nitride.

又上記本発明のIn又は/及びSnの窒酸化物のIn,Snの
含有量は特に制限はなく、In,Sn夫々単独のもの、この
双方を同時に含むもの全てを包含するが、Snが増すと若
干着色傾向があり、透明性面からSnの含有量はInとSnの
合計に対して50at%以下が好ましい。
In addition, the content of In, Sn of the above-described In or / and Sn nitriding oxide of the present invention is not particularly limited, and In, Sn alone, respectively, including both at the same time, but Sn increases Therefore, the Sn content is preferably 50 at% or less based on the total amount of In and Sn from the viewpoint of transparency.

更に屈折率を高くするという面からは、高屈折率の透
明誘電体を添加することが好ましい。かかる透明誘電体
としては、ZnS,Ta2O5,TiO2,ZrO2,Al2O3等を挙げること
ができる。なお、添加量は必要な屈折率に応じて選定す
る。
From the viewpoint of further increasing the refractive index, it is preferable to add a transparent dielectric having a high refractive index. Examples of such transparent dielectrics include ZnS, Ta 2 O 5 , TiO 2 , ZrO 2 and Al 2 O 3 . The addition amount is selected according to the required refractive index.

又、本発明の第1層を形成する透明誘電体の他方は、
前述の特願昭63−328859号明細書に開示のものであり、
In又は/及びSnにBiを添加して得られる酸化物、更にこ
れに窒素を含有せしめて得られる窒酸化物である。
Further, the other of the transparent dielectrics forming the first layer of the present invention is
The one disclosed in the above-mentioned Japanese Patent Application No. 63-328859,
It is an oxide obtained by adding Bi to In or / and Sn, and a nitrogen oxide obtained by adding nitrogen to this.

該明細書開示の通り、このIn,Snの少なくとも一方とB
iとの酸化物及び窒酸化物は、非晶質膜であり、その内
部応力もIn,Snの各単独酸化物膜より小さく、その屈折
率もBiの添加量により2.0以上の高いレベルで広範囲に
調整でき、その上接着性もIn又はSnの酸化物と同程度と
いう光記録媒体の透明誘電体層として優れた特性を有す
る。
As disclosed in the specification, at least one of In and Sn and B
Oxides and iodide oxides with i are amorphous films, their internal stresses are smaller than those of the individual oxide films of In and Sn, and their refractive indices are wide at a high level of 2.0 or more depending on the added amount of Bi. In addition, it has excellent characteristics as a transparent dielectric layer of an optical recording medium in which the adhesiveness is similar to that of In or Sn oxide.

更に上述の従来例の酸化インジウム、酸化錫又はこれ
らの混合物は電気伝導性が高いために、電子が寄与する
熱伝導性が高く、記録を行う際に、記録したい部分から
の熱拡散によりビットの形状が乱れるという欠点があ
る。ところが上述のBiを添加することより電気伝導性は
失われ、熱伝導度を大幅に低減することができ、記録ビ
ット形状の乱れを抑えることができるという効果もあ
る。
Furthermore, since the above-described conventional indium oxide, tin oxide or a mixture thereof has high electric conductivity, it has high thermal conductivity contributed by electrons, and during recording, due to thermal diffusion from a portion to be recorded, the bit of There is a drawback that the shape is disturbed. However, the addition of Bi described above has the effect that the electrical conductivity is lost, the thermal conductivity can be significantly reduced, and the disorder of the recording bit shape can be suppressed.

上述の点でこの酸化物及び窒酸化物は、粒界等がなく
ノイズレベル面、耐食性、ガスバリヤ性等の面で有利な
非晶質のものが好ましいが、Biの含有量が1at%以下と
いう微量であっても非晶質になることを確認しており、
単なる保護層として用いる場合には、特にその含有量に
制限はない。しかし大きな光干渉効果、具体的には光磁
気記録のカー回転角向上効果およびレーザー光の閉じ込
め効果等を得たい場合には、屈折率が2.0以上、より好
ましくは2.10以上必要といわれており、かかる光干渉層
として用いる場合にはBi含有量は6at%以上、更には12a
t%以上が好ましい。なお、これらの含有量であれば熱
伝導度も大幅に低減され、記録ビット形状の乱れを抑え
ることもできる。
From the above-mentioned point, the oxides and oxynitrides are preferably amorphous ones which have no grain boundaries and are advantageous in terms of noise level, corrosion resistance, gas barrier properties, etc., but the Bi content is 1 at% or less. It has been confirmed that even a trace amount becomes amorphous,
When used as a mere protective layer, the content thereof is not particularly limited. However, in order to obtain a large optical interference effect, specifically, a Kerr rotation angle improving effect in magneto-optical recording and a laser light confining effect, it is said that a refractive index of 2.0 or more, more preferably 2.10 or more is required, When used as such an optical interference layer, the Bi content is 6 at% or more, and further 12a
t% or more is preferable. It should be noted that if these contents are contained, the thermal conductivity is also greatly reduced, and the disorder of the recording bit shape can be suppressed.

一方、Bi含有量が増加すると、プラスチック基板等と
の接着力が低下し、媒体全体としての耐久性が低下す
る。また、Bi含有量が多すぎると、屈折率が高くなりす
ぎて媒体反射率が低下し、記録・再生装置の検出感度以
下になってしまう可能性がある。かかる点よりBi含有量
は50at%以下、更には40at%以下が好ましい。
On the other hand, when the Bi content increases, the adhesive strength with the plastic substrate and the like decreases, and the durability of the medium as a whole decreases. On the other hand, if the Bi content is too high, the refractive index becomes too high, and the medium reflectance decreases, possibly lowering the detection sensitivity of the recording / reproducing apparatus. From this point, the Bi content is preferably 50 at% or less, more preferably 40 at% or less.

なお、上記のBi及び窒素を含有させた窒酸化物は屈折
率が向上する効果があるが、窒素含有量が多くなると前
述の接着力が低下する傾向がある。かかる点から窒素含
有量は1at%〜40at%の範囲が好ましい。
It should be noted that the above-mentioned Bi and nitrogen-containing oxynitrides have the effect of improving the refractive index, but when the nitrogen content increases, the above-mentioned adhesive strength tends to decrease. From this point, the nitrogen content is preferably in the range of 1 at% to 40 at%.

なお、以上の本発明第1層を形成する窒酸化物、酸化
物には、上記のBi,In,Sn,O,N以外の元素も不純物オーダ
ーで含まれてよいことは言うまでもない。
Needless to say, the above-mentioned nitriding oxides and oxides forming the first layer of the present invention may contain elements other than Bi, In, Sn, O, and N in the order of impurities.

以上の本発明の第1層を形成するIn,Sn、更にはBiを
含む窒酸化物、酸化物膜の製造方法としては、公知の真
空蒸着法、スパッタリング法等のPVD法、或いはCVD法
等、種々の薄膜形成法が適用できる。しかし、光記録媒
体としては高温高湿環境性試験で生じる剥離を生じさせ
ないために、特にプラスチック基板との密着性が大きい
条件で作製することが好ましい。このためにはスパッタ
リング法が好ましい。スパッタリング法で用いるターゲ
ットとしては、In,Sn,Biの金属またはこれらの合金、あ
るいはInN,In2O3,SnN,SnO2,ITO,BiN,Bi2O3等の酸化物ま
たは窒化物、あるいはこれらの混合物等の焼成体であっ
てもよい。そして反応性の薄膜形成法で成膜する場合の
膜形成に用いる反応性ガスは、所定の含有量の窒素ガ
ス、酸素ガスあるいは窒素/酸素混合ガスを含有するも
のであればよい。なお、蒸発源に窒素を含む混合物を用
いる場合は、Ar100%の不活性ガス雰囲気でもよい。中
でもArとN2の混合ガスでのスパッタリングが異常放電等
が少なく、安全運転面で好ましい。
As the method for producing the above-described In, Sn, and further Bi-containing nitriding oxides and oxide films forming the first layer of the present invention, known vacuum deposition methods, PVD methods such as sputtering methods, or CVD methods, etc. Various thin film forming methods can be applied. However, the optical recording medium is preferably manufactured under the condition that the adhesiveness to the plastic substrate is particularly large in order to prevent the peeling that occurs in the high temperature and high humidity environment test from occurring. For this purpose, the sputtering method is preferable. As the target used in the sputtering method, In, Sn, Bi metal or an alloy thereof, or InN, In 2 O 3 , SnN, SnO 2 , ITO, BiN, Bi 2 O 3 etc. oxide or nitride, or It may be a fired body such as a mixture thereof. When the film is formed by the reactive thin film forming method, the reactive gas used for forming the film may be any gas containing a predetermined content of nitrogen gas, oxygen gas or nitrogen / oxygen mixed gas. When a mixture containing nitrogen is used as the evaporation source, an inert gas atmosphere of 100% Ar may be used. Above all, sputtering with a mixed gas of Ar and N 2 is preferable from the viewpoint of safe operation, since there are few abnormal discharges.

一方、本発明の透明誘電体層の第2の層を形成する透
明誘電体は、酸素バリヤ性を有し、それ自身酸素を含ま
ない透明誘電体であれば特に制限はない。かかる透明誘
電体としては、公知の前述したSi3N4,AlN,AlSiN,TiN,Ta
N,NbN,ZnS等の金属の窒化物、硫化物の他、弗化物、並
びにこれらの混合物等そのまま適用できる。なお、この
第2の層は、前述した第1の層の上に前述第1の層の形
成と同様にスパッタリング法等の物理蒸着法(PVD)あ
るいは化学蒸着法(CVD)等により連続薄膜として形成
する。
On the other hand, the transparent dielectric material forming the second layer of the transparent dielectric material layer of the present invention is not particularly limited as long as it has an oxygen barrier property and does not contain oxygen itself. As such a transparent dielectric, the above-mentioned known Si 3 N 4 , AlN, AlSiN, TiN, Ta
In addition to nitrides and sulfides of metals such as N, NbN and ZnS, fluorides and mixtures thereof can be applied as they are. The second layer is formed as a continuous thin film on the first layer by a physical vapor deposition method (PVD) such as a sputtering method or a chemical vapor deposition method (CVD) similar to the formation of the first layer. Form.

ところで、本発明の光記録媒体に用いる記録層として
は、例えば光反射記録層、相変化光記録層、光磁気記録
層等公知の各種の光記録方式の光記録媒体に適用でき
る。
Incidentally, the recording layer used in the optical recording medium of the present invention can be applied to, for example, an optical recording medium of various known optical recording systems such as a light reflection recording layer, a phase change optical recording layer, and a magneto-optical recording layer.

しかし、前述の本発明の2層構造透明誘電体層の特
性、特に記録層の酸化劣化を防止するための耐酸化性に
優れているという点で、酸化し易い希土類−遷移金属非
晶質合金を用いる光磁気記録媒体に有利に適用できる。
光磁気記録層としては以下のものが挙げられる。
However, the rare earth-transition metal amorphous alloy which is easily oxidized is excellent in the characteristics of the above-mentioned two-layer structure transparent dielectric layer of the present invention, particularly in the oxidation resistance for preventing the oxidative deterioration of the recording layer. Can be advantageously applied to a magneto-optical recording medium using
Examples of the magneto-optical recording layer include the following.

即ち、光磁気記録層としては、磁気光学効果により記
録・再生できるもの、具体的には膜面に垂直な方向に磁
化容易方向を有し、任意の反転磁区を作ることにより、
磁気光学効果に基いて情報の記録・再生が可能な磁性金
属薄膜、例えばTbFeCo合金、GdTbFe合金、NdDyFeCo合
金、NdFe合金、PrFe合金、CeFe合金等の前述の希土類−
遷移金属非晶質合金膜を他、Pt/Co,Pd/Co等の超多層
膜、あるいはガーネット膜等、各種公知のものが適用で
きる。
That is, the magneto-optical recording layer can be recorded / reproduced by the magneto-optical effect, specifically, has an easy magnetization direction in a direction perpendicular to the film surface, and creates an arbitrary reversed magnetic domain,
Magnetic metal thin film capable of recording / reproducing information based on the magneto-optical effect, for example, the above-mentioned rare earths such as TbFeCo alloy, GdTbFe alloy, NdDyFeCo alloy, NdFe alloy, PrFe alloy, and CeFe alloy-
Besides the transition metal amorphous alloy film, various known materials such as super multi-layer film of Pt / Co, Pd / Co or the like, or garnet film can be applied.

その透明基板の材料としては、ポリカーボネート樹
脂、アクリル樹脂、エポキシ樹脂、4−メチル−ペンテ
ン樹脂など、またそれらの共重合体等のプラスチックも
しくはガラスなどが適用できる。中でも機械強度、耐候
性、耐熱性、透湿性の点でポリカーボネート樹脂が好ま
しく用いられる。
As a material for the transparent substrate, polycarbonate resin, acrylic resin, epoxy resin, 4-methyl-pentene resin, or the like, or plastic such as a copolymer thereof or glass can be used. Above all, a polycarbonate resin is preferably used in terms of mechanical strength, weather resistance, heat resistance, and moisture permeability.

なお、以上説明した光磁気記録媒体は、公知の通り光
磁気記録層の基板と反対側に裏面保護層を設ける構成、
更にはこれらの構成の媒体を貼合せた両面媒体等の構成
等全て適用できる。
The magneto-optical recording medium described above has a configuration in which a back surface protective layer is provided on the opposite side of the magneto-optical recording layer from the substrate, as is known.
Furthermore, all the configurations such as a double-sided medium in which the mediums having these configurations are laminated can be applied.

裏面保護層を設ける構成としては、誘電体、金属等か
らなる無機保護層、感光性樹脂等の有機樹脂からなる有
機保護層、更には透明平板の貼合せ及びこれらの組み合
わせ等が用いられる。
As the structure for providing the back surface protective layer, an inorganic protective layer made of a dielectric material, a metal, etc., an organic protective layer made of an organic resin such as a photosensitive resin, a transparent flat plate laminated together, or a combination thereof is used.

裏面保護層に用いる誘電体としては前述した第2層と
同様、膜表面から光磁気記録層への酸素やH2Oの侵入を
防ぐために、亀裂やピンホールの少ない物質が好まし
く、前述のAlN,Si3N4,AlSiN,TiN,TaN,NbN,ZnSなどの窒
化物、硫化物、又はこれらの混合体などが適用できる。
As the dielectric used for the back surface protective layer, a substance with few cracks and pinholes is preferable in order to prevent oxygen and H 2 O from penetrating from the film surface to the magneto-optical recording layer, like the above-mentioned second layer. , Si 3 N 4, AlSiN, TiN, TaN, NbN, nitrides such as ZnS, can be applied, such as sulfides, or mixtures thereof.

裏面保護層の金属膜としては、Al,Au,Ag,Cu,Si,Ti,T
a,Cr,Re,Zrまたはこれらの合金などからなる金属膜が適
用できる。以上の無機保護層は公知の真空蒸着法、スパ
ッタリング法等で作製できる。
As the metal film of the back surface protective layer, Al, Au, Ag, Cu, Si, Ti, T
A metal film made of a, Cr, Re, Zr or an alloy thereof can be applied. The above inorganic protective layer can be produced by a known vacuum deposition method, sputtering method, or the like.

更に、裏面保護層の有機樹脂としては、前述の感光性
樹脂の他、ホットメルト樹脂等が適用される。有機保護
層は前述の無機保護層と組み合わせて用いることが、そ
してこの場合無機保護層が記録層に接するように配置し
て用いることが好ましい。なお、裏面保護層は少なくと
も記録層の側面まで被覆するように設けるのが好まし
い。
Further, as the organic resin for the back surface protective layer, a hot melt resin or the like is applied in addition to the above-mentioned photosensitive resin. The organic protective layer is preferably used in combination with the above-mentioned inorganic protective layer, and in this case, the inorganic protective layer is preferably arranged and used so as to be in contact with the recording layer. The back surface protective layer is preferably provided so as to cover at least the side surface of the recording layer.

なお、上述の各種保護層は光磁気記録媒体以外の例え
ば相変化型等の光記録媒体にも適用できることはその特
性等から明らかである。
It is apparent from the characteristics and the like that the various protective layers described above can be applied to, for example, a phase change type optical recording medium other than the magneto-optical recording medium.

上述の本発明の作用効果は以下のとおりである。 The effects of the present invention described above are as follows.

透明プラスチック基板を用い、基板と光磁気記録層と
の間に光干渉層として透明誘電体膜を設けた光磁気記録
媒体では、前述の通り、誘電体膜として代表的な従来例
のAlN,Si3N4,AlSiN,TiN,TaN,NbN,ZnS等の窒化物、硫化
物等を用いてディスクを構成した場合、これらの媒体を
高温高湿下での耐久性試験を行うと、ディスクに亀裂が
はいり、光磁気特性が急激に劣化することが観察され
た。これは主にプラスチック基板界面での誘電体膜の剥
がれに起因する。
In a magneto-optical recording medium in which a transparent dielectric film is provided as an optical interference layer between the substrate and the magneto-optical recording layer using a transparent plastic substrate, as described above, a typical conventional AlN, Si 3 N 4 , AlSiN, TiN, TaN, NbN, ZnS, etc.When a disk is composed of nitride, sulfide, etc., when these media are subjected to a durability test under high temperature and high humidity, the disk cracks. However, it was observed that the magneto-optical characteristics deteriorated rapidly. This is mainly due to peeling of the dielectric film at the plastic substrate interface.

これに対し、上述の構成で透明誘電体層を2層化し、
基板側の第1の層を前述の特定の窒酸化物もしくは酸化
物膜とし、記録層側の第2の層をAlN,Si3N4,AlSiN,TiN,
TaN,NbN,ZnS等の窒化物、硫化物等の酸素を含まない透
明誘電体膜とした本発明の光磁気ディスクでは、プラス
チック基板との界面での劣化による剥離や亀裂が発生せ
ず、記録層も長期に亘って安定である。これは第1の層
の窒酸化物及び酸化物膜が、ポリカーボネート基板等の
プラスチック基板との親和性が大きいこと、及び第2の
層により第1の層及びその界面の酵素が記録層から遮断
されることによるものと思われる。この効果は、通常の
環境下での長期安定性並びにヒートサイクル、ヒートシ
ョックに対して特に有効となる。
On the other hand, with the above-mentioned structure, the transparent dielectric layer is made into two layers,
The first layer on the substrate side is the above-mentioned specific nitride oxide or oxide film, and the second layer on the recording layer side is AlN, Si 3 N 4 , AlSiN, TiN,
TaN, NbN, ZnS and other nitrides, sulfides and other oxygen-free transparent dielectric film of the magneto-optical disk of the present invention, the peeling and cracking due to deterioration at the interface with the plastic substrate does not occur, recording The layers are also stable over the long term. This is because the nitride oxide and oxide film of the first layer has a high affinity with a plastic substrate such as a polycarbonate substrate, and the enzyme of the first layer and its interface is blocked from the recording layer by the second layer. It seems that it is due to being done. This effect is particularly effective for long-term stability under normal environment, heat cycle, and heat shock.

以上の本発明の作用効果は、光磁気記録媒体に限られ
ることはなく、相変化型、反射型等公知の光磁気媒体に
おいても同様に奏し得るものであることは明らかであ
り、よって本発明は広く光記録媒体に適用できるもので
ある。このように本発明は光記録媒体の中でも特に光磁
気記録媒体の耐久性を含めた特性向上に大きな寄与をな
すものである。
It is apparent that the above-described effects of the present invention are not limited to the magneto-optical recording medium, and can be similarly exerted in a known magneto-optical medium such as a phase change type and a reflection type. Is widely applicable to optical recording media. As described above, the present invention makes a great contribution to the improvement of the characteristics including the durability of the magneto-optical recording medium among the optical recording media.

以下では、本発明の光磁気記録媒体での実施例を説明
する。
Examples of the magneto-optical recording medium of the present invention will be described below.

実施例1 以下のようにして、第1図に示す積層構成の光磁気記
録媒体を作成し、評価した。図において1は基板、2a,2
bは前面の透明誘電体層2の第1,第2の層、3は記録
層、4は裏面の透明誘電体層、5は金属反射層、6は有
機保護層である。
Example 1 A magneto-optical recording medium having a laminated structure shown in FIG. 1 was prepared and evaluated as follows. In the figure, 1 is a substrate, and 2a, 2
Reference numeral b is the first and second layers of the transparent dielectric layer 2 on the front surface, 3 is a recording layer, 4 is a transparent dielectric layer on the back surface, 5 is a metal reflective layer, and 6 is an organic protective layer.

直径130mm、厚さ1.2mmの円盤で、1.6μmピッチのグ
ループを有するポリカーボネート樹脂(PC)のディスク
からなる基板1を3ターゲットの高周波マグネトロンス
パッタ装置(アネルバ(株)製SPF−430H型)の真空槽
内に固定し、4×10-7Torrになるまで排気した。なお、
膜形成において基板1は15rpmで回転させた。
A substrate 1 made of a polycarbonate resin (PC) disk having a diameter of 130 mm and a thickness of 1.2 mm and having a group of 1.6 μm pitch, and a vacuum of a high-frequency magnetron sputtering device with three targets (Model SPF-430H manufactured by Anerva Corp.). It was fixed in the tank and evacuated to 4 × 10 −7 Torr. In addition,
The substrate 1 was rotated at 15 rpm in the film formation.

そしてまず、以下のようにして前面の透明誘電体層2
の第1の層2aを形成した。Ar/N2の混合ガス(N2:30vol
%)を真空槽内に導入し、圧力10mTorrになるようにAr/
N2ガス流量を調整した。ターゲットとしては、直径100m
m、厚さ5mmの円盤で組成がInxSnyBizO100-(x+y+z)(x,
y,zは原子%)において、組成比(x,y,z)が(40,0,
0),(36,4,0),(20,20,0),(0,40,0),(36,0,
4),(20,0,20),(20,10,10)の各組成の酸化物焼結
体からなる7種類を適宜使用した。放電電力100W、放電
周波数13.56MHzで高周波スパタリングを行い、第1の層
2aとして膜組成がIn40O50N10,In36Sn4O50N10,In20Sn20O
50N10,Sn40O50N10,In36Bi4O50N10,In20Bi20O50N10,In20
Sn10Bi10O50N10の各組成の複合窒酸化物膜{(In,Sn,B
i)ON膜}を約200Å堆積した。
Then, first, the transparent dielectric layer 2 on the front surface is formed as follows.
The first layer 2a of was formed. Ar / N 2 mixed gas (N 2 : 30vol
%) Is introduced into the vacuum chamber, and Ar / is adjusted so that the pressure becomes 10 mTorr.
The N 2 gas flow rate was adjusted. The target is 100m in diameter
m, 5 mm thick disk with composition In x Sn y Bi z O 100- (x + y + z) (x,
y, z is atomic%), the composition ratio (x, y, z) is (40,0,
0), (36,4,0), (20,20,0), (0,40,0), (36,0,
4), (20,0,20), and (20,10,10) were used. High-frequency sputtering is performed at a discharge power of 100 W and a discharge frequency of 13.56 MHz, and the first layer
2a has a film composition of In 40 O 50 N 10 , In 36 Sn 4 O 50 N 10 , In 20 Sn 20 O
50 N 10 , Sn 40 O 50 N 10 , In 36 Bi 4 O 50 N 10 , In 20 Bi 20 O 50 N 10 , In 20
Sn 10 Bi 10 O 50 N 10 composite oxynitride film of each composition {(In, Sn, B
i) ON film} was deposited about 200Å.

次にターゲットをAl50Si50の焼結体(添数字は組成
(原子%)を示す)の円盤に変え、上述と同様の放電条
件で第2の層2bとしてAl25Si25No50からなる透明誘電体
膜を約1000Å堆積した。続いて、ターゲットをTb23Fe69
Co08(添数字は組成(原子%)を示す)の円盤に変え、
スパッタリングガスをAr/N2より純Ar(5N)とする以外
は上述と同様の放電条件で、光磁気記録層3としてTbFe
Co合金膜を約250Å堆積した。
Next, the target was changed to a disk of a sintered body of Al 50 Si 50 (subscripts indicate composition (atomic%)), and the second layer 2b was composed of Al 25 Si 25 No 50 under the same discharge conditions as above. About 1000Å of transparent dielectric film was deposited. Then, the target was Tb 23 Fe 69
Change to a disk of Co 08 (subscript indicates composition (atomic%)),
TbFe was used as the magneto-optical recording layer 3 under the same discharge conditions as above except that the sputtering gas was pure Ar (5N) rather than Ar / N 2.
About 250Å of Co alloy film was deposited.

再びターゲットを前述のAlSiの焼結体ターゲットに戻
し、再びスパッタリングガスを純ArからAr/N2混合ガス
として、裏面誘電体層4としてAl25Si25No50からなる透
明誘電体膜を約200Å堆積した。
The target was returned to the AlSi sintered body target again, and the sputtering gas was changed from pure Ar to Ar / N 2 mixed gas again, and the transparent dielectric film made of Al 25 Si 25 No 50 was used as the rear surface dielectric layer 4 to about 200 Å. Deposited.

さらに、ターゲットをAl91Au6Ti3の焼結体(添数字は
組成(原子%)を示す)の円盤に変え、スパッタリング
ガスをAr/N2より純Ar(5N)として金属反射層5としてA
lAuTi合金膜を約500Å堆積した。
Furthermore, the target was changed to a disk of a sintered body of Al 91 Au 6 Ti 3 (subscripts indicate composition (atomic%)), and the sputtering gas was changed from Ar / N 2 to pure Ar (5N) to the metal reflection layer 5. A
About 500Å of lAuTi alloy film was deposited.

最後に、この堆積層をスパッタリング装置から取り出
し、スピンコーターに取り付けた。ディスクを回転させ
ながら、紫外線硬化性のフェノールノボラックエポキシ
アクリレート樹脂を塗布した後、紫外線照射装置を通過
させて樹脂を硬化させ約50μmの有機保護層6を設け
た。
Finally, this deposited layer was taken out from the sputtering device and attached to a spin coater. An ultraviolet curable phenol novolac epoxy acrylate resin was applied while rotating the disk, and then passed through an ultraviolet irradiation device to cure the resin to provide an organic protective layer 6 of about 50 μm.

以上の順序で、第1図に示すところのPC/(In,Sn,B
i)ON/AlSiN/TbFeCo/AlSiN/AlAuTi/有機保護層の積層構
成の光磁気ディスクを得た。
In the above order, PC / (In, Sn, B shown in Fig. 1
i) A magneto-optical disk with a laminated structure of ON / AlSiN / TbFeCo / AlSiN / AlAuTi / organic protective layer was obtained.

次にこのディスクのCNRを測定した。測定には波長830
nmの半導体レーザーを用いた光磁気記録再生装置(セイ
コーエプソン社製、品名“Venus")を用い、ディスクを
1800rpmで回転させ、半径30mmの位置で記録・再生・消
去を行った。
Next, the CNR of this disc was measured. Wavelength 830 for measurement
Using a magneto-optical recording / reproducing device (manufactured by Seiko Epson, product name "Venus") that uses a semiconductor laser of nm
It was rotated at 1800 rpm, and recording / reproducing / erasing was performed at a position with a radius of 30 mm.

信号の再生は1.2mWの再生パワーで行った。記録時の
最適レーザーパワーは、信号再生時の1次高調波と2次
高調波の差が最大となる値に決定した。信号の周波数は
3.7MHzで、デューティ(duty)を33%とした。いずれの
媒体も最適記録パワーは5.0mW、CNR最大値は49.0dB、ノ
イズレベルは−51.0dBmであった。ノイズレベルは1mWを
基準とした絶対レベルを示すdBmの単位で表示した。
The signal was reproduced with a reproduction power of 1.2 mW. The optimum laser power at the time of recording was determined to be a value that maximizes the difference between the first harmonic and the second harmonic at the time of signal reproduction. The frequency of the signal is
At 3.7MHz, the duty was 33%. The optimum recording power of each medium was 5.0 mW, the maximum CNR value was 49.0 dB, and the noise level was -51.0 dBm. The noise level is shown in the unit of dBm, which indicates the absolute level based on 1 mW.

これらのディスクの面を観察したところ、ピンホール
や剥離・亀裂等の欠陥は観察されなかった。
When the surfaces of these disks were observed, no defects such as pinholes, peeling and cracks were observed.

次にこれらのディスクを80℃,85%RHの高温高湿雰囲
気下に200時間放置した。その後の最適レーザーパワー,
CNRノイズレベルを測定したところ、放置前の測定結果
と比較して全く変化は見られなかった。これらのディス
ク面を観察したところ、ピンホールや剥離・亀裂等の欠
陥は観察されなかった。
Next, these disks were left in a high temperature and high humidity atmosphere of 80 ° C. and 85% RH for 200 hours. Optimum laser power after that,
When the CNR noise level was measured, no change was observed compared with the measurement result before standing. When these disk surfaces were observed, no defects such as pinholes, peeling and cracks were observed.

実施例2 以下のようにして、第1図に示す構成の光磁気記録媒
体を作成し、評価した。図において1は基板、2a,2bは
前面の透明誘電体層2の第1、第2の層、3は記録層、
4は裏面の透明誘電体層、5は金属反射層、6は有機保
護層である。
Example 2 A magneto-optical recording medium having the structure shown in FIG. 1 was prepared and evaluated as follows. In the figure, 1 is a substrate, 2a and 2b are the first and second layers of the transparent dielectric layer 2 on the front surface, 3 is a recording layer,
Reference numeral 4 is a transparent dielectric layer on the back surface, 5 is a metal reflection layer, and 6 is an organic protective layer.

直径130mm、厚さ1.2mmの円盤で、1.6μmピッチのグ
ループを有するポリカーボネート樹脂(PC)のディスク
からなる基板1を3ターゲットの高周波マグネトロンス
パッタ装置(アネルバ(株)製SPF−430H型)の真空槽
内に固定し、4×10-7Torrになるまで排気した。なお、
膜形成において基板1は15rpmで回転させた。
A substrate 1 made of a polycarbonate resin (PC) disk having a diameter of 130 mm and a thickness of 1.2 mm and having a group of 1.6 μm pitch, and a vacuum of a high-frequency magnetron sputtering device with three targets (Model SPF-430H manufactured by Anerva Corp.). It was fixed in the tank and evacuated to 4 × 10 −7 Torr. In addition,
The substrate 1 was rotated at 15 rpm in the film formation.

そしてまず、以下のようにして前面の透明誘電体層2
の第1の層2aを形成した。Ar/O2の混合ガス(O2:1vol
%)を真空槽内に導入し、圧力10mTorrになるようにAr/
O2ガス流量を調整した。ターゲットとしては、直径100m
m、厚さ5mmの円盤で組成がInxSnyBizO100-(x+y+z)(x,
y,zは原子%)において、組成比(x,y,z)が(36,0,
4),(20,0,20),(0,36,4),(0,20,20),(20,1
0,10),の各組成の酸化物焼結体からなる5種類を適宜
使用した。放電電力100W、放電周波数13.56MHzで高周波
スパタリングを行い、第1の層2aとして膜組成がIn36Bi
4O60,In20Bi20O60,Sn36Bi4O60,Sn20Bi20O60,In20Sn10Bi
10O60の各組成の酸化物膜(In,Si)BiO膜を約200Å堆積
した。
Then, first, the transparent dielectric layer 2 on the front surface is formed as follows.
The first layer 2a of was formed. Ar / O 2 mixed gas (O 2 : 1vol
%) Is introduced into the vacuum chamber, and Ar / is adjusted so that the pressure becomes 10 mTorr.
The O 2 gas flow rate was adjusted. The target is 100m in diameter
m, 5 mm thick disk with composition In x Sn y Bi z O 100- (x + y + z) (x,
y, z is atomic%), the composition ratio (x, y, z) is (36,0,
4), (20,0,20), (0,36,4), (0,20,20), (20,1)
0, 10), and 5 types of oxide sintered bodies of each composition were appropriately used. High frequency sputtering was performed at a discharge power of 100 W and a discharge frequency of 13.56 MHz, and the film composition of the first layer 2a was In 36 Bi.
4 O 60 , In 20 Bi 20 O 60 , Sn 36 Bi 4 O 60 , Sn 20 Bi 20 O 60 , In 20 Sn 10 Bi
About 200Å of oxide film (In, Si) BiO film of each composition of 10 O 60 was deposited.

次にターゲットをAl50Si50の焼結体(添数字は組成
(原子%)を示す)の円盤に変え、上述と同様の放電条
件で第2の層2bとしてAl25Si25No50からなる透明誘電体
膜を約1000Å堆積した。続いて、ターゲットをTb23Fe69
Co8合金(添数字は組成(原子%)を示す)の円盤に変
え、スパッタリングガスをAr/N2より純Ar(5N)とする
以外は上述と同様の放電条件で、光磁気記録層3として
TbFeCo合金膜を約250Å堆積した。
Next, the target was changed to a disk of a sintered body of Al 50 Si 50 (subscripts indicate composition (atomic%)), and the second layer 2b was composed of Al 25 Si 25 No 50 under the same discharge conditions as above. About 1000Å of transparent dielectric film was deposited. Then, the target was Tb 23 Fe 69
Magneto-optical recording layer 3 under the same discharge conditions as described above except that the disk was changed to a Co 8 alloy (subscript indicates composition (atomic%)) disk and the sputtering gas was pure Ar (5N) rather than Ar / N 2. As
About 250Å of TbFeCo alloy film was deposited.

再びターゲットを前述のAlSiの焼結体ターゲットに戻
し、再びスパッタリングガスを純ArからAr/N2混合ガス
として、裏面誘電体層4としてAl25Si25No50からなる透
明誘電体膜を約200Å堆積した。
The target was returned to the AlSi sintered body target again, and the sputtering gas was changed from pure Ar to Ar / N 2 mixed gas again, and the transparent dielectric film made of Al 25 Si 25 No 50 was used as the rear surface dielectric layer 4 to about 200 Å. Deposited.

さらに、ターゲットをAl91Au6Ti3の焼結体(添数字は
組成(原子%)を示す)の円盤に変え、スパッタリング
ガスをAr/N2より純Ar(5N)として金属反射層5としてA
lAuTi合金膜を約500Å堆積した。
Furthermore, the target was changed to a disk of a sintered body of Al 91 Au 6 Ti 3 (subscripts indicate composition (atomic%)), and the sputtering gas was changed from Ar / N 2 to pure Ar (5N) to the metal reflection layer 5. A
About 500Å of lAuTi alloy film was deposited.

最後に、この堆積層をスパッタリング装置から取り出
し、スピンコーターに取り付けた。ディスクを回転させ
ながら、紫外線硬化性のフェノールノボラックエポキシ
アクリレート樹脂を塗布した後、紫外線照射装置を通過
させて樹脂を硬化させ約50μmの有機保護層6を設け
た。
Finally, this deposited layer was taken out from the sputtering device and attached to a spin coater. An ultraviolet curable phenol novolac epoxy acrylate resin was applied while rotating the disk, and then passed through an ultraviolet irradiation device to cure the resin to provide an organic protective layer 6 of about 50 μm.

以上の順序で、第1図に示すところのPC/(In,Sn)Bi
O/AlSiN/TbFeCo/AlSiN/AlAuTi/有機保護層の積層構成の
光磁気ディスクを得た。
In the above order, PC / (In, Sn) Bi as shown in Fig. 1
A magneto-optical disk with a laminated structure of O / AlSiN / TbFeCo / AlSiN / AlAuTi / organic protective layer was obtained.

次にこのディスクのCNRを測定した。測定は実施例1
と全く同様とした。
Next, the CNR of this disc was measured. Measurement is in Example 1
And exactly the same.

測定の結果は、いずれの媒体も最適記録パワーは5.0m
W、CNR最大値は49.0dB、ノイズレベルは−51.0dBmであ
った。
The measurement result shows that the optimum recording power for all media is 5.0 m.
The maximum value of W and CNR was 49.0 dB, and the noise level was -51.0 dBm.

これらのディスクの面を観察したところ、ピンホール
や剥離・亀裂等の欠陥は観察されなかった。
When the surfaces of these disks were observed, no defects such as pinholes, peeling and cracks were observed.

次にこれらのディスクを80℃,85%RHの高温高湿雰囲
気下に200時間放置した。その後の最適レーザーパワー,
CNRノイズレベルを測定したところ、放置前の測定結果
と比較して全く変化は見られなかった。これらのディス
ク面を観察したところ、ピンホールや剥離・亀裂等の欠
陥は観察されなかった。
Next, these disks were left in a high temperature and high humidity atmosphere of 80 ° C. and 85% RH for 200 hours. Optimum laser power after that,
When the CNR noise level was measured, no change was observed compared with the measurement result before standing. When these disk surfaces were observed, no defects such as pinholes, peeling and cracks were observed.

比較例 以下のようにして前述の実施例1の透明誘電体層2の
第1,第2の層2a,2bの2層構成を従来の一層とした単層
の透明誘電体層2以外は、実施例1と同じ構成の光磁気
ディスクを作成し、評価した。
Comparative Example As described below, except for the single-layer transparent dielectric layer 2 in which the two-layer structure of the first and second layers 2a and 2b of the transparent dielectric layer 2 of Example 1 described above is a conventional single layer, A magneto-optical disk having the same configuration as in Example 1 was created and evaluated.

直径130mm、厚さ1.2mmの円盤で、1.6μmピッチのグ
ループを有するポリカーボネート樹脂(PC)のディスク
基板1を実施例で用いたものと全く同じスパッタ装置中
に全く同じ条件で固定した。
A disk substrate 1 of a polycarbonate resin (PC) having a disk of 130 mm in diameter and 1.2 mm in thickness and having a group of 1.6 μm pitch was fixed in the same sputtering apparatus as that used in the Examples under the same conditions.

前面の透明誘電体層2として、ターゲットにAl50Si50
(添数字は組成(原子%)を示す)の焼結体及びIn36Sn
4O60の焼結体を用いスパッタリングガスとしてAr/N2
合ガス(N2:30vol%)を用いて、実施例と同様の放電条
件でAl25Si25No50及びIn36Sn4O50N10の透明誘電体膜を
約1200Å堆積させた。
As the transparent dielectric layer 2 on the front surface, Al 50 Si 50 is used as a target.
(Supplemental figures indicate composition (atomic%)) and In 36 Sn
Al 25 Si 25 No 50 and In 36 Sn 4 O 50 under the same discharge conditions as in the example using a sintered body of 4 O 60 and Ar / N 2 mixed gas (N 2 : 30 vol%) as a sputtering gas. About 1200Å of N 10 transparent dielectric film was deposited.

以降は実施例1と全く同様に、スパッタリングガスを
適宜入れ替えて、記録層3としてTbFeCoを約250Å、裏
面保護層4としてAlSiNを約200Å、金属反射層5として
AlAuTiを約500Åの順に積層し、最後に有機保護層6と
して紫外線硬化性のフェノールノボラックエポキシアク
リレート樹脂を約50μm設けた。即ち、透明誘電体層2
を従来の単層とした以外は実施例1と同じ構成のPC/(A
lSiN,InSnON)/TbFeCo/AlSiN/AlAuTi/有機保護層の積層
構成の光磁気ディスクを得た。
Thereafter, the sputtering gas is appropriately changed, TbFeCo is about 250 Å as the recording layer 3, AlSiN is about 200 Å as the back surface protective layer 4, and the metal reflective layer 5 is exactly the same as in Example 1.
AlAuTi was laminated in the order of about 500 Å, and finally an ultraviolet curable phenol novolac epoxy acrylate resin was provided as about 50 μm as the organic protective layer 6. That is, the transparent dielectric layer 2
PC / (A with the same configuration as in Example 1 except that the conventional single layer
We obtained a magneto-optical disk with a laminated structure of (lSiN, InSnON) / TbFeCo / AlSiN / AlAuTi / organic protective layer.

次に、実施例1と同じ条件で、このディスクの特性を
測定したところ、最適レーザーパワーは5.0mW、CNR最大
値は48.0dB、ノイズレベルは−52.0dBmであった。
Next, when the characteristics of this disk were measured under the same conditions as in Example 1, the optimum laser power was 5.0 mW, the maximum CNR value was 48.0 dB, and the noise level was -52.0 dBm.

次にこれらのディスクを80℃,85%RHの高温高湿雰囲
気下に200時間放置した。PC/AlSiN/TbFeCo/AlSiN/AlAuT
i/有機保護層の構成の媒体は、放置後には無数の亀裂が
発生し、一部には剥離が生じていた。最適レーザーパワ
ーは変化していなかったが、CNRは2dB低下して46.0dB、
ノイズレベルは2dB上昇して−50dBmであった。一方、PC
/InSnON/TbFeCo/AlSiN/AlAuTi/有機保護層の構成の媒体
は、放置後の亀裂、剥離等の発生、及び最適レーザーパ
ワーの変化は見られなかったものの、CNRは3dB低下して
45.0dB、ノイズレベルは2dB上昇して−50dBmであった。
Next, these disks were left in a high temperature and high humidity atmosphere of 80 ° C. and 85% RH for 200 hours. PC / AlSiN / TbFeCo / AlSiN / AlAuT
In the medium having the i / organic protective layer, innumerable cracks were generated after standing and peeling was partially generated. The optimum laser power did not change, but the CNR dropped by 2 dB to 46.0 dB,
The noise level increased by 2 dB to -50 dBm. On the other hand, PC
Although the medium with the composition of / InSnON / TbFeCo / AlSiN / AlAuTi / organic protective layer did not show cracks, peeling, etc. after leaving and change of the optimum laser power, CNR decreased by 3 dB.
The noise level was 45.0 dB, and the noise level increased by 2 dB to -50 dBm.

本実施例、比較例より、本発明の有意性が示された。 The significance of the present invention was shown by this example and the comparative example.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例の積層構成の説明図である。1:基板、2,
4:透明誘電体層、3:記録層、5:金属反射層、6:有機保護
FIG. 1 is an explanatory diagram of a laminated structure of the embodiment. 1: substrate, 2,
4: Transparent dielectric layer, 3: Recording layer, 5: Metal reflective layer, 6: Organic protective layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−166046(JP,A) 特開 昭62−192948(JP,A) 特開 昭62−222453(JP,A) 特開 平2−152051(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-63-166046 (JP, A) JP-A-62-192948 (JP, A) JP-A-62-222453 (JP, A) JP-A-2- 152051 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板と記録層との間に透明誘電体層を有す
る光記録媒体において、前記透明誘電体層が、前記基板
上に積層された、In又はSnの少なくとも一方の窒酸化
物、或いはIn又はSnの少なくとも一方とBiの酸化物又は
窒酸化物からなる第1の層と、第1の層の記録層側に積
層した酸素を含まない透明誘電体からなる第2の層とか
らなることを特徴とする光記録媒体。
1. An optical recording medium having a transparent dielectric layer between a substrate and a recording layer, wherein the transparent dielectric layer is laminated on the substrate, and at least one of In and Sn oxynitride oxides, Alternatively, a first layer made of at least one of In and Sn and Bi oxide or oxynitride, and a second layer made of a transparent dielectric material containing no oxygen, which is laminated on the recording layer side of the first layer. An optical recording medium characterized by the following.
【請求項2】前記窒酸化物又は酸化物がアモルファスで
ある請求項第1項記載の光記録媒体。
2. The optical recording medium according to claim 1, wherein the nitric oxide or the oxide is amorphous.
【請求項3】前記窒酸化物の窒素含有量が40at%以下で
ある請求項第1項、又は第2項記載の光記録媒体。
3. The optical recording medium according to claim 1, wherein the nitrogen content of the oxynitride is 40 at% or less.
【請求項4】前記第2の層の透明誘電体が金属の窒化物
又は硫化物である請求項第1項、第2項、又は第3項記
載の光記録媒体。
4. The optical recording medium according to claim 1, 2 or 3, wherein the transparent dielectric material of the second layer is a metal nitride or sulfide.
【請求項5】前記記録層が光磁気記録層である請求項第
1項、第2項、第3項、又は第4項記載の光記録媒体。
5. The optical recording medium according to claim 1, 2, 3, or 4, wherein the recording layer is a magneto-optical recording layer.
【請求項6】前記基板がプラスチックである請求項第1
項、第2項、第3項、第4項又は第5項記載の光記録媒
体。
6. The first substrate is plastic.
The optical recording medium according to item (2), item (3), item (4), or item (5).
JP1272771A 1989-10-20 1989-10-20 Optical recording medium Expired - Lifetime JP2528188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272771A JP2528188B2 (en) 1989-10-20 1989-10-20 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272771A JP2528188B2 (en) 1989-10-20 1989-10-20 Optical recording medium

Publications (2)

Publication Number Publication Date
JPH03134834A JPH03134834A (en) 1991-06-07
JP2528188B2 true JP2528188B2 (en) 1996-08-28

Family

ID=17518516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272771A Expired - Lifetime JP2528188B2 (en) 1989-10-20 1989-10-20 Optical recording medium

Country Status (1)

Country Link
JP (1) JP2528188B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124734A (en) * 2004-10-26 2006-05-18 Mitsubishi Heavy Ind Ltd Film material

Also Published As

Publication number Publication date
JPH03134834A (en) 1991-06-07

Similar Documents

Publication Publication Date Title
US5093174A (en) Optical recording medium
US5633746A (en) Magneto-optical recording medium
US5192626A (en) Optical recording medium
US5512364A (en) Magneto-optical recording medium
JPH0325737A (en) Magneto-optical recording medium
JP2528188B2 (en) Optical recording medium
JP2541677B2 (en) Optical recording medium
CA2004936C (en) Optical recording medium
JPH03288346A (en) Optical recording medium
JP2670846B2 (en) Optical recording medium
JP2559803B2 (en) Optical recording medium
JP2523180B2 (en) Optical recording medium and manufacturing method thereof
JP2507592B2 (en) Optical recording medium
JP2528173B2 (en) Optical recording medium
JP2804165B2 (en) Magneto-optical recording medium
JP2882915B2 (en) Magneto-optical recording medium
JP2550118B2 (en) Magneto-optical recording medium
JPH03122845A (en) Optical recording medium
JP2960470B2 (en) Magneto-optical recording medium
KR100194131B1 (en) Optical recording media
JP3205921B2 (en) Magneto-optical recording medium
JP2559871B2 (en) Optical recording medium
JP2754658B2 (en) Magneto-optical recording medium
JPH03273543A (en) Magneto-optical recording medium
JP2938233B2 (en) Magneto-optical recording medium